首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用酸性聚丙烯酰胺凝胶电泳技术(A-PAGE)对来自中国新疆、俄罗斯西伯利亚及蒙古等地的35份野生新麦草种质进行醇溶蛋白的遗传变异分析,获得如下结果,1)电泳共检测到37条醇溶蛋白条带,多态性条带比率高达100%;2)种质间遗传相似系数变幅为0~0.827 6,平均值为0.450 9,表明供试材料具有丰富的醇溶蛋白遗传多样性;3)聚类分析将供试材料分成5类,相同或者相似生态地理来源的材料能够聚在一起,表明醇溶蛋白带谱与其地理分布具有一定的相关性;4)种质间的Shannon多样性指数Ht=0.579 6,类群平均多样性指数Hgroup=0.483 5,其中类群内和类群间的遗传变异分别为83.42%和16.58%,这可能与新麦草异花授粉的繁育方式有关。本研究结果将为新麦草种质资源的保护和利用提供理论依据。  相似文献   

2.
本研究开展了短芒型老芒麦(Elymus sibiricus L.)种质的筛选和综合评价,以筛选优质种质。基于55个形态学指标和SCoT分子标记对川西北地区24份短芒型老芒麦种质以及两份老芒麦对照材料进行形态变异及遗传亲缘关系分析。形态学指标在26份材料之间表现出丰富的遗传多样性,Shannon-Wiener’s多样性指数(H)范围为0.66~2.01;变异系数(CV)范围为4.62%~45.93%,聚类分析将26份老芒麦资源分为5个大类。基于SCoT分子标记,共扩增出多态性条带96条,多态性比率为67.61%。平均有效等位基因数为1.46,平均Nei’s基因多样性指数为0.27,平均Shannon’ s多样性指数为0.38,供试材料的DICE遗传相似性系数为0.67~0.87。通过遗传相似系数的聚类分析,可将26份材料分为四大类。群体遗传结构分析将供试材料划分为两个类群,Q2类群来源单一,Q1类群拥有混合来源。Esdm24,Esdm6,Esdm22这3份种质的芒等相关性状具有优异的性状,可以作为短芒型老芒麦的选育的后备材料。  相似文献   

3.
 利用SRAP标记,对来自亚洲的84份老芒麦种质的遗传多样性和遗传关系进行了分析。23个引物组合共产生337条扩增带,其中203 条为多态性带,多态性比率为60.24%。各种质间遗传相似系数的变幅为0.783~0.965,平均值为0.865。来自于青藏高原和蒙古的种质间的平均遗传相似性(GS)值最小(0.830),而来自于俄罗斯和蒙古的种质间的平均GS值最大(0.897)。对84份种质的聚类分析表明,供试种质可以划分成2大类,而且聚类结果与原始相似性矩阵间具有很高的吻合度(r =0.88)。同时,主向量分析(PCoA)也得到了与聚类分析类似的结果。方差分析(AMOVA)表明在总的遗传变异中有79.62%发生在地理类群内,有20.38%发生在类群间(ΦST=0.204),类群间和类群内的变异均为极显著(P<0.0001)。基于各地理类群间ΦST 值进行的聚类分析也表明青藏高原类群明显区别于其他地理类群。这种聚类模式可能依赖于种质地理来源赋予其的特殊生态地理适应性。本研究结果对于今后老芒麦种质的利用和品种选育提供了有益信息。  相似文献   

4.
青藏高原老芒麦种质基于SRAP标记的遗传多样性研究   总被引:7,自引:1,他引:6  
采用SRAP分子标记技术,对采自青藏高原的52份老芒麦材料进行遗传多样性分析,结果表明,1)用16对随机引物组合共扩增出318条清晰可辨的条带,其中多态性条带275条,占86.48%,材料间的遗传相似系数(GS)范围为0.506 4~0.958 6,平均值为0.792 1,物种水平上的Nei氏遗传多样性为0.227 0,这些结果说明供试老芒麦具有较为丰富的遗传多样性;2)对所有材料的聚类分析发现,在GS=0.80的水平上,供试材料可聚为5类,大部分来自相同或相似生态地理环境的材料聚为一类,表明供试材料的聚类和其生态地理环境间有一定的相关性;3)对5个老芒麦地理类群基于Shannon-Weaver指数的遗传分化估算发现,类群内遗传变异占总变异的65.29%;而类群间遗传变异占总变异的34.71%;4)对各生态地理类群基于Nei氏无偏估计的遗传一致度聚类分析表明,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性。  相似文献   

