首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
【目的】传统旋耕播种机多利用地轮链传动方式驱动排种器,受到秸秆或杂草覆盖、土壤含水率以及土地表面平整度的影响,导致地轮附着力减弱,出现地轮打滑等情况,难以满足高速、高精度的作业要求。【方法】基于此,课题组采用GPS卫星定位测速和电机驱动播种施肥转轴的方式,设计了一种旋耕播种施肥复式作业机测控系统,该系统主要由微控制器模块、GPS卫星定位测速模块、人机交互模块、播种施肥模块、监测报警模块等构成。【结果】进行田间播种施肥试验,由GPS接收器采集复式作业机的行驶速度,控制器依据设定好的亩目标播种(施肥)量对电机进行闭环控制,能够自适应复式作业机行驶速度的变化,播种(施肥)量与设定目标值的相对误差小于4%。【结论】该测控系统控制性能良好,具有较高的稳定性,可以用于播种施肥复式作业机精量播种施肥控制。  相似文献   

2.
针对传统油菜精量直播机多采用被动式地轮驱动排种器,高速时地轮易打滑,导致漏播、断条等现象,影响高速作业精量播种效果,且手动变速箱调整播量难以实现播种粒距、播量的精准调节等问题,设计了一种以STM32为主控器,通过蓝牙模块与手机端微信小程序进行实时数据交互的油菜随速播种控制系统。该系统采用地轮编码器和北斗接收器两种模式分别获取拖拉机低速和中高速作业时的前进速度,主控器分析各传感器数据并生成电机控制指令驱动闭环步进电机带动排种轴转动,实现排种轴转速与拖拉机前进速度匹配及无级播量调节;同时利用微信小程序设置目标粒距、传动比、地轮直径等参数以适用于不同类型播种机,并显示总播量、播种面积等关键参数;分析得出吸附种子临界负压为1477Pa,切换测速方式临界速度为3.7km/h,测速范围为1.44~12.77km/h,电机调速频率为5Hz。台架试验结果表明:随速播种控制系统播种性能优于恒定转速播种,播种速度2.6~7.8km/h时粒距合格指数大于87%。田间试验结果表明:本系统搭载一器双行正负气压组合式油菜精量排种器在作业速度为1.44~7.99km/h时播量误差小于3.9%、粒距合格率不低于84%,满足随速播种要求。  相似文献   

3.
基于GPS测速的电驱式玉米精量播种机控制系统   总被引:7,自引:0,他引:7  
传统玉米精量播种机多采用地轮、链条驱动排种器,高速作业时因地轮打滑、链条跳动易造成播种粒距增大、粒距均匀性下降等问题,难以保证播种质量。针对这一问题,设计了基于GPS测速的电驱式玉米精量播种机控制系统,该系统以STM32为主控制器,采用Android手机终端设置播种株距、排种盘型孔数等作业参数,采用GPS接收器采集拖拉机的前进速度,根据GPS提供的速度信息实时调节排种器转速,从而实现排种器转速与拖拉机前进速度的实时匹配。为了检测该系统的性能,以编码器测速方式为对照,进行了3种株距(18、22、25 cm)、5种作业速度(4、6、8、10、12 km/h)下的对比试验。试验结果表明,在相同株距、相同作业速度下,GPS测速方式的变异系数小于编码器测速方式,且GPS测速方式的播种粒距合格指数和变异系数受作业速度的影响更小。在低速4 km/h时,GPS测速方式的平均合格指数比编码器测速方式低5.39个百分点;作业速度6~10 km/h时,GPS测速方式的平均合格指数比编码器测速方式高7.96个百分点;在高速12 km/h时,GPS测速方式的平均合格指数比编码器测速方式高14.32个百分点;表明GPS测速方式更适宜于高速作业工况。  相似文献   

