首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many observations have been made on cloned embryos and on adult clones by somatic cell nuclear transfer (SCNT), but it is still unclear whether the progeny of cloned animals is presenting normal epigenetic status. Here, in order to accumulate the information for evaluating the normality of cloned cattle, we analyzed the DNA methylation status on satellite I region in blastocysts obtained from cloned cattle. Embryos were produced by artificial insemination (AI) to non‐cloned or cloned dams using semen from non‐cloned or cloned sires. After 7 days of AI, embryos at blastocyst stage were collected by uterine flushing. The DNA methylation levels in embryos obtained by using semen and/or oocytes from cloned cattle were similar to those in in vivo embryos from non‐cloned cattle. In contrast, the DNA methylation levels in SCNT embryos were significantly higher (P < 0.01) than those in in vivo embryos from non‐cloned and cloned cattle, approximately similar to those in somatic cells used as donor cells. Thus, this study provides useful information that epigenetic status may be normal in the progeny of cloned cattle, suggesting the normality of germline cells in cloned cattle.  相似文献   

2.
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non‐imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non‐cloned bulls. We found no differences between cloned and non‐cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha‐satellite and Art2) in oocytes recovered from cloned and non‐cloned cows. Again, no significant differences were observed between clones and non‐clones. These results suggested that imprinted and non‐imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.  相似文献   

3.
Low efficiency of somatic cell nuclear transfer (SCNT) embryos is largely attributable to imperfect reprogramming of the donor nucleus. The differences in epigenetic reprogramming between female and male buffalo cloned embryos remain unclear. We explored the effects of donor cell sex differences on the development of SCNT embryos. We and then compared the expression of DNA methylation (5‐methylcytosine‐5mC and 5‐hydroxymethylcytosine‐5hmC) and the expression level of relevant genes, and histone methylation (H3K9me2 and H3K9me3) level in SCNT‐♀ and SCNT‐♂ preimplantation embryos with in vitro fertilization (IVF) counterparts. In the study, we showed that developmental potential of SCNT‐♀ embryos was greater than that of SCNT‐♂ embryos (< 0.05). 5mC was mainly expressed in SCNT‐♀ embryos, whereas 5hmC was majorly expressed in SCNT‐♂ embryos (< 0.05). The levels of DNA methylation (5mC and 5hmC), Dnmt3b, TET1 and TET3 in the SCNT‐♂ embryos were higher than those of SCNT‐♀ embryos (< 0.05). In addition, there were no significant differences in the expression of H3K9me2 at eight‐stage of the IVF, SCNT‐♀ and SCNT‐♂embryos (< 0.05). However, H3K9me3 was upregulated in SCNT‐♂ embryos at the eight‐cell stage (< 0.05). Thus, KDM4B ectopic expression decreased the level of H3K9me3 and significantly improved the developmental rate of two‐cell, eight‐cell and blastocysts of SCNT‐♂ embryos (< 0.05). Overall, the lower levels of DNA methylation (5mC and 5hmC) and H3K9me3 may introduce the greater developmental potential in buffalo SCNT‐♀ embryos than that of SCNT‐♂ embryos.  相似文献   

4.
Interspecies somatic cell nuclear transfer (interspecies SCNT) has been explored in many domestic and non‐domestic animal species. However, problems arise during the development of these embryos, which may be related to species‐specific differences in nuclear–cytoplasmic communication. The objectives of this study were to investigate the possibility of producing bison embryos in vitro using interspecies SCNT and assess the developmental potential of these embryos. Treatment groups consisted of cattle in vitro fertilization (IVF) and cattle SCNT as controls and wood bison SCNT, plains bison SCNT and wisent SCNT as experimental groups. Cleavage and blastocyst rates were assessed, and blastocyst quality was determined using total cell number, apoptotic incidence and relative quantification of mitochondria‐related genes NRF1, MT‐CYB and TFAM. These results indicate that embryos can be produced by interspecies SCNT in all bison species/subspecies (13.34–33.54% blastocyst rates). Although increased incidence of apoptosis was observed in bison SCNT blastocysts compared to cattle SCNT controls (10.45–12.69 vs 8.76, respectively) that corresponded with significantly lower cell numbers (80–87 cells vs >100 cells, respectively), no major differences were observed in the expression of NRF1, MT‐CYB and TFAM. This study is the first to report the production of bison embryos by interspecies SCNT. Blastocyst development in all three bison species/subspecies was greater than the rates obtained in previous studies by IVF, which supports the potential role of SCNT for in vitro embryo production in this species. Yet, further investigation of developmental competence and the factors influencing blastocyst quality and viability is required.  相似文献   

