首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
生物质颗粒燃料成型的黏弹性本构模型   总被引:4,自引:4,他引:0  
为研究生物质颗粒成型燃料压缩成型机理,该文用玉米秸秆、花生壳、小麦秸秆、大豆秸秆、棉花秸秆、木屑等6种生物质原料,采用生物质颗粒燃料成型机进行压缩成型,研究生物质颗粒燃料压缩成型过程,采用黏弹性理论,建立生物质颗粒成型燃料的本构模型,从力学角度提出生物质颗粒成型燃料的压缩成型机理,并研究对比不同种类生物质原料压缩的最大应力与能耗.结果表明,6种生物质原料中棉杆和木屑的最大应力较高,其余4种原料略低;木屑的压缩能耗最高,其次为棉秆、花生壳和豆秸,小麦秸秆和玉米秸秆较小.该研究结论为解决生物质颗粒成型燃料成型加工能耗高,关键部件受力磨损导致寿命低等问题提供一定参考.  相似文献   

2.
生物质成型颗粒燃料燃烧特性的试验研究   总被引:3,自引:13,他引:3  
该文利用热重分析仪对玉米秸秆、木屑、混合木屑三种生物质成型颗粒燃料进行了理论分析,分段比较了三种颗粒燃料的燃烧特点及各段表观活化能和频率因子的热化学动力学参数,分析了成型处理工序对生物质燃烧特性的影响。结合颗粒燃料在燃烧炉中的实际燃烧特点,明确了影响颗粒燃料燃烧适应性的主导因素是挥发分的析出和燃烧速率,由此为改良低质颗粒燃料、提高燃烧炉适应性提出了指导性建议。  相似文献   

3.
生物质颗粒燃料微观成型机理   总被引:5,自引:4,他引:1  
为研究生物质颗粒燃料的微观成型机理,以玉米秸秆、木屑为原料利用环模式成型机压缩成生物质颗粒燃料,并对原料、粉碎原料及生物质颗粒燃料进行显微形貌观察,对比不同原料、不同阶段物料的微观形态和散粒体压缩过程的结合形式。结果表明:环模式成型机为间断性压缩,生物质颗粒燃料微观成型机理为分层压缩,层与层间距为25~40?μm;从横截面看分3层:中心层散粒体“平铺”,过渡层扭曲变形,表层“直立”。相同挤压力下秸秆颗粒燃料比木屑颗粒燃料的密度小。为生物质颗粒燃料的成型机具提供重要的设计理论依据。  相似文献   

4.
垃圾衍生燃料(RDF,refuse derived fuel)是垃圾焚烧发电的原料,该文研究RDF预加工的形态对其燃烧释放能量过程的影响。将RDF制备成不同密度等级的成型颗粒,通过热重、热值、灰分分析,同时参比与非成型的RDF和生物质秸秆燃料,观察RDF成型颗粒燃烧特性。研究结果表明,该组非成型RDF的着火点为234.0℃,3个最大失质量速率分别为6.30,2.21,0.53%min;高密度RDF的着火点为238.2℃,3个最大失质量速率分别为5.70,3.11,0.61%/min,表明较高密度RDF颗粒在燃烧过程中,着火点较高,燃烧速率较为均衡。该组高密度RDF比非成型RDF燃烧后的灰渣少6.7%,表明高密度RDF燃烧较为充分。在热值方面,方差显著性分析表明,RDF颗粒密度值对其燃烧产生的热值无明显影响。  相似文献   

5.
为全面了解木屑及其水热炭的差异,获取更多关于水热炭作为化工燃料的使用特性。该文使用热重分析仪和傅里叶红外光谱仪对比研究了木屑及其水热炭在热解过程(10℃/min升温速率)中的失重特性及其官能团变化,分析了升温速率(10、20、30℃/min)对2种样品热解失重过程的影响,采用DAEM(分布活化能模型)计算了2种样品不同转化率下的活化能。结果表明:1)在200℃反应6 h得到的木屑水热炭,化学结构与木屑相似。2)在热解过程(10℃/min升温速率)中,木屑与水热炭最大失重速率分别为0.817%/℃和1.224%/℃,温度为353.57℃和363.42℃;不同终温下半焦红外光谱分析发现,水热炭更易解聚,其碳化速度更快。3)对比3种不同升温速率下2种样品的失重曲线可知,水热处理没有影响热滞后现象,样品焦炭生成量与升温速率无关,焦炭生成量平均值水热炭大于木屑。4)DAEM模型适用于2种样品热解反应活化能的求解,木屑及其水热炭活化能分别为99.33~252.72 k J/mol和63.77~211.68 k J/mol,当转化率在0.30到0.80范围时,木屑的活化能高于水热炭。研究结果为木屑水热炭热化学转化制备焦炭提供理论依据。  相似文献   