5.
应用AFLP标记对采自中国7个省市自治区的49份野生扁蓿豆种质材料进行遗传多样性及遗传结构的分析。研究结果显示:(1)利用4对条带清楚且稳定的AFLP引物组合共扩增出298个条带,其中多态性条带有219个,多态性条带比率为73.5%,每个引物扩增多态性条带数平均为54.8条。(2)49份野生扁蓿豆种质间多态性比率平均为32.70%,Nei’s基因多样性指数平均为0.115,Shannon多样性指数平均为0.172,表明供试种质材料间遗传多样性较丰富,遗传多样性水平较高。(3)河北省的扁蓿豆种质遗传变异最丰富,辽宁省的扁蓿豆种质变异幅度最小,不同地理类群间的扁蓿豆种质遗传多样性指数有显著差异。(4)种质材料间基因分化系数为0.6436,说明64.36%的遗传变异来源于不同种质材料间;地区间基因分化系数为0.2895,说明28.95%的遗传变异来源于不同地区间。表明地区间差异小于种质材料间的遗传变异。(5)UPGMA方法的聚类分析和主成分分析结果表明,49份种质材料间的遗传相似系数(GS)为0.5849~0.9904,遗传距离(GD)为0.0096~0.5363,49份扁蓿豆种质分为6大类,表现出明显的地域性。  相似文献   

6.
本研究利用EST-SSR分子标记,对国内的52份老芒麦(Elymus sibiricus)材料进行遗传多样性的研究,并构建了7个老芒麦品种及栽培材料的DNA指纹图谱。20对EST-SSR引物共产生204个条带,平均每对引物扩增出10.2条带,176(86.27%)条带为多态性条带,表明供试材料具有较高水平的多态性。同时,引物Elw404和Elw195构建的指纹图谱较为容易地将品种和栽培材料与其他材料区别开。分子方差分析(AMOVA)表明,老芒麦地理区域内(73.94%)的遗传变异远高于地理区域间(26.06%)。结构分析将52份材料分为5组,主成分分析(PCoA)结果与之相似。与品种及栽培材料相比,野生材料具有更高的遗传多样性[多态性条带数(NPB)为174,多态性百分比(PPB)为85.29%,香农多样性信息指数(I)为0.296 6,Nei’s基因多样性(H)为0.179 8,观察等位基因数(Na)为1.852 9],可作为重要的遗传资源用于后续的育种工作。本研究结果表明,EST-SSR分子标记可以有效地评价老芒麦种质遗传多样性及进行品种鉴定。研究结果为制定老芒麦种质原位和非原位保护策略提供参考。  相似文献   

7.
基于SRAP和SSR分子标记分析了青藏高原东南缘8个老芒麦自然居群遗传变异及群体遗传结构,获得下述结果:1)16对SRAP引物在90个单株中共扩增出384条可统计条带,其中多态性条带334条,占86.98%;16个SSR位点共检测出等位变异221个,平均每个位点13.8个,其中具有多态性的位点数192个,占86.88%。2)2种分子标记检测到老芒麦居群水平的基因多样性(He)分别为0.1092和0.1296,而物种水平的基因多样性达0.2434和0.3732。3)基于2种标记的Nei氏遗传分化指数Gst(0.5525和0.5158)表明老芒麦居群出现了较大程度的遗传分化,居群间的基因流非常有限,分别为0.4050和0.4694,老芒麦的遗传变异主要分布在居群间,居群内变异相对较小,Shannon多样性指数和分子方差变异(AMOVA)分析显示了相似的结果。4)基于聚类分析结果表明各居群间存在较为明显的地理分化,8个居群分化为采集地范围内的南、北和中部3个分支。通过对老芒麦遗传多样性和遗传结构的分析提出了对该物种遗传多样性的保护策略。  相似文献   