4.
基于双测速模式的玉米追肥机控制系统设计与试验   总被引:1,自引:0,他引:1  
针对玉米追肥机北斗单点测速方式存在延时,造成测速准确性低的问题,提出了北斗单点测速与地轮测速相结合的双测速模式。搭建了玉米追肥机控制系统并开发配套控制界面,完成了双测速模式规则建立及控制器程序设计。重点对加减速过程判定与地轮稳定测速的速度范围进行了研究,试验确定了双测速模式切换条件,并验证了双测速模式的可行性。试验结果表明,地轮稳定测速的最大速度为6.0km/h,地轮测速队列长度N的最佳值为5,模式切换速度变异系数临界值为4.2%;3.5、5.5、6.0、8.0km/h 4种不同目标速度测速性能对比试验结果表明,双测速模式与北斗单点测速在加速阶段相对响应时间均值为1.6s,减速阶段均值为1.8s,实际施肥延时距离平均减小0.55m。田间施肥性能试验结果表明,双测速模式加速阶段速度切换造成的排肥转速差均值为1.5r/min,减速阶段排肥转速差在8.0km/h速度条件下最大,均值为7.1r/min。减速阶段控制结果表明,系统平均响应时间为1.3s,平均稳态误差均值为0.8r/min,系统平均超调量为8.7%。双测速模式切换准确率为100%,满足精准施肥的需要。  相似文献   

5.
为提高玉米播种时的排种精度,设计制造一种基于PLC的玉米精量播种装置,代替传统的机械式地轮驱动播种。利用旋转编码器作为播种机的速度检测机构,将检测信号以脉冲形式传送到PLC, PLC处理后将信号输出到步进电机,实现排种器精准排种。采取步进电机驱动排种器的方式,避免了地轮驱动引起打滑造成的重播现象,同时设计了防滑编码器测速驱动轮,提高了测速精度和工作性能。试验结果表明:播种精度在95%以上,重播率最大值为2.5%,漏播率最大值为4.4%,满足现代播种农艺要求,提高了工作效率。  相似文献   

6.
基于Android和CAN总线的玉米播种机监控系统研究   总被引:7,自引:0,他引:7  
设计了一种基于Android和CAN总线的玉米精量播种机监控系统,通过GPS接收器采集播种机速度,采用CAN总线分布式控制方式完成主控制器和各个播种单体之间的指令传输,通过Android智能设备进行人机交互,实现播种行数任意拓展、拖拉机位置实时监控、播种作业参数在线调整、作业面积实时统计等功能。台架试验结果表明,系统人机交互功能正常,排种器驱动电机调速相对误差小于0.46%。与eTrex209x手持式GPS+北斗双星接收机的田间作业面积对比试验表明,本系统作业面积统计平均相对误差为0.81%,略高于eTrex209x的0.29%,测量标准差为0.06hm2,优于eTrex209x的0.11hm2;与地轮驱动播种对比试验的结果表明,随着作业速度的提高两种驱动方式的作业质量整体都呈下降趋势,但本系统播种合格指数、变异系数受速度影响较小,当作业速度达到12km/h时,变异系数为18.92%,合格指数为90.05%,分别优于地轮驱动方式的22.17%、83.25%。  相似文献   

7.
针对地轮滑移造成播种机播种不均、漏播及株距调节精度不高的问题,以水稻精量旱穴直播机为对象设计了一种电驱控制系统代替传统的地轮驱动排种。该控制系统以GPS模块(伪距单点定位)和霍尔元件两种传感器进行速度检测,分别测试了3~4km/h、4~5km/h、5~6km/h和6~7 km/h等4种作业速度下的速度值,并检测了株距为20cm时两种测速装置的播种情况。试验结果表明:霍尔传感器在低速作业下速度值更稳定;速度越高,标准差越大;作业速度在3~5km/h时两种传感器的电驱控制系统播种合格率均大于80%,符合播种作业要求。本研究为单点定位GPS模块和霍尔传感器应用于旱田农机具测速系统提供了参考。  相似文献   