5.
In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0‐phase (G0‐SCNT group) or early G1‐phase (eG1‐SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0‐phase and eG1‐phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake‐off method). The fusion rate in the G0‐SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1‐SCNT groups (39.2 ± 1.9%) (P < 0.05), but the developmental rates to the blastocyst stage of SCNT embryos per fused oocytes were similar for all groups. The overall production efficiency of the clone offspring in eG1‐SCNT groups (12.7%) per recipient cow was higher than that in G0‐SCNT groups (3%) (P < 0.05). The mean birth weight of cloned calves and the average calving score in the G0‐SCNT groups (48.1 ± 3.4 kg and 3.3 ± 0.3, respectively) was significantly higher (P < 0.05) than those of eG1‐SCNT groups (37.2 ± 2.1 kg and 2.3 ± 0.2, respectively). Results of this study indicate that synchronization of donor cells in eG1‐phase using the shake‐off method improved the overall production efficiency of the clone offspring per transferred embryo.  相似文献   

6.
The aim of this work was to investigate the methylation and hydroxymethylation status of mesenchymal stem cells (MSC) from amniotic fluid (MSC‐AF), adipose tissue (MSC‐AT) and fibroblasts (FIB‐control) and to verify the effect of trichostatin A (TSA) on gene expression and development of cloned bovine embryos produced using these cells. Characterization of MSC from two animals (BOV1 and BOV2) was performed by flow cytometry, immunophenotyping and analysis of cellular differentiation genes expression. The cells were used in the nuclear transfer in the absence or presence of 50 nM TSA for 20 hr in embryo culture. Expression of HDAC1, HDAC3 and KAT2A genes was measured in embryos by qRT‐PCR. Methylation results showed difference between animals, with MSC from BOV2 demonstrating lower methylation rate than BOV1. Meanwhile, MSC‐AF were less hydroxymethylated for both animals. MSC‐AF from BOV2 produced 44.92 ± 8.88% of blastocysts when embryos were exposed to TSA and similar to embryo rate of MSC‐AT also treated with TSA (37.96 ± 15.80%). However, when methylation was lower in FIB compared to MSC, as found in BOV1, the use of TSA was not sufficient to increase embryo production. MSC‐AF embryos expressed less HDAC3 when treated with TSA, and expression of KAT2A was higher in embryos produced with all MSC and treated with TSA than embryos produced with FIB. The use of MSC less methylated and more hydroxymethylated in combination with embryo incubation with TSA can induce lower expression of HDAC3 and higher expression of KAT2A in the embryos and consequently improve bovine embryo production.  相似文献   

7.
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS‐PCR). The expression levels of these imprinted genes were also investigated by quantitative real‐time PCR (QRT‐PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (< .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (< .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (< .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.  相似文献   

8.
This study evaluated the effects of co‐culture of immature cumulus oocyte complexes (COCs) with denuded immature oocytes (DO) during in vitro maturation on the developmental competence and quality of cloned bovine embryos. We demonstrated that developmental competence, judged by the blastocyst formation rate, was significantly higher in the co‐cultured somatic cell nuclear transfer (SCNT+DO, 37.1 ± 1.1%) group than that in the non‐co‐cultured somatic cell nuclear transfer (SCNT‐DO, 25.1 ± 0.9%) group and was very similar to that in the control IVF (IVF, 38.8 ± 2.8%) group. Moreover, the total cell number per blastocyst in the SCNT+DO group (101.7 ± 6.2) was higher than that in the SCNT‐DO group (81.7 ± 4.3), while still less than that in the IVF group (133.3 ± 6.0). Furthermore, our data showed that mRNA levels of the methylation‐related genes DNMT1 and DNMT3a in the SCNT+DO group were similar to that in the IVF group, while they were significantly higher in the SCNT‐DO group. Similarly, while the mRNA levels of the deacetylation‐related genes HDAC2 and HDAC3 were significantly higher in the SCNT‐DO group, they were comparable between the IVF and SCNT+DO groups. However, the mRNA levels of HDAC1 and DNMT3B were significantly higher in the SCNT+DO group than in the other groups. In conclusion, the present study demonstrated that co‐culture of COCs with DO improves the in vitro developmental competence and quality of cloned embryos, as evidenced by increased total cell number.  相似文献   