8.
32份广东桑类型桑树种质资源亲缘关系的SRAP标记分析   总被引:1,自引:0,他引:1  
广东桑类型是由分布在广西壮族自治区和广东省的广东桑种形成的桑树栽培类型。利用相关序列扩增多态性(SRAP)分子标记技术,对两广地区的部分广东桑类型桑树种质资源的亲缘关系进行分析,为地方桑树种质资源的遗传多样性保护和利用提供依据。选用22对SRAP引物组合在32份桑树种质材料中共扩增出144条带,其中有44条多态性带,多态性比率30.56%,平均每对引物组合扩增出2条多态性带。32份桑树种质材料间的遗传相似系数值变化范围为0.826 4~1.000 0,平均值0.894 4,说明供试广东桑类型桑树种质材料间存在较高遗传变异。采用UPGMA法进行聚类分析,将32份桑树种质材料划分成3类:第Ⅰ类包括了20份来自广西的地方品种资源,第Ⅱ类包括了3份来自广东的选育品种资源和7份来自广西的选育品种资源,第Ⅲ类的2份种质资源分别来自广西和广东。同一类群的各亚类群又多以同一地理来源的品种或亲本有相近、相同血缘的品种聚集。研究结果说明SRAP标记能很好地揭示同一桑种不同种质材料间的遗传多样性和亲缘关系,广东桑类型桑树种质资源的遗传多样性与地理来源有密切关系。  相似文献   

9.
利用EST-SSR标记分析西南扁穗牛鞭草种质的遗传多样性   总被引:2,自引:2,他引:0  
利用禾谷作物EST-SSR标记对采自我国西南地区的40份野生扁穗牛鞭草和3份扁穗牛鞭草国审品种的遗传变异和亲缘关系进行了研究。试验筛选出23对引物对43份供试材料进行扩增,共获得323条带,其中多态性条带261条,多态性条带比率(PPB)达80.4%,多态信息含量(PIC)为0.354~0.500,平均值为0.474,遗传相似系数(GS)为0.690~0.913,表现出丰富的遗传多样性。聚类分析结果表明,各供试材料间的聚类与其地理来源及形态特征具有一定的相关性。5 个扁穗牛鞭草地理类群间的分子方差分析(AMOVA)揭示了供试的扁穗牛鞭草类群内的遗传变异占总变异的95.32%,类群间变异占总变异的4.68%。表明禾谷作物的EST-SSR能用于扁穗牛鞭草遗传多样性研究,是一种有效的分子标记。本研究结果为扁穗牛鞭草种质的收集、利用及育种提供了理论依据。  相似文献   

10.
以栽培品种川草2号为对照,观测到34份老芒麦野生种质的13个形态和农艺学性状的基本数据,基于欧氏距离进行UPGMA聚类分析,揭示老芒麦各野生种质间的表型多样性。研究结果表明供试老芒麦野生种质间表型多样性非常丰富。根据聚类结果,供试种质可以划分成3个具有明显形态和农艺性状差异的类群。类群Ⅲ中3份来自新疆的种质和1份来自四川红原的种质具有良好的农艺性状表现,其牧草和种子生产性能远高于其它材料。主成分分析的结果与聚类分析基本一致。本文还对利用野生老芒麦种质进行新品种选育的方法进行了探讨。  相似文献   

11.
西南区野生狗牙根遗传多样性的ISSR标记与地理来源分析   总被引:7,自引:1,他引:6  
刘伟  张新全  李芳  马啸  范彦 《草业学报》2007,16(3):55-61
利用72条ISSR引物对西南区42份野生狗牙根和3份栽培品种的遗传多样性进行研究,发现仅11条引物能产生清晰扩增产物。在45份供试材料中,11个ISSR标记共产生82条扩增片段,每条引物能产生5~10条,平均为7.45条。在这82条扩增片段中,有58条具有多态性,占70.9%,平均每个ISSR标记能产生5.27条多态性片段。ISSR标记揭示的西南区45份材料间的遗传相似系数变化范围为0.69~0.98,其中42份野生狗牙根间的遗传相似系数变化范围为0.77~0.98,表明西南区野生狗牙根具有较丰富的遗传多样性,与栽培品种有较大的遗传异质性。利用UPGMA聚类分析表明,ISSR标记能够将西南区45份材料区分开。供试材料可聚为4类,其中栽培品种单独聚成1类,野生材料聚为3类。基于地理距离和遗传距离的相关分析显示,西南区野生狗牙根材料间的遗传关系与其地理来源间没有严格的一致性关系。  相似文献   

