首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

2.
Nitrogen amendment followed by flooding irrigation is a general management practice for a wheat–maize rotation in the North China Plain, which may favor nitrification and denitrification. Consequently, high emissions of nitrous oxide (N2O) and nitric oxide (NO) are hypothesized to occur. To test this hypothesis, we performed year-round field measurements of N2O and NO fluxes from irrigated wheat–maize fields on a calcareous soil applied with all crop residues using a static, opaque chamber measuring system. To interpret the field data, laboratory experiments using intact soil cores with added carbon (glucose) and nitrogen (nitrate, ammonium) substrates were performed. Our field measurements showed that pulse emissions after fertilization and irrigation/rainfall contributed to 73% and 88% of the annual N2O and NO emissions, respectively. Soil moisture and mineral nitrogen contents significantly affected the emissions of both gases. Annual emissions from fields fertilized at the conventional rate (600 kg N ha−1 yr−1) totaled 4.0 ± 0.2 and 3.0 ± 0.2 kg N ha−1 yr−1 for N2O and NO, respectively, while those from unfertilized fields were much lower (0.5 ± 0.02 kg N ha−1 yr−1 and 0.4 ± 0.05 kg N ha−1 yr−1, respectively). Direct emission factors (EFds) of N2O and NO for the fertilizer nitrogen were estimated to be 0.59 ± 0.04% and 0.44 ± 0.04%, respectively. By summarizing the results of our study and others, we recommended specific EFds (N2O: 0.54 ± 0.09%; NO: 0.45 ± 0.04%) for estimating emissions from irrigated croplands on calcareous soils with organic carbon ranging from 5 to 16 g kg−1. Nitrification dominated the processes driving the emissions of both gases following fertilization. It was evident that insufficient available carbon limited microbial denitrification and thus N2O emission. This implicates that efforts to enhance carbon sink in calcareous soils likely increase their N2O emissions.  相似文献   

3.
Biochar produced in cost‐efficient flame curtain kilns (Kon‐Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar‐based fertilizers containing between 60–100 kg N, 5–60 kg P2O5 and 60–100 kg K2O, respectively, per ton of biochar. In 21 field trials, nutrient‐enriched biochars were applied at rates of 0·5–2 t ha−1 into the root zone of 13 different crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained same amounts of nutrients but without biochar. All nutrient‐enriched biochar substrates improved yields compared with their respective no‐biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5·1% (N  = 4 trials) higher yields than standard NPK fertilization without biochar. Cow urine‐enriched biochar blended with compost resulted on average in 123% ± 76·7% (N  = 13 trials) higher yields compared with the organic farmer practice with cow urine‐blended compost and outcompeted NPK‐enriched biochar (same nutrient dose) by 103% ± 12·4% (N  = 4 trials) respectively. Thus, the results of 21 field trials robustly revealed that low‐dosage root zone application of organic biochar‐based fertilizers caused substantial yield increases in rather fertile silt loam soils compared with traditional organic fertilization and to mineral NPK or NPK‐biochar fertilization. This can be explained by the nutrient carrier effect of biochar, causing a slow nutrient release behaviour, more balanced nutrient fluxes and reduced nutrient losses, especially when liquid organic nutrients are used for the biochar enrichment. The results open up new pathways for optimizing organic farming and improving on‐farm nutrient cycling. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Mountain regions are known to be especially vulnerable to climatic changes; however, information on the climate sensitivity of alpine ecosystems is still scarce to date. In this study, we investigate the impacts of climate and vegetation composition on soil organic‐matter (SOM) stocks and characteristics along an elevation gradient (900 to 1900 m asl) in the Austrian Limestone Alps. The soils classified as Leptic Histosols, i.e., organic soils directly overlying the calcareous bedrock. Soil organic‐carbon stocks (SOC; mean ± standard deviation) to bedrock increased in the low‐elevation forest sites from 19 ± 3 kg m–2 (900 m asl) to 31 ± 3 kg m–2 (1300 m asl), reached a maximum (38 ± 5 kg m–2) in the shrubland at 1500 m asl, but decreased again in the high‐elevation grassland sites (26 ± 3 kg m–2 at 1700 m asl and 13 ± 3 kg m–2 at 1900 m asl). Thermogravimetic measurements and Fourier‐transform infrared spectroscopy (FTIR) suggest that the upper soil layers were dominated by more labile organic compounds, whereas more persistent materials increased with depth. Along the studied climosequence, the aliphatic FTIR band (2920 cm–1) was lower in the low‐elevation forest sites compared to the high‐elevation grassland sites. Most other FTIR bands did not change with altitude, but were related to specific site conditions, such as vegetation composition and associated differences in soil pH. Our results demonstrate that differences in SOM stocks and characteristics are not consistently related to variations in climatic conditions along the studied elevation gradient, but are strongly affected by the vegetation composition, their C input and litter quality. This, in turn, is expected to shift in response to climate change.  相似文献   