9.
To preserve Jeju black cattle (JBC; endangered native Korean cattle), a pair of cattle, namely a post-death cloned JBC bull and cow, were produced by somatic cell nuclear transfer (SCNT) in a previous study. In the present study, we examined the in vitro fertilization and reproductive potentials of these post-death cloned animals. Sperm motility, in vitro fertilization and developmental capacity were examined in a post-death cloned bull (Heuk Oll Dolee) and an extinct nuclear donor bull (BK94-13). We assessed reproductive ability in another post-death cloned cow (Heuk Woo Sunee) using cloned sperm for artificial insemination (AI). There were no differences in sperm motility or developmental potential of in vitro fertilized embryos between the post-death cloned bull and its extinct nuclear donor bull; however, the embryo development ratio was slightly higher in the cloned sperm group than in the nuclear donor sperm group. After one attempt at AI, the post-death cloned JBC cow became pregnant, and gestation proceeded normally until day 287. From this post-death cloned sire and dam, a JBC male calf (Heuk Woo Dolee) was delivered naturally (weight, 25 kg). The genetic paternity/maternity of the cloned JBC bull and cow with regard to their offspring was confirmed using International Society for Animal Genetics standard microsatellite markers. Presently, Heuk Woo Dolee is 5 months of age and growing normally. In addition, there were no significant differences in blood chemistry among the post-death cloned JBC bull, the cow, their offspring and cattle bred by AI. This is the first report showing that a pair of cattle, namely, a post-death cloned JBC bull and cow, had normal fertility. Therefore, SCNT can be used effectively to increase the population of endangered JBC.  相似文献   

10.
Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC‐derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC‐derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF‐derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell‐oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC‐derived SCNT embryos showed higher blastocyst formation (48.4%) than FF‐derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.  相似文献   

11.
12.
Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m‐carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand‐made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency‐related genes OCT‐4 and NANOG, and anti‐apoptotic gene BCL‐XL, and decreased (p < .05) that of pro‐apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis‐related genes p53 and CASPASE3 and epigenetics‐related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern.  相似文献   

13.
14.
Miniature pigs share many similar characteristics such as anatomy, physiology and body size with humans and are expected to become important animal models for therapeutic cloning using embryonic stem cells (ESCs) derived by somatic cell nuclear transfer (SCNT). In the present study, we observed that miniature pig SCNT blastocysts possessed a lower total number of nuclei and a lower percentage of POU5F1‐positive cells than those possessed by in vitro fertilized (IVF) blastocysts. To overcome these problems, we evaluated the applicability of aggregating miniature pig SCNT embryos at the four‐cell stage. We showed that (i) aggregation of two or three miniature pig SCNT embryos at the four‐cell stage improves the total number of nuclei and the percentage of POU5F1‐positive cells in blastocysts, and (ii) IVF blastocysts with low cell numbers induced by the removal of two blastomeres at the four‐cell stage did not exhibit a decrease in the percentage of POU5F1‐positive cells. These results suggest that the aggregation of miniature pig SCNT embryos at the four‐cell stage can be a useful technique for improving the quality of miniature pig SCNT blastocysts and indicating that improvement in the percentage of POU5F1‐positive cells in aggregated SCNT embryos is not simply the consequence of increased cell numbers.  相似文献   

15.
The aim of the present study was to clarify the overall efficiency of porcine somatic cell nuclear transfer (SCNT) by incorporating cryopreservation of the cloned embryos before transfer. The SCNT embryos reconstructed with preadipocytes and in vitro-matured (IVM) oocytes were cultured to harvest morula stage embryos; they were then subjected to delipation (removal of cytoplasmic lipid droplets) and vitrification. After warming and culture, the embryos developing to blastocysts were transferred to recipients to obtain cloned piglets. From 372 reconstructed embryos, 188 (50.5%) reached the morula stage and 117 (31.5%) developed to blastocysts after vitrification. Transfer of 98 (26.3%) morphologically normal blastocysts gave rise to 6 (1.6%) piglets, including 1 stillborn. The efficiency of the cloned piglet production was comparable with that obtained using SCNT embryos without cryopreservation (2.7%, 17/635). Here, we demonstrate that porcine somatic cell cloning can be performed without a significant reduction in efficiency even when the SCNT embryos are cryopreserved before transfer.  相似文献   

16.
Inhibition of ERK/MAPK pathway has been shown to decrease DNA methylation via down‐regulation of DNA methyltransferases (DNMTs) in several studies suggesting that this pathway plays an important role in regulation of DNA methylation. We examined the relative expression level of seven important genes related to ERK/MAPK pathway and DNMTs (DNMT1, DNMT3a and DNMT3b) by quantitative real‐time PCR in buffalo blastocysts produced by Hand‐made cloning and compared it with that in blastocyst‐stage embryos produced by in vitro fertilization (IVF). The expression level of six of seven genes related to ERK/MAPK pathway examined i.e., p21RAS, RAF1, AKT1, ERK2, PIK3R2 and c‐Myc was significantly higher (p < 0.05) in cloned than in IVF embryos. However, the expression level of FOS was lower (p < 0.005) in cloned than in IVF embryos. The relative expression level of DNMT3a and DNMT3b but not that of DNMT1 was significantly higher (p < 0.05) in cloned than in IVF embryos. These results indicate that the cloned embryos exhibit an abnormal expression of several important genes related to ERK/MAPK pathway and DNMTs. Although a direct link between ERK/MAPK pathway and DNMTs was not examined in the present study, it can be speculated that ERK/MAPK pathway may have a role in regulating the expression of DNMTs in embryos, as also observed in other tissues.  相似文献   