12.
野生鹅观草种质的醇溶蛋白遗传多样性分析   总被引:1,自引:1,他引:0  
采用酸性聚丙烯酰胺凝胶电泳技术(A-PAGE)对采自中国四川、重庆、甘肃、日本5个地区的42份野生鹅观草材料进行遗传多样性分析,获得下述结果,1)供试材料共分离出29条带纹,多态率达89.66%.材料间的遗传相似系数范围在0.448~0.966,平均GS值为0.695,说明供试野生鹅观草具有较为丰富的遗传多样性.2)对所有材料进行聚类分析,可聚为3类,基本能按照生态地理环境来源聚为一类,表明供试材料的聚类和其生态地理环境间有一定的相关性.3)基于Shannon多样性指数估算了5个鹅观草生态地理类群内和类群间的遗传分化,发现类群内遗传变异占总变异的83.69%,类群间遗传变异占总变异的16.31%.4)对各生态地理类群基于Nei氏尢偏估计的遗传一致度聚类分析表明,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性.  相似文献   

13.
 利用SRAP分子标记技术,对采自中国西南5省区的44份野生狗牙根及8份非洲狗牙根材料进行遗传多样性研究。结果表明,18对引物组合共得到扩增总条带236条,多态性条带数206条,平均每对引物扩增出11.4条带,多态性位点百分率为87.29%,材料间的遗传相似系数范围为0.569~0.929,平均GS值为0.723。聚类分析结果表明,52份材料可聚为5类;基于Shannon多样性指数估算了8个狗牙根生态地理类群内和类群间的遗传分化,类群内的遗传变异占总变异的63.81%,类群间的遗传变异占总变异的36.19%,表明这些抗源材料遗传差异较大,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性。  相似文献   

14.
扁穗牛鞭草种质遗传多样性的ISSR分析   总被引:2,自引:10,他引:2  
范彦  李芳  张新全  马啸 《草业学报》2007,16(4):76-81
用ISSR标记对来自中国西南地区(四川、重庆、贵州)的28份扁穗牛鞭草材料的遗传多样性进行了检测。从96个ISSR引物中共筛选出13个多态性明显、反应稳定的引物。28份材料的DNA共扩增出129条谱带,平均每个引物扩增出9.9条带,多态性条带比率达84.2%。材料间遗传相似系数为0.466~0.980,表现出丰富的遗传多样性。通过聚类分析和主成分分析,将28份扁穗牛鞭草分为两大类,同一地区的扁穗牛鞭草品种(系)基本聚在同一类,呈现出一定的地域性分布规律。  相似文献   

15.
成凯凯  魏小兰  杜鹃  张蕴薇 《草业科学》2012,29(11):1698-1705
以从美国及中国收集的30份野牛草(Buchloe dactyloides)种质为研究对象,对供试材料的基本坪用性状如叶长、叶宽、株高、茎粗、分蘖数、匍匐茎数量、匍匐茎长度、匍匐茎节数、叶色、叶片枯黄程度等进行田间观测。利用简单重复序列(ISSR)分子标记技术,对供试野牛草的遗传多样性进行分析。研究结果显示,1)供试材料的叶色呈现显著差异(P<0.05),叶长、叶宽、茎粗、株高、匍匐茎长度和匍匐茎节数差异极显著(P<0.01),分蘖数、匍匐茎数目和叶片枯黄程度没有显著差异;2)7个ISSR引物对30份不同地理来源的野牛草进行扩增,共检测到108个扩增位点,其中多态性位点90个,多态性比率(PPB)为82.6%,平均每条引物可以扩增出15.6条带,说明供试的野牛草材料间遗传差异较大;3)30份野牛草的遗传相似系数(GS)值变化范围为0.546~0.880,表明了供试材料具有丰富的遗传多样性;4)在遗传距离的基础上进行UPGMA聚类分析,30份野牛草可被分为5组,该结果表明遗传距离的差异是导致供试野牛草材料整体遗传差异较大的主要原因。  相似文献   