5.
The gut load and gut transit time (GTT) of the endogeic earthworm Hormogaster elisae in laboratory cultures at 18 °C and 23 ºC were studied. The GTT, 5.25 h ± 0.40 at 18 ºC and 3.63 h ± 0.46 at 23 ºC, was determined by staining the soil with alimentary colouring (tartrazine). The gut load was calculated with two methods: earthworm mass difference, before and after voiding the gut, and dry mass of the gut content. The gut load ranged between 168 and 261 mg wet mass g live earthworm mass–1 (mass difference method) or 137–196 mg dry mass g live earthworm mass–1 (dry mass method). With the obtained data a potential annual soil turnover for H. elisae was calculated: 211–470 kg wet soil mass kg live earthworm mass–1 year–1 (mass difference method) or 176–325 kg dry soil mass kg live earthworm mass–1 year–1 (dry mass method).  相似文献   

6.
Cattle feedyards can impact local environments through emission of ammonia and dust deposited on nearby land. Impacts range from beneficial fertilization of cropland to detrimental effects on sensitive ecosystems. Shortgrass prairie downwind from an adjacent feedyard on the southern High Plains of Texas, USA changed from perennial grasses to annual weeds. It was hypothesized that N enrichment from the feedyard initiated the cascade of negative ecological change. Objectives were to determine the distribution of soil nitrogen and estimate N loading to the pasture. Soil samples were collected from 119 locations across the pasture and soil total N (TN), nitrate-N and ammonium-N (AN) determined in the top 30 cm. Soil TN concentration decreased with distance downwind from the feedyard from 1.6 ± 0.2 g kg−1 at 75 m to 1.2 ± 0.05 g kg−1 at 582 m. Nitrate-N concentration decreased within 200 m of the feedyard and changed little at greater distances. Ammonium-N concentration decreased linearly (P < 0.001) with increasing distance from the feedyard from 7.9 ± 1.7 mg kg−1 within 75 m from the feedyard to 5.8 ± 1.5 mg kg−1 at more than 550 m from the feedyard; however, distance only explained 12% of the variability in AN concentration. Maximum nitrogen loading, from 75 to 106 m from the feedyard, was 49 kg ha−1 year−1 over 34 years and decreased with distance from the feedyard. An estimate of net dry deposition of ammonia indicated that it contributed negligibly to N loading to the pasture. Nitrogen enrichment that potentially shifted vegetation from perennial grasses to annual weeds affected soil N up to 500 m from the feedyard; however, measured organic and inorganic N beyond that returned to typical and expected levels for undisturbed shortgrass prairie.
Richard W. ToddEmail:
  相似文献   