8.
针对保护性少耕作业中集深松、整地、施肥、播种一体化的农艺技术要求,课题组以牵引装置——轮式拖拉机为研究对象,通过对拖拉机牵引附着性能的分析,获得最佳工作参数,明确了影响拖拉机牵引附着性能与牵引效率的主要因素并验证了整机动力学分析的合理性和可靠性,测试并计算出了配套耕整播一体机下拖拉机的挂钩牵引力、传动系统的传动效率等技术参量。结果表明,拖拉机挂钩牵引力随着耕作速度的加快呈现逐渐减小的趋势,当实际耕作速度在2.64 km/h~8.80 km/h(分别为2.64 km/h、3.52 km/h、4.40 km/h、5.28 km/h、6.16 km/h、7.04 km/h、7.92 km/h、8.80 km/h)范围内变化时,拖拉机挂钩牵引力降幅分别为25%、20%、16.67%、14.28%、12.5%、11.11%、10%,拖拉机耕作速度介于2.64 km/h~4.40 km/h之间,可以发挥较大的挂钩牵引力。拖拉机传动系统效率随着耕作速度的加快呈现逐渐增大的趋势,当实际耕作速度在2.64 km/h~8.80 km/h范围内变化时,沼泥地、已耕地、沙壤土条件下拖拉机传动系统效率平均增幅分...  相似文献   

9.
为解决播种单体仿形机构性能难以检测的问题,设计了俯仰式播种单体仿形性能检测试验台。阐述了试验台组成结构与工作原理,对其高速传动系统、液压升降系统、监控系统以及关键部件参数进行设计。应用ANSYS软件对台架整体和关键部件进行静力学分析和模态分析,验证结构设计的合理性。为检验俯仰式播种单体仿形性能检测试验台的实际检测效果,以德邦大为1205型牵引式免耕精量播种机播种单体为研究对象,先以液压杆伸出量与传送带速度为试验因素,以监控系统误差为评价指标进行试验。试验得出,在液压杆伸出量为0~200 mm范围内,监控系统角度传感器最大误差为0.69 mm;在传送带速度8~19 km/范围内,光电编码器最大误差为0.18 km/h。确认监控系统准确性后,再以单体速度为试验因素,采集速度8、10、12 km/h下地块的起伏数据为目标曲线,以地形起伏模拟曲线的绝对误差平均值为指标进行单因素试验,试验得出,所设计的试验台可有效模拟田间地面的起伏频率与起伏量,绝对误差平均值为1.86 mm,满足播种单体仿形性能检测需求。  相似文献   

10.
拖拉机作业时滑转率过高会降低作业效率,准确监滑转率具有重要意义。针对基于最小轮速的滑转率测量方法在转向工况下失效的问题,提出一种基于阿克曼转向原理的滑转率测量方法。通过建立转向时的滑转率测量模型,得到滑转率与理论车速、右前轮车速、右前轮转向角的关系。基于约翰迪尔4720型拖拉机设计滑转率测量系统,包括右前轮轮速测量装置,CAN总线解析模块和滑转率计算模块。水泥路面直行工况下滑转率测量试验结果表明,直行工况滑转率的平均值为3.0%。在水泥路面转向工况下,进行目标理论速度分别为0.5、0.8、1.0、1.2、1.5 m/s的滑转率测量试验。试验结果表明:转向工况滑转率的平均值分别为3.9%、3.4%、3.7%、3.8%、2.9%,处于直行工况的滑转率区间;因此认为此方法可行,为农机田间转向工况滑转率测量提供支撑。  相似文献   

11.
电控玉米排种系统设计与试验   总被引:8,自引:0,他引:8       下载免费PDF全文
传统精量玉米播种机作业时,排种器的动力由地轮提供,针对由于田间作业工况复杂导致地轮打滑而造成漏播率增加等问题,设计了电控玉米排种系统。该系统在田间播种作业时,由雷达测速仪采集播种作业速度,结合所需粒距得到排种器理论转速;通过编码器采集排种器实时转速,利用控制器控制策略,进行转速的最优控制,从而得到目标排种转速,提高排种精度。田间试验结果表明:应用该电控排种系统进行田间玉米播种作业时,排种合格指数平均值为92.40%,与传统排种相比提高3.63个百分点;漏播指数平均值为4.82%,与传统排种相比降低2.04个百分点;不同播种作业工况下粒距变异系数均小于4.20%,播种效果好。  相似文献   