6.
水稻秸秆与木屑混合原料热压成型试验   总被引:1,自引:7,他引:1  
为提高水稻秸秆原料成型燃料的质量,提出通过添加木质素含量较高的木屑原料即形成混合原料并通过试验的方法进行研究。首先进行对比试验,以成型燃料的物理性能为指标,在相同实验条件下对木屑、水稻秸秆和水稻秸秆与木屑1∶1混合的原料进行热压成型试验。对比试验的结果表明小压力下1∶1混合原料成型燃料的综合物理性能优于水稻秸秆成型燃料,证明混合原料可提高单一水稻秸秆原理成型燃料的质量。但由于木屑原料本身的结构特性使得1∶1混合原料成型燃料的抗渗水性较弱。因此为进一步提高混合原料成型燃料质量,我们利用正交试验方法研究对于混合原料成型燃料各物性指标而言最显著影响因素及最佳参数组合并通过试验加以论证。试验结果表明:针对不同性能指标,各工艺参数的影响力不一致,对于松弛密度、抗碎强度及抗压强度而言,压力对其影响较大;而对于抗渗水性而言,原料混合比影响较大。对于松弛密度,最佳成型参数(混合比、温度、压力)组合为0.5∶1,70℃、31.11 MPa,抗碎强度的成型参数最优组合为2∶1,110℃、31.11 MPa,抗渗水性和抗压强度的最佳成型参数组合为1.5∶1,90℃、31.11 MPa。  相似文献   

7.
采用低温烘焙技术制备玉米秸秆成型生物炭,可解决玉米秸秆带来的环境污染及资源浪费。研究以玉米秸秆成型颗粒为原料,利用固定床反应器,制备了不同烘焙温度(250~400℃)成型生物炭,采用元素分析、工业分析、能量产率、质量产率、机械性能、疏水性、红外光谱(Fourier transform infrared spectroscopy,FTIR)、扫描电镜(Scanning electron microscopy,SEM)、元素K含量等分析生物炭特性。随烘焙温度升高,热值增加,能量产率降低,400℃时,成型生物炭热值为21.86MJ/kg,能量产率为50.17%。成型生物炭颗粒表面裂纹增多,机械性能降低,350℃烘焙成型生物炭(CSP350)机械性能好于400℃烘焙成型生物炭(CSP400),低于成型生物质颗。烘焙生物炭疏水性提升,可贮藏于室外。成型玉米秸秆经烘焙热解发生了脱水、脱羰基、脱甲基反应,纤维素、半纤维素热解剧烈,木质素开始热解。随温度升高,其孔径呈下降趋势,比表面积增大。结果表明,玉米秸秆成型烘焙生物炭可作为优质生物燃料,适宜制备温度为300~350℃。  相似文献   

8.
玉米秸秆致密成型燃料燃烧动力学分析   总被引:2,自引:5,他引:2  
为近一步实现秸秆致密成型燃料高效燃烧的合理利用,该文选用玉米秸秆致密成型燃料进行燃烧动力学分析,通过对玉米秸秆在不同粒度(1、0.25 mm)和不同升温速率(10、20、40℃/min)进行热重分析,采用一级反应动力学模型,得出不同实验水平下的热重、热重变化率及差热,利用热重和热重变化率计算出动力学参数——活化能和频率因子, 最后得到玉米秸秆的热解动力学方程。研究表明:玉米秸秆致密成型燃料的燃烧过程大致可以分为燃料吸热失水反应、挥发分析出和燃烧反应及固定碳的燃烧反应3个阶段,升温速率和样品细度的变化对燃料的活化能及最大失重速率有一定影响,玉米秸秆致密成型燃料的活化能在升温速率为20℃/min时最大。该研究为进一步研究生物质成型燃料的实际热解过程分析以及燃烧设备的设计参数选择提供理论依据。  相似文献   