7.
Tests were carried out to determine the weighing precision of a 2 m deep lysimeter with a 1 m² cross‐sectional area and a total mass of 3500 to 3850 kg, depending on the soil water content. The weighing mechanism consists on three shear‐stress cells laid out for a load capacity of 1320 kg each. Mass changes as small as 20 g, which is equivalent here to a water gain or loss of 0.02 mm, can be measured with good accuracy and stability under favorable environmental conditions (low wind speed, relatively constant temperature). This precision does not depend on the position on the lysimeter where the mass change occurs and is as good as the best values reported in the literature for other lysimeters. To prevent water and debris from entering the cleavage between lysimeter vessel and pit casing, a rubber collar can be placed across the cleavage. It is attached to the casing and extends about 1–2 cm into the vessel. Although the collar is not supposed to touch the vessel, it does at a few points. This seriously lowers weighing precision, because this contact exerts forces on the vessel, which distort the true weight. Hence, one should refrain from using this type of collar and develop another one. Weighing precision decreases with increasing wind speed, because wind exerts forces on the lysimeter vessel and can thus alter its apparent weight. It is temperature‐dependent, too.  相似文献   

8.
Anionic polyacrylamide (PAM) can prevent soil erosion, but its effect on fine particulate phosphorus (P), such as colloidal P, has not been thoroughly examined. The effects of PAM on the release potentials of water‐dispersible colloids (WDC) and total P, molybdenum‐reactive P (MRP), and molybdenum‐unreactive P (MUP) in the colloidal and truly dissolved phases (i.e., TPcoll, MRPcoll, MUPcoll, TPtruly, MRPtruly, and MUPtruly) from six soils across South China were tested in this study. The results showed that the release potentials of TPcoll in the control treatments were 6·9–46·1 mg kg−1 and generally highest in sandy loam soil. Following low (12·5 kg ha−1), middle (25 kg ha−1), and high (50 kg ha−1) levels of PAM application, the release potential of TPcoll decreased by 41·7, 63·2, and 77·4% compared to the control group, respectively. Additionally, PAM may trigger MRPcoll and TPtruly releases in sandy loam and/or silt soils, and for most soils, MRPtruly and MUPtruly showed the highest release potentials at middle or high PAM levels. A significant PAM application level by soil site interaction for the release potentials of WDC and colloidal P was observed. Multiple linear regression showed that the PAM rate combined with soil sand content can successfully predict the release potentials of WDC (R2 = 0·552, p  < 0·001) and TPcoll (R2 = 0·738, p  < 0·001). Our results suggest that PAM can effectively reduce the loss of soil colloids and colloidal P, while its effects are related to both application level and soil texture. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
A soil lysimeter field study assessed the efficacy of different pasture species to reduce nitrogen (N) leaching loss from cow urine deposited in different seasons. A single application of cow urine (15N‐labelled; equivalent to 622 kg N ha?1) was applied in three different seasons (summer, autumn or winter) to three pasture species monocultures (perennial ryegrass, plantain or lucerne) on a free‐draining volcanic soil and monitored over 362 days. Leachate analyses revealed consistently large leaching losses of inorganic‐N from lucerne (>200 kg N ha?1) across different urine application times due to the relatively low plant growth rates during winter (<15 kg DM ha?1 day?1) that led to low total recovery of urine‐N by lucerne plants (<20% of the applied urine‐15N). Conversely, plant uptake of the urine‐N was higher by plantain (ranging from 30% to 45% of that applied) driven by moderately higher winter plant growth rates (30 to 60 kg DM ha?1 day?1). Plantain exhibited large seasonal variation in its efficacy to reduce urine‐N leaching relative to ryegrass (ranging from 15% to 50% reduction for summer or winter urine applications, respectively) with an overall reduction of 39% in the total amount of inorganic‐N leached across the three seasons (53 vs. 87 kg N ha?1 leached relative to ryegrass). This study has demonstrated the potential benefit of using plantain to reduce N leaching losses from urine deposited in the summer to winter grazing period. However, further research is required to quantify the effects of plantain on annual N leaching losses from grazed pastoral systems.  相似文献   