12.
刘禹汐  杨浩然  韩冰  张泽鹏  李臻  朱忠祥 《农业机械学报》2023,54(S2):400-408,426
针对丘陵山地中拖拉机的侧滑估计,提出了一种融合机器视觉与全球卫星导航定位系统(Global navigation satellite system,GNSS)的多传感器信息融合算法。首先提出了简化的拖拉机运动学模型,再阐述基于GNSS与机器视觉技术的侧滑量估计方法。并通过CarSim和Simulink的联合仿真验证侧滑估计方法的可行性。引入卡尔曼滤波和权重函数对传感器数据进行融合和动态调节。搭建模拟丘陵山地实验平台,在不同的地面倾角、GNSS遮挡条件以及路面条件下进行了实验。实验结果表明,在干燥路面且GNSS遮挡条件下,拖拉机在9°、18°路面条件下行驶时最终融合后的总侧滑量分别为0.322m和0.432m,相对误差分别为7.86%和6.00%,即在GNSS信号遮挡的情况下依然能够准确地估计出拖拉机的侧滑量。研究可为拖拉机的精确横向控制提供新的方法和实验基础。  相似文献   

13.
为检测四活塞联动式流量计的精准性,以拖拉机为试验机具,以量杯计量法为对比,在静态、怠速空负载、田间作业状态下进行流量测试。试验结果表明:测量值平均相对误差在6.9%~7.1%之间,最大相对误差8.1%,测量结果比较精准,可用于拖拉机油耗测试。  相似文献   

14.
玉米精密播种粒距在线监测与漏播预警系统研究   总被引:3,自引:0,他引:3  
针对玉米精密播种粒距偏差导致播量分布不均匀的问题,设计了玉米精密播种粒距在线监测与漏播预警系统。该系统主要由车载计算机、排种监测ECU及相关传感器组成,设计了上位机监测软件和基于移动平均粒距在线监测的下位机程序,通过监测玉米精密播种作业过程中的粒距及其误差,完成漏播预警。首先,设计并进行了排种计数监测精度试验,结果表明,在模拟车速3~12 km/h范围内,以1 km/h递增变化的10个车速下,系统对指夹式排种器和气吸式排种器的排种计数监测平均准确率分别为99.12%、99.71%,标准差分别为0.52%、0.44%,总体排种计数监测误差平均值小于1%。其次,基于高速摄像的播种粒距测量试验台进行了实验室环境下的粒距监测精度试验,采用指夹式排种器进行排种,目标粒距为25 cm,在车速3~12 km/h范围内,以1 km/h为间隔的10个车速下,系统对粒距监测误差绝对值的平均值为2.34 cm,标准差为2.56 cm。针对试验结果存在较多的随机异常点问题,采用移动平均滤波对监测粒距进行分析,得出粒距监测误差绝对值的平均值为0.79 cm,标准差为0.62 cm,单车速下对应的粒距监测误差绝对值的平均值最大为1.69 cm,标准差为0.23 cm,经移动平均滤波处理后,粒距误差异常点明显减少,系统粒距监测误差小于2.00 cm。最后,基于气吸式玉米精密播种机设计了试验样机,设置播种车速为5.49、8.49 km/h,目标粒距为25 cm,进行了田间播种粒距监测精度试验,分别采集350个连续的出苗粒距进行对比分析,结果表明,与出苗粒距移动平均值相比,系统粒距监测误差的平均值分别为1.84、2.22 cm,标准差分别为1.61、2.13 cm,粒距监测值曲线与出苗粒距移动平均值曲线的变化趋势基本相同。  相似文献   

15.
针对拖拉机耕作过程柴油机输出功率不易精准测量的问题,基于柴油机燃油控制策略的转矩模型,对雷沃拖拉机在理论速度为5.7km/h和8.9km/h的耕地过程的柴油机功率进行了在线测量。将在线测量的指示功率与燃烧分析仪测量的指示功率进行了对比,结果表明:在拖拉机耕作速度较稳定的一段区间内,在线测量的指示功率平均值误差为2.99%,但瞬时值严重失真;分析发现喷油量和喷油时刻的变化是引起功率测量偏差较大的主要原因。为了提高柴油机输出功率在线测量的精准度,利用GT-Power模型得到了该柴油机12个典型工况的空燃比和喷油时刻与转矩的定量关系,并提出利用喷油量修正系数和喷油时刻修正系数对在线测量方法进行修正。优化后方法的测试结果表明:拖拉机稳定运行阶段柴油机功率平均值误差为0.88%,瞬时值误差明显改善。  相似文献   