9.
Ⅱ型生物质成型燃料锅炉的研制   总被引:1,自引:0,他引:1  
针对Ⅰ型生物质成型燃料锅炉中存在的炉膛温度高、排烟温度高、热损失大等问题,作者对其进行了改进设计,根据生物质成型燃料的燃烧特性,研制出了Ⅱ型生物质成型燃料锅炉。对Ⅰ型和Ⅱ型生物质成型燃料锅炉进行热性能及环保性能试验,结果表明改进后的Ⅱ型生物质成型燃料锅炉热效率更高,较好的解决了Ⅰ型生物质成型燃料锅炉存在的主要问题。  相似文献   

10.
选取典型秸秆类生物质颗粒掺混垃圾作为研究对象,利用自制燃烧试验平台,研究掺混比、温度、粒径及生物质种类等因素对垃圾掺混生物质颗粒燃烧过程中CO与NO释放规律的影响。试验结果表明:CO排放量随着混合燃料中棉花秆颗粒含量增加而减小;混合燃料中垃圾掺混量高于棉花秆颗粒时,焦炭氮燃烧峰值随棉花秆含量增加而增大,掺混量低于棉花秆颗粒时,焦炭氮燃烧峰值逐渐减小,掺混比为5:5时NO生成量最低。燃烧温度为850℃时CO生成量最低;NO峰值时间随温度升高向前偏移,排放量呈先增大后减小趋势,较高的反应温度有利于降低燃烧过程中NO生成量。随着燃料粒径减小,CO峰值浓度降低;存在粒径临界值(60~80目),当粒径小于临界值时,NO生成量随粒径减小而减小,大于临界值时,NO生成量随粒径增大而减小。垃圾混烧生物质颗粒后CO生成量显著降低;掺混同质量分数生物质颗粒试样中,生物质颗粒氮含量越高,混合燃料燃烧NO生成量越大。该研究可为实际生产中城市生活垃圾混烧生物质颗粒技术及污染物排放控制提供参考依据。  相似文献   

11.
为进一步了解水热预处理对猪粪连续厌氧消化过程中磺胺嘧啶(sulfadiazine, SDZ)降解机制的影响,以及对厌氧消化系统性能的影响效果。该研究以猪粪为对象,对比研究了水热预处理对厌氧发酵模式下SDZ的降解变化规律与途径及其对猪粪产气性能的影响。研究结果表明:水热预处理(150 ℃)使中温连续厌氧反应器中的SDZ的综合去除率显著提升(P <0.05),由40.5%~58.5%提高到54.4%~75.2%;并且通过中间降解产物推测SDZ的生物降解途径主要包括SDZ水解、羟基化、硫脱氧、氨基氧化、嘧啶环裂解等;在厌氧消化性能方面,水热预处理使稳定运行后反应器的日产沼气量提高了约34.05%(P <0.05)。此外,对反应器中微生物群落分析后,发现SyntrophomonasSedimentibacter与SDZ的降解高度相关,并且经过水热预处理后Sedimentibacter的相对丰度较未水热预处理显著提升。因此,水热预处理耦合厌氧消化工艺具有同步提高SDZ降解和厌氧消化性能的作用,有助于进一步提高沼液的生态安全性。  相似文献   

12.
水热预处理对猪粪厌氧消化及沼液生态安全性的影响   总被引:1,自引:1,他引:0  
为进一步提高猪粪在厌氧消化过程中水解性和产甲烷性能,同时增加猪粪沼液还田利用途径的生态安全性,该研究采用水热的方式对猪粪进行预处理,探究了不同温度(70、90、120、150和170 ℃)水热预处理对猪粪的理化特性和厌氧消化产甲烷性能的影响,并对其沼液的生态安全性进行评估。结果表明,不同温度水热处理30 min条件下,猪粪SCOD(Soluble Chemical Oxygen Demand,溶解性化学需氧量)增加了3.9%~43.6%;经150 ℃水热处理后的猪粪获得最高的产甲烷量(398±40) mL/g(以VS计算,Volatile Solid,挥发性固体),相对于未经处理猪粪的产甲烷量显著提高了5.6%(P<0.05)。猪粪经150 ℃水热预处理和厌氧消化后的沼液中重金属Hg、As、Pb、Cr和Cd含量均满足《农用沼液(GB/T 40750-2021)》的限量要求;粪大肠杆菌的含量满足《粪便无害化卫生要求(GB7959-2012)》;土霉素大幅度降低,恩诺沙星、磺胺嘧啶和诺氟沙星的含量均低于检测限。因此,适当的水热预处理(150 ℃)不仅能够提高猪粪的厌氧消化产甲烷性能,并且能够进一步加强粪污无害化处理和降低沼液还田利用的环境风险。  相似文献   