10.
Over the past decades, numerous practical applications of Digital Soil Mapping have emerged to respond to the need of land managers. One important contribution to this effort is the release of regional‐scale soil maps from the GlobalSoilMap (GSM) project. While the GSM project aims at producing soil property predictions on a fine 90 × 90 m grid at the global scale, land managers often require aggregated information over larger areas of interest (e.g. farms, watersheds, municipalities). This study evaluated a geostatistical procedure aiming at aggregating GSM grids to a land management scale, thereby providing land suitability maps with associated uncertainty for the French region ‘Languedoc‐Roussillon’ (27 236 km2). Specifically, maps were derived from three GSM prediction grids (pH, organic carbon and clay content) by calculating the proportion of ‘suitable’ agricultural land within a municipality, where suitability was defined as having soil property values below or above a predefined threshold (pH < 5.5, OC < 10 g/kg, clay > 375 g/kg). Calculation of these nonlinear spatial aggregates and the associated uncertainty involved a three‐step approach: (i) sampling from the conditional probability distributions of the soil properties at all grid cells by means of sequential Gaussian simulation applied to a regression kriging model, (ii) transformation of soil properties to suitability indicators for all grid cell samples generated in the first step and (iii) spatial aggregation of the suitability indicators from grid cells to municipalities. The maps produced show large differences between municipality areas for all three land suitability indicators. The uncertainties associated with the aggregated suitability indicators were moderate. This approach demonstrated that fine‐scale GSM products may also fulfil user demands at coarser land management scales, without jeopardizing uncertainty quantification requirements.  相似文献   

11.
Aggregation often provides physical protection and stabilisation of soil organic carbon (C). No tillage (NT) coupled with stubble retention (SR) and nitrogen (N) fertiliser application (90 N, 90 kg N ha−1 application) can help improve soil aggregation. However, information is lacking on the effect of long‐term NT, SR and N fertiliser (NT, SR + N) application on soil aggregation and C distribution in different aggregates in vertisols. We analysed the soil samples collected from 0‐ to 30‐cm depth from a long‐term (47 years) experiment for soil aggregation and aggregate‐associated C and N. This long‐term field experiment originally consisted of 12 treatments, having plot size of 61·9 × 6·4 m, and these plots were arranged in a randomised block design with four replications, covering an area of 1·9 ha. Soil organic C concentrations as well as stocks were significantly higher under the treatment of NT, SR + N only in 0–10 cm compared with other treatments such as conventional tillage, stubble burning + 0 N (no N application) and conventional tillage, SR + 0 N. Mineral‐associated organic C (MOC) of <0·053 mm was 5–12 times higher (r  = 0·68, p  < 0·05, n  = 32) compared with particulate organic C (POC) (>0·053 mm) in the 0‐ to 30‐cm layer. We found that NT, SR + N treatment had a positive impact on soil aggregation, as measured by the mean weight diameter (MWD) through wet sieving procedure, but only in the top 0‐ to 10‐cm depth. MWD had significant positive correlation with water stable aggregates (r  = 0·67, p  < 0·05). Unlike MWD, water stable aggregates were not affected by tillage and stubble management. Large macroaggregates (>2 mm) had significantly higher organic C and N concentrations than small macroaggregates (0·25–2 mm) or microaggregates (0·053–0·25 mm). We also found that N application had a significant effect on MWD and soil organic C in vertisols. It is evident that better soil aggregation was recorded under NTSR90N could have a positive influence on soil C sequestration. Our results further highlight the importance of soil aggregation and aggregate‐associated C in relation to C sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
No‐tillage management can increase soil surface layer organic C (OC) levels compared with conventional tillage. The mechanisms underlying this increase in highly weathered tropical soils, such as Ferralsols, are not well established. The objective of this study was therefore to evaluate the influence of mineralogy on aggregation and the apportionment of OC across aggregate size fractions in a Brazilian Ferralsol under native vegetation (NV) and no‐tillage management for 10 (NT10) or 20 (NT20) yrs. Under native vegetation, soil OC generally increased with increasing aggregate size while, in response to changing management, soil OC increased in the order NT10 (8.8 g/kg) < NT20 (12.7 g/kg) < NV (19.1 g/kg). There were no significant differences in the mineralogy of the clay size fractions among the three treatments, with the notable exception of the CBD‐extractable Fe oxide fraction (FeCBD). The FeCBD fraction comprises various pedogenic Fe(hydr)oxides and increased from NT10 (33.9 g/kg) to NT20 (64.2 g/kg). The OC/FeCBD mass ratio within aggregates increased in the order NT10 <  NT20 <  NV while R2 values for OC and FeCBD occurrence follow this same trend, with the NT10 soil showing a weaker correlation (R2 = 0.178) compared with the NV soil (R2 = 0.533). We propose that formation of organo‐Fe(III) oxide associations is promoted with implementation of NT management and the consequent reduction in macroaggregate turnover. The development of the OC‐Fe(III) oxide associations and their evolution over time within aggregates to more thermodynamically stable entities will strongly influence the long‐term preservation of soil OC.  相似文献   