16.
云南猪屎豆属遗传多样性的ISSR分析   总被引:1,自引:0,他引:1  
以云南41份野生猪屎豆属种质为材料,用ISSR进行分析,结果表明, 100个ISSR引物中共筛选出16个多态性明显、反应稳定的引物, 41份材料DNA共扩增出164条条带,平均每个引物的扩增条带数为10.3条,其中多态性条带总数为159条,多态性比率为99.3%。材料间遗传相似系数范围在0.481 7~1.000 0,表现出丰富的遗传多样性;通过正交设计优化,得出适合猪屎豆属野生植物的ISSR-PCR反应体系为:40 ng模板DNA、引物0.2 μmol/L、200 μmol/L dNTP、1×Buffer (Mg2+ plus)、0.5 U Taq酶(TaKaRa);ISSR引物最佳退火温度为50或53℃;通过聚类分析,可将41份猪屎豆属种质分为5大类,同一种的种质可以很好的聚成一类;通过对思茅猪屎豆ISSR鉴定,得出它与猪屎豆属的遗传相似系数接近,然而确定该物种属于猪屎豆属需要做更多的鉴定。  相似文献   

17.
山蚂蝗属野生种质是一个具有巨大经济价值的资源。本研究利用基于基因表达序列数据库开发的2种分子标记ACGM 和EST SSR 共85对引物对山蚂蝗属9个种46个野生种质资源进行多样性分析。结果显示,ACGM引物中有扩增产物的引物比例为86.49%,远高于EST SSR 引物的54.17%。同时,ACGM 的多态性比率也大于EST-SSR,可见ACGM 在山蚂蝗属野生种质中的转移性优于EST-SSR。通过ACGM 和EST SSR 分析得到的遗传相似性系数为0.523~0.967,平均相似系数为0.703,这表明山蚂蝗属野生种质资源间存在较高的遗传多样性。此外,ACGM 分析能有效区分46 个山蚂蝗属种质基因型,而EST-SSR 只能区分绝大多数山蚂蝗属基因型。在UPGMA 聚类图上46个供试材料被分成9组,与传统分类结果不完全一致。说明基于禾本科和豆科基因表达序列开发的分子标记能用于山蚂蝗属植物的遗传分析,同时这也为其他野生种质资源的遗传多样性研究提供了有益的借鉴。  相似文献   

18.
菊苣种质资源遗传多样性的SRAP研究   总被引:1,自引:0,他引:1  
罗燕  白史且  彭燕  张玉  马啸 《草业学报》2010,19(5):139-147
利用SRAP分子标记技术对来自5大地理类群的48份菊苣材料的遗传多样性进行了研究。用筛选的28对引物对48份材料的DNA进行PCR扩增,获得以下结论:1)28个位点共检测到333个等位基因,平均为11.89个,多态性位点率(P)平均为95.09%;多态性信息含量(PIC)范围为0.23(me3+em3)~0.44(me1+em10),平均为0.33;2)材料间遗传相似系数(GS)范围在0.55~0.89,平均GS值为0.69;地理类群间的GS值在0.63~0.96,其中荷兰(P,95.52%)和意大利(P,95.38%)类群遗传多样性丰富,表明供试菊苣种质具有丰富的遗传变异;3)根据研究结果进行聚类分析和主成分分析,可将48份菊苣材料分为五大类,来自相同地理类群的材料基本能聚为一类,呈现出一定的地域性分布规律。  相似文献   

19.
不同产地白三叶种质遗传多样性的SRAP分析   总被引:8,自引:2,他引:6  
张婧源  彭燕  罗燕  马啸 《草业学报》2010,19(5):130-138
采用SRAP分子标记技术,对不同产地的41份白三叶材料进行遗传多样性分析,筛选出20对随机引物组合,获得以下结果:1)20对随机引物组合共扩增出479条清晰可辨的条带,每对引物组合PCR扩增出13~44条带纹,平均为23.95条,多态性条带411条,多态性位点百分率(PPB)占85.16%,多态性信息含量(PIC)范围为0.182~0.334,平均为0.268,表明供试白三叶种质具有丰富的遗传多样性;2)材料间遗传相似系数(GS)范围为0.5866~0.9896,平均GS值为0.7307;表明供试白三叶种质在分子水平具有相对较远的亲缘关系;3)对所有材料进行聚类分析和主成分分析发现,在GS=0.71的水平上,可将41份白三叶材料分成3大类,大部分来自相同或相似生态地理环境的材料能聚为一类,呈现出一定的生态地理环境分布规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号