13.
为了解秸秆微波水热碳化过程中产物形成机制及其理化结构演变规律,该文采用控制变量法进行了单因素试验设计,研究了水热温度、停留时间、催化剂和原料种类对秸秆微波水热产物组成和结构特性的影响。结果表明,随着水热温度升高和停留时间延长,液相产物的pH值先降低后增加,最低值为3.13,电导率和PO_4~(3-)–P质量浓度先增加后下降,最大值分别为9.38 mS/cm和308 mg/L,NH_4~+–N质量浓度增加,260℃最大值为155 mg/L,而水热焦的产率、H/C和O/C下降,固定碳、C、高位热值增加。高温和长停留时间使水热焦生成较多纳米碳微球结构,且使其O-H键先增多后减少。高温和K_2CO_3使水热焦的芳香烃结构和C=O、C–O含氧官能团增强,而长停留时间使其先增强后减弱。高温和长停留时间使水热焦的比表面积、孔体积和孔径均先增加后降低,而K_2CO_3使水热焦的纳米碳微球和比表面积增加,最大比表面积为10.975 9 m~2/g。玉米秆、水稻秆和油菜秆水热焦的纳米碳微球结构最明显,棉花秆水热焦的比表面积和孔体积最大。  相似文献   

14.
葡萄糖水热过程中焦炭结构演变特性   总被引:2,自引:3,他引:2  
为了解生物质水热炭化过程中焦炭的形成机制及其理化结构的演变机理,该文以葡萄糖为原料,利用高温高压反应釜,对葡萄糖在水热环境中炭化的反应过程和焦炭的表面物理结构及微观化学组成进行了系统的分析。研究发现,葡萄糖经过水热处理,可以获得富含炭微球的无定形水热焦炭,这些炭微球粒径分布在0.6~7 μm之间,而通过控制水热过程的温度、葡萄糖添加量和停留时间,则可对其收率、形貌、化学组成等理化性质产生重要影响。在220℃,4 h,6 g/100 mL的水热条件下,炭微球粒径最小且均匀,平均粒径约为1.54 μm;在220℃,4 h,12 g/100 mL的水热条件下,焦炭收率最高为38.92%。水热焦炭中含有大量的芳香环结构和含氧官能团,具有很强的亲水性,其表面碳化程度高于内核。水热焦炭的形成主要是一系列脱水、聚合、凝结、芳香化、胶体作用的结果。研究结果为生物质水热法制备炭微球的过程控制提供参考。  相似文献   

15.
为减少天然活性成分溶出传质阻力、提高异槲皮苷提取率,应用水热反应辅助醇提法同步提取桑叶中异槲皮苷,采用响应曲面法分析优化桑叶中异槲皮苷溶浸的适宜参数,并利用扩散模型探究异槲皮苷的溶浸传质过程。结果表明:当乙醇体积分数为57%、桑叶质量与乙醇体积比为1:7、水热温度154℃、反应80 min时,5.000 0 g桑叶可溶浸异槲皮苷3.649 1 mg/g,约是乙醇浸提异槲皮苷(0.071 0 mg/g)的51倍;影响异槲皮苷溶浸的因素顺序为水热时间水热温度料液比乙醇体积分数;解析红外光谱图可知,水热反应有助于桑叶木质素中苯基丙烷结构单元中C-O-C和C=C分解,促使纤维素表面水解反应发生;内部扩散模型表明异槲皮苷存在渗透溶浸、内部扩散和固液扩散3个扩散过程,且扩散速率常数随边界层厚度增加而变小,为有效实现桑叶综合利用提供理论研究基础。  相似文献   