13.
Wind erosion starts when the threshold wind velocity (µt) is exceeded. We evaluated the sensitivity of µt to determine the wind erosion susceptibility of soils under variable climatic conditions. Three years field data were used to calculate µt by means of the equation µt = ūσ Φ−1 (γ), where ū is the mean wind speed (m s−1), σ the ū standard deviation (m s−1), γ the saltation activity and Φ the standard normal distribution function of γ. Saltation activity was measured with a piezoelectric sensor (Sensit). Results showed that ū of the whole studied period (3·41 m s−1) was lower than µt (7·53 m s−1), therefore, wind erosion was produced mainly by wind gusts. The µt values ordered in the sequence: Winter (6·10 m s−1) < Spring (8·22 m s−1) = Summer (8·28 m s−1) < Autumn (26·48 m s−1). Higher µt values were related to higher air humidity and lower wind speeds and temperatures. The µt values did not agree with the erosion amounts of each season, which ordered as follows: Summer (12·88 t ha−1) > Spring (3·11 t ha−1) = Winter (0·17 t ha−1) = Autumn (no erosion). Low µt and erosion amounts of Winter were produced by a scarce number of gusts during eroding storms. We concluded that µt is useful as an index of soil susceptibility to wind erosion of different climatic periods. The use of a unique µt value in wind erosion prediction models can lead to erroneous wind erosion calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Soil erosion is a severe problem on China's Loess Plateau due to its fine‐grained soils and the increasing frequency of extreme rainfall events. Accordingly, this study used a 100‐year frequency rainstorm dataset to analyse sediment deposition and sources in a 27‐km2 catchment with a dam field area of 0·14 km2 based on the hypothesis that sediments were intercepted by the dam (before collapse) during the rainstorm event and deposited in the dam field. This study applied composite fingerprinting, which revealed the sediment source contributions and estimated sediment deposition. Sediment deposition (626·4 kg m−2) decreased linearly or exponentially with increasing distance from the dam. Composite fingerprints based on the optimal parameters revealed relative sediment contributions of 44·1% ± 25·5%, 37·7% ± 35·0%, 9·0% ± 11·4% and 9·2% ± 11·5% by bare ground, croplands, grassland and forests, respectively. The 5‐year cumulative sediment deposition from normal rainfall was 2·3 × 104 t less than the extreme rainstorm. Bare grounds and croplands were the dominant sediment sources following both the extreme rainstorm and normal erosive rainfall events but varied at different areas of the check‐dam. Erosion patterns and start times depended on land use type, thereby affecting sediment profiles in the dam field. Furthermore, severe erosion from bare ground that were all gully slopes and gully walls occurred throughout the rainfall, whereas grasslands and forest erosion occurred earlier and croplands later. Finally, extreme rainfall promoted mass wasting on slopes, gully slopes and gully walls, which are important in determining extreme rainstorm erosion pattern variation. This study aimed to reveal erosion pattern variation under extreme rainstorm events. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