17.
Since cloned pig was successfully produced, a new opportunity for porcine breeding industry to conserve genetic resources has been opened. However, there has been no report to investigate whether both somatic cell nuclear transfer (SCNT) pigs and their offspring have the characteristics of the donor breed. In this study, we compared the reproductive and growth performance of American Large White boars cloned by SCNT with the donor boar, and analyzed the test parameters, including semen quality, re‐service rate, rate of parturition, and average daily gain. The results showed that these cloned boars and the donor boar had no significant differences in the tests (P > 0.05) and the growth performance of their offspring was similar to the naturally bred American Large White pigs. In summary, the reproductive and growth performance of cloned pigs are similar to the donor pig and within the normal range. This suggests that pigs cloned by SCNT have the potential to be used in reproduction and breeding.  相似文献   

18.
Somatic cell nuclear transfer (SCNT) is considered to be a critical tool for propagating valuable animals. To determine the productivity calves resulting from embryos derived with different culture media, enucleated oocytes matured in vitro were reconstructed with fetal fibroblasts, fused, and activated. The cloned embryos were cultured in modified synthetic oviduct fluid (mSOF) or a chemically defined medium (CDM) and developmental competence was monitored. After 7 days of culturing, the blastocysts were transferred into the uterine horn of estrus-synchronized recipients. SCNT embryos that were cultured in mSOF or CDM developed to the blastocysts stages at similar rates (26.6% vs. 22.5%, respectively). A total of 67 preimplantational stage embryos were transferred into 34 recipients and six cloned calves were born by caesarean section, or assisted or natural delivery. Survival of transferred blastocysts to live cloned calves in the mSOF and the CDM was 18.5% (to recipients), 9.6% (to blastocysts) and 42.9% (to recipients), 20.0% (to blastocysts), respectively. DNA analysis showed that all cloned calves were genetically identical to the donor cells. These results demonstrate that SCNT embryos cultured in CDM showed higher viability as judged by survival of the calves that came to term compared to blastocysts derived from mSOF cultures.  相似文献   

19.
Aberration in DNA methylation is believed to be one of the major causes of abnormal gene expression and inefficiency of somatic cell nuclear transfer (SCNT). RG108, a non‐nucleoside DNA methyltransferase (DNMT) inhibitor, has been reported to facilitate somatic nuclear reprogramming and improved blastocyst formation. The aim of this study was to investigate interaction effect of RG108 treatment time (24–72 hr) and concentrations (0.05–50 µM) on donor cells, and further to optimize the treatment for porcine SCNT. Our results showed that RG108 treatment resulted in time‐dependent decrease of genome‐wide DNA methylation on foetal fibroblasts, which only happened after 72‐hr treatment in our experiments, and no interaction effect between treatment time and concentration. Remarkable decrease of methylation in imprinted gene H19 and increased apoptosis was observed in 5 and 50 µM RG108‐treated cells. Furthermore, the blastocyst rates of SCNT embryos were increased as the fibroblasts treated with RG108 at 5 and 50 µM, and additional treatment during cultivation of SCNT embryos would not provide any advantage for blastocyst formation. In conclusion, the RG108 treatment of 72 hr and 5 μM would be optimized time and concentration for porcine foetal fibroblasts to improve the SCNT embryonic development. In addition, combined treatment of RG108 on donor cells and SCNT embryos would not be beneficial for embryonic development.  相似文献   

20.
Bovine somatic cell nuclear transfer (SCNT) is an important and powerful tool for basic research and biomedical and agricultural applications, however, the efficiency of SCNT has remained extremely low. In this study, we investigated the effects of cathepsin B inhibitor (E-64) supplementation of culture medium on in vitro development of bovine SCNT embryos. We initially used three concentrations of E-64 (0.1, 0.5, 1.0 μm), among which 0.5 μm resulted in the highest rate of blastocysts production after in vitro fertilization (IVF), and was therefore used for further experiments. Blastocyst development of SCNT embryos in the E-64 treatment group also increased relative to the control. Moreover, the cryosurvival rates of IVF and SCNT blastocysts were increased in E-64 treatment groups when compared with the control. On the other hand, we found that IVF and SCNT blastocysts derived from E-64-treated groups had increased total cell numbers and decreased apoptotic nuclei. Furthermore, assessment of the expression of apoptosis-related genes (Bax and Bcl-xL) in bovine IVF and SCNT blastocysts treated with E-64 by real-time RT-PCR analysis revealed suppressed expression of the pro-apoptotic gene Bax and stimulated expression of the anti-apoptotic gene Bcl-xL. Taken together, these finding indicate that addition of E-64 to embryo culture medium may have important implications for improving developmental competence and preimplantation quality in bovine IVF and SCNT embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号