16.
拖拉机运输速度的提高   总被引:1,自引:0,他引:1  
为适应道路运输和田间作业两方面的需要,第一步必须把国产中小功率轮式拖拉机的运输速度提高到40km/h为宜,或提供两种运输速度的变速箱。第二步将运输速度提高到50km/h时,拖拉机可具有现阶段农用运输车的功能,则发展前景可观。  相似文献   

17.
代冬  陈度  张宾  王玲  王书茂 《农业机械学报》2020,51(S1):568-575
针对当前拖拉机检测系统功能集成度低、检测参数不全面、传输距离有限的问题,开发了拖拉机田间作业参数无线检测系统。该系统由传感器、数据采集仪及上位机软件监测平台3部分组成,能够实现PTO转矩及转速、油耗、发动机转速、悬挂提升力、力位调节加载力、加载角度、行驶速度、车轮转速、牵引力等多种参数的采集、无线发送与存储。系统工作时,数据采集仪中的车载检测仪将采集的传感器数据发送至无线数据接收器,无线数据接收器通过串口将数据传输至上位机软件监测平台,实现对各类试验参数的实时监测与数据处理。为验证检测系统的可行性与稳定性,对系统进行了采集通道的计量,结果显示模拟信号通道绝对误差绝对值最大为0.003V,引用误差最大为0.03%,频率信号通道检测绝对误差最大为2Hz,引用误差最大为0.013%,满足对拖拉机作业参数的采集需求。在此基础上,进行了PTO转矩参数及拖拉机无负载行驶速度采集试验。试验结果表明,检测系统可以实现转矩参数的稳定采集及数据的无线传输;在5、8、14km/h 3挡车速匀速行驶下,拖拉机车轮转速与实际行驶速度基本一致,最大相对误差分别为2.0%、1.2%及0.7%。本系统可满足对拖拉机工作性能参数的无线检测需求,数据采集稳定且采集精度较高,为拖拉机多作业参数的无线采集提供有效手段。  相似文献   

18.
针对丘陵地区轮式拖拉机田间作业时爬坡能力差、作业效率不高的问题,研究开发了一种半履带拖拉机行走装置。该装置主要由行走支架、减速机构、履带驱动轮、导向轮、若干支重轮、橡胶履带以及张紧轮机构等部件组成,对有一定坡度的山地适应能力好、不易打滑。田间驱动性能试验表明:拖拉机前轮线速度和履带驱动轮的线速度相对误差控制在4%以内,符合动力机械田间作业性能要求。该履带行走装置的成功研制对推动丘陵山区农业机械化的发展有重要意义,也为其他企业或科研院校研制开发半履带拖拉机提供了参考。   相似文献   

19.
针对目前播种行表层土壤坚实度的获取需人工二次进地测量、实时性差等问题,设计了基于Zig Bee技术的播种行表层土壤坚实度采集系统。该系统利用传感器测量镇压轮轮辐伸缩量,建立了镇压轮轮辐伸缩量与土壤坚实度之间的数学模型;选用CC2530主控芯片实现模块控制、数据无线传输的功能。子节点主控芯片CC2530与传感器相连,将传感器的测量数据发送给主节点;主节点接收子节点和车速传感器数据;根据数学模型实现土壤坚实度的测量。为评估系统性能,进行田间试验,结果表明:通过对比系统得到的土壤坚实度与人工测量坚实度,发现二者之间的相对误差平均值为6.3%,相对误差最大值为13.3%。该系统能够实现播种行表层土壤坚实度信息的实时采集和无线传输,可为镇压力的实时调整提供技术支撑。  相似文献   

20.
铰接摆杆式重型拖拉机线控转向系统仿真与试验   总被引:1,自引:0,他引:1  
建立了拖拉机空间多体动力学机械系统与线控转向液压系统联合仿真模型,用Matlab编写了相应的模糊PID控制仿真程序,进行了拖拉机线控转向系统原地转向仿真。在平直水泥路面上进行了铰接摆杆式重型拖拉机线控原地转向试验与行驶试验。试验研究表明,所开发的线控转向系统能用于行驶速度小于13 km/h的作业工况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号