16.
Soya bean [Glycine max (L.) Merr] yields >6719 kg/ha (100 bu/ac) have only recently and infrequently been achieved. Quantifying soil property differences between high‐ and average‐yielding areas can help to further identify non‐plant‐related properties contributing to soya bean yield potential. The objective of this study was to evaluate the effects of region and soil depth on soil property differences between high‐ and average‐yielding areas. In each of the seven regions of the ‘Grow for the Green’ yield contest in Arkansas, prior to or just after harvest in 2014 and 2015, soil samples were collected from the top 20 cm of one contest high‐yield (HY ) area that was in close proximity to an average‐yield (AY ) area. Across all regions and both years, soya bean yields differed (<  0.05) between yield areas, averaging 4701 and 5498 kg/ha in AY and HY areas, respectively. Averaged across soil depth and years, numerous soil properties differed (<  0.05) between HY and AY areas within at least one of seven regions. Total soil C content was at least 20.2% greater in the HY than in the AY area in three of seven regions. Extractable soil P content was, on average, 19.4 kg/ha greater in HY than in AY areas in three of the seven regions. Results from this study have the potential to help producers better understand soil properties that contribute to or hinder achieving ultra‐high (>6719 kg/ha) soya bean yields.  相似文献   

17.
Scotland's cultivated topsoils are rich in carbon with a median soil organic carbon (SOC) content of ca. 3.65%. The storage of carbon in soil is a means to offset GHG emissions, but equally carbon losses from soils can add to these emissions. We estimate the amount of carbon stored in Scottish cultivated mineral topsoils (246 ± 9 Mt), the potential carbon loss (112 ± 12 Mt) and the carbon storage potential of between 150 and 215 Mt based on national‐scale legacy data with uncertainty around the estimate due to error terms in predicting bulk densities for stock calculations. We calculate that Scotland's mineral cultivated topsoils hold the carbon equivalent of around 18 years of GHG emissions (based on 2009 emissions from all sources). We also derive a theoretical carbon saturation potential using a published, linear relationship with the <20‐μm mineral fraction (116 ± 14 Mt). Although the calculated uncertainties are quite small, care needs to be taken when using the results of such analyses as a policy instrument, and while the potential storage capacity seems large, it is unlikely to be achieved while still maintaining current land use patterns in Scotland. The methodology relies on legacy data (which may not reflect the current status of Scottish cultivated topsoils) and on summary statistics calculated from national‐scale data; however, those land management strategies that may mitigate GHG emissions are likely to be implemented at the field scale.  相似文献   