16.
污泥连续水热炭化工程系统研究   总被引:2,自引:2,他引:0  
水热炭化可以显著改善污泥的脱水性能,促进污泥的无害化、减量化、资源化利用,但目前污泥水热炭化技术的工业化应用鲜有报道。该研究基于工程规模的污泥水热炭化系统开展研究,重点研究了系统工程设计和控制逻辑,开展了系统参数测试,分析了污泥炭、气相和水相的理化性质和组分分布,并在此基础上进行了系统能量平衡分析。结果表明,系统污泥年处理量达1.4×104 t,水热炭化后的三相产物分别为污泥炭28.57%,水相70.00%,气相1.43%,污泥脱水率达75%,综合整个生产系统,系统加热能为454.22 MJ/t,动力耗能为64.80 MJ/t,连续水热炭化工程系统能耗比为83.83%,能量回收率为66.68%,系统具有较高的能耗比。该研究可为生物废弃物连续水热炭化技术的研发和推广应用提供重要的工程依据。  相似文献   

17.
生物质水热液化产物特性与利用研究进展   总被引:2,自引:2,他引:0  
近年来,由于水热液化技术可以将高含水率的生物质直接转化为生物原油而极具潜力,引起了人们的广泛关注。该文综述了生物质水热液化研究的最新进展,简述了生物质水热液化的产物分离流程,着重分析了水热液化4种产物(生物原油、水相产物、固体残渣和气体)的产物特性及其利用方式。在4项产物中,生物原油可作为燃料或者从中提炼高附加值产品,水热液化水相可以进行微藻养殖、经厌氧发酵产甲烷或者利用微生物电解池产生氢气等,固体残渣通过进一步处理后可作为生物炭使用,气相产物可作为温室的气体肥料。另外,该文总结了生物质中关键元素在水热液化产物中的分布规律,展望了水热液化技术未来研究方向,以期能为生物质水热液化研究提供参考与借鉴。  相似文献   

18.
大量、集中的畜禽粪便,若不加以合理处理利用极易引发严重的环境污染问题。该文选择了集约化程度较高的生猪、奶牛、肉牛、肉鸡和蛋鸡5种畜禽的粪便作为样本,研究了水热碳化温度对畜禽粪便水热处理的影响,通过元素分析、工业分析和热重试验,分析了水热炭的燃烧特性,并比较了不同畜禽粪便水热炭之间的差异。研究发现,水热碳化能够提高水热炭的碳元素、固定碳含量,提高高位热值,降低氢碳比、氧碳比和挥发分固定碳比的值,得到的水热炭类似于褐煤。热重试验发现,水热碳化能够减小不同畜禽粪便样品之间的性质差异。水热碳化温度为180和210℃时,除肉鸡粪便水热炭外,其他畜禽粪便水热炭的综合燃烧特性指数均得到提高,5种畜禽粪便中,奶牛和肉牛粪便水热炭具有更好的燃烧特性。  相似文献   

19.
为了解纤维素在水热降解过程中产物的理化特性及其形成机制,该文对生物质主要组分—纤维素的水热降解特性进行了系统地研究,全面分析了反应温度和停留时间对纤维素水热产物分布的影响,并从产物的化学结构入手,对纤维素水热解机理进行了探索。随着温度的升高,重质油产率在250℃时达到最大,重质油组分变得复杂,焦炭产率逐渐降低。随着停留时间的延长重质油产率呈现先增加后降低的趋势,焦炭产率变化趋势较小,然而通过对焦炭的热重、红外、元素、电子扫描显微镜和X射线光电子能谱仪分析表明停留时间的延长可以提高焦炭的化学官能性,这为生物质水热机理的研究提供了依据。  相似文献   

20.
为了研究生物原油所含不同组分对其储存稳定性的影响,该研究提出利用溶剂分步萃取法分离生物原油。采用螺旋藻为原料进行水热液化,利用极性不同的四氢呋喃、乙酸乙酯、丙酮和正己烷为萃取溶剂分离生物原油,以黏度和热值作为稳定性评价指标,利用热重分析仪、气相色谱质谱联用仪和傅立叶红外光谱仪分析生物原油的老化机理。结果表明:乙酸乙酯萃取得到的生物原油的黏度最低(316 mPa·s),流动性最好,且在储存过程中黏度变化率最小(78.6%),稳定性最好;利用溶剂可以分离生物原油中的重、轻组分和极性、非极性组分,生物原油的老化与极性大分子之间发生的酯化反应、聚合反应密切相关,而小分子非极性化合物的存在可显著降低生物原油的黏度,提高其流动性和稳定性;经储存后生物原油的热值降低了0.4%~6.2%,生物原油的极性组分、重组分和氮元素含量越多,黏度和热值的变化率越大。该研究可为生物质水热液化产物的定向调控及生物原油储存稳定性的提高提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号