18.
Goal, Scope and Background  Temperature and soil moisture content are important environmental variables in bioremediation technologies. Optimizing these variables in-situ would enhance and maintain remediation of hazardous wastes during cold winter seasons or in cold regions and may lead to reduced maintenance and/or cost. The effect of elevated temperature and soil moisture on bioremediation efficiency was investigated using a laboratory mesocosm approach. Selected polycyclic aromatic hydrocarbons (PAHs) and phenols degradation in contaminated flooded soils, commonly found in Superfund sites situated in coastal plains sediments/soils, were evaluated in the mesocosms. Material and Methods  Four laboratory mesocosm treatments in triplicate simulating in-situ bioremediation of contaminated site soils using an immobilized microbe bioreactor system, i.e., bioplug, were established to evaluate temperature effects. Elevated temperature treatments of site soils with and without contaminant-specific microorganisms were established at a temperature of 42±2°C. Similarly, treatment of site soils with and without contaminant-specific microorganisms were established at an ambient temperature of 21±1°C. Composite samples were analyzed for selected PAHs and chlorinated phenols to determine rates of mineralization and overall remediation efficiency for different temperature regimes. Results  Mesocosm studies indicated that the high temperature inoculated treatment demonstrated a significant reduction in mean total PAHs and total phenols with a kinetic rate (KR) of 76±13 ng g−1 d−1 in 49 days (approximately 84% reduction; p<0.01) The KR for low temperature inoculated treatment was 54±1 ng g−1 d−1 in 49 days (approximately 66% reduction; p<0.01). High temperature non-inoculated mesocosms exhibited significant mineralization of all constituents with KR of 15±6 ng g−1 d−1 (approximately 65% reduction; p<0.01) in 49d compared to 54% reduction for low temperature non-inoculated treatment with KR of 12±3 ng g−1 d−1 (p=0.1794). Phenol compounds in inoculated treatments were also significantly reduced (65%, p<0.01) at elevated temperatures compared to ambient (52%, p<0.01). Discussion  Increased bioavailability and desorption were noted for elevated temperature and moisture in the soil laboratory mesocosms simulating a field in situ remediation protocol. This protocol employing the application of immobilized microflora indicated that in situ systems provide an economical advantage if optimal elevated temperature and moisture are controlled properly. Results also suggested that temperature and moisture optimization needs to be combined with efficient nutrients delivery systems for impacted soils/sediments. Conclusions  The study demonstrated that temperature and soil moisture contents are important factors in the success of in-situ bioremediation techniques at hazardous waste sites situated in a coastal zone. Kinetic rates were significantly enhanced to remediate known recalcitrant compounds (PAHs and phenols) in aged soil. Recommendations and Perspectives  The placement of a preferred microbial consortia such as an immobilized microbial population in an entrained bioreactor, i.e., bioplug, can significantly reduce constituents of concern in a timely manner for contaminated soils/sediments. However, frequent monitoring of the soil temperature, moisture content, nutrient level, and dissolved oxygen is necessary to achieve predictable kinetic rates of mineralization. ESS-Submission Editor: Dr. Teresa Cutright (tcutright@uakron.edu)  相似文献   

19.
Soil phosphorus (P) availability was compared with Mehlich‐1 soil testing and P fractionation at a research farm (RF) and 32 private farms (PFs) in north Florida. The environmental risks caused by P release were evaluated using the P saturation ratio (PSR). Soil Mehlich‐1 P at the RF and the PFs was 41.9 ± 4.1 and 278 ± 13 mg/kg, respectively. The dominant inorganic P fraction for all farms was NaOH‐Pi (Al/Fe‐bound P) followed by HCl‐Pi (Ca/Mg‐bound P) at most of the PFs but by NaOH‐Po for the RF. Furthermore, the high PSR at the PFs indicated high risks of P loss from soil. To improve P use efficiency and enhance ecological sustainability, better P nutrient management should be implemented for Florida crop production.  相似文献   

20.
The impact of substituting forests for smallholder agricultural production systems on soil carbon (C) stocks is not well understood in Brazilian Amazonia. Most surveys of soil C stocks are restricted to the top 30 cm of soil and do not include measurements of litter and root stocks. Here, we quantify the stocks of C in soil (0–100 cm depth), aboveground litter and coarse roots of traditional (slash‐and‐burn) and alternative (Schizolobium amazonicum‐planted forest and silvopastoral system) smallholder agricultural systems, which were compared with a reference area (forest regrowth) in the eastern Amazonia. The soil C stocks in the 0–100 cm layer were larger in the forest regrowth treatment (156.8 ± 15.5 Mg/ha) than in the other treatments (S. amazonicum = 85.3 ± 6.5, silvopastoral = 108.0 ± 4.4 Mg/ha) but did not differ from the soil C stock in the slash‐and‐burn treatment (127.2 ± 6.1 Mg/ha). The soil C stocks at the 0–30 cm layer, which represented 33–50% of the total C of the 0–100 cm layer, did not differ among the treatments. The litter C stocks were ranked in the following order: silvopastoral > forest regrowth > S. amazonicum > slash‐and‐burn. The forest regrowth treatment had a greater coarse root C stock (0.84 ± 0.10 Mg/ha) than the other treatments (silvopastoral = 0.28 ± 0.03, S. amazonicum = 0.18 ± 0.03, slash‐and‐burn = 0.27 ± 0.04 Mg/ha). Soil, litter and root C stocks were negatively impacted by the conversion of forest regrowth to cultivation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号