首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A nutrition trial with striped catfish (Pangasianodon hypophthalmus) juveniles was undertaken to evaluate the effect of replacing dietary fishmeal (FM) protein with corn gluten meal (CGM). A diet with FM as the main protein source was used as the control diet (FM). Five experimental diets (approximately 320 g kg?1 crude protein) were formulated to progressively replace 20% (CGM20), 40% (CGM40), 60% (CGM60), 80% (CGM80) and 100% (CGM100) of FM protein. Fifteen fish per tank (initial weight 11.2 ± 0.6 g) were randomly distributed into 18 80‐litre fibreglass tanks connected to a closed recirculation system (temperature 30.3 ± 1.0 °C). The diets were tested in triplicate for 12 weeks. The final weight and specific growth rate (SGR) of fish fed diets CGM20, CGM40 and CGM60 were not significantly different compared to fish fed the FM diet. Feed intake (FI) tended to decrease with increasing dietary CGM level. Striped catfish fed FM, CGM20 and CGM40 had significantly lower feed conversion ratio (FCR) compared with fish fed CGM80 and CGM100 (< 0.05). The protein efficiency ratio (PER) of fish fed the CGM80 and CGM100 diets was significantly lower than those of all other treatments (< 0.05). Total ammonia‐nitrogen (TAN) excretion increased with elevated dietary CGM inclusion. The viscerosomatic index (VSI) of fish fed the CGM80 and CGM100 diets were significantly higher (< 0.05) than those of fish fed the other treatments. The crude lipid content in the final body composition of the striped catfish was elevated significantly with increasing dietary CGM levels. Fish fed the CGM80 and CGM100 diets displayed haematocrit levels significantly lower (< 0.05) than those fed the other diets. The haemoglobin content in fish was significantly higher in fish fed CGM20 and lower at CGM100 compared to fish fed the FM diet. The results of the present trial indicated that the optimum level of FM protein replacement with CGM determined by quadratic regression analysis was 25.1% on the basis of maximum SGR.  相似文献   

2.
Corn gluten meal (CGM), pea protein isolate (PPI) and their mixture (CPP, 1:1 ratio) were evaluated as fishmeal (FM) alternatives in black sea bream (Acanthopagrus schlegelii) juveniles (9.02 ± 0.12 g). A FM diet was designed as control, and other six diets had 20% and 40% FM protein replaced by CGM, PPI and CPP, respectively, with the supplementation of crystalline methionine, arginine and lysine. After the 8‐week feeding trial, significantly lower weight gain was found in fish fed the 40% CGM diet (p < .05), whereas other treatments had no statistical difference (p > .05). The values of feed efficiency ratio and feed intake, as well as proximate compositions of muscle and whole body, were not significantly influenced in all treatments. Apparent digestibility coefficients (ADCs) of dry matter, crude protein, threonine, valine, methionine, isoleucine, leucine, phenylalanine and lysine were significantly influenced by protein source. Fish fed the 40% CGM diet had significantly higher content of essential amino acid in muscle than that of the 20% PPI diet. Fish fed the 40% CGM diet had significantly lower content of serum cholesterol than other treatments (p < .05). Elevated serum superoxide dismutase activity was found in fish fed the 40% plant protein diets. In conclusion, between 20% and 40% FM protein could be replaced by CGM, while about 40% FM protein derived from PPI and CPP could be applied in black sea bream.  相似文献   

3.
The effect of replacing fish meal (FM) with meat and bone meal (MBM) in diets for juvenile Pseudobagrus ussuriensis was evaluated in a 90‐day feeding trial. Six isonitrogenous (crude protein, 430 g/kg) and isolipidic (crude lipid, 74 g/kg) diets were formulated to contain MBM to replace FM at 0 (S0), 200 (S20), 400 (S40), 600 (S60), 800 (S80) and 1000 g/kg (S100), respectively. The results showed that there was no significant difference in weight gain (WG) among fish fed S0, S20 and S40 diets. However, a significant reduction in WG occurred when 600, 800 and 1000 g/kg FM protein was replaced by MBM (< .05). Similar trends were observed in specific growth rate and protein efficiency ratio. Apparent digestibility coefficients (ADC) of protein and dry matter of the diets S80 and S100 were significantly lower than those of the other diets. The ADC of phosphorus significantly reduced with the increase in dietary MBM level. Nitrogen and phosphorus excretion increased with the increasing dietary MBM level. Protease, lipase and amylase activities of the diets S80 and S100 were significantly lower than those of the other diets (< .05). The results of this study showed that the optimum dietary MBM replacement level was 34.3% according to broken‐line model based on WG against dietary MBM replacement level.  相似文献   

4.
An 8‐week feeding trial was conducted to evaluate the effects of replacing fish meal with soybean meal (SBM) on growth, feed utilization, and nitrogen (N) and phosphorus (P) excretion of juvenile Pseudobagrus ussuriensis (initial average weight 0.50 ± 0.00 g). Seven isonitrogenous and isolipidic diets were formulated to contain SBM to replace fish meal protein at 0% (S0), 10% (S10), 20% (S20), 30% (S30), 40% (S40), 50% (S50) and 60% (S60) respectively. To investigate the effects of supplementation with crystalline amino acid to balance diet S60, one diet was formulated to add 0.30% methionine (SM60). The results showed that there was no significant difference in weight gain among fish fed S0, S10, S20, S30 and S40 diets, however, a significant reduction in this variable occurred when 50% and 60% of fish meal protein was replaced by SBM (P < 0.05). Apparent digestibility coefficients of dry matter, crude protein and phosphorus of diets were affected by dietary SBM levels. N and P excretion indicate that fish meal replacement by SBM led to an increase in N excretion, but led to a reduction in P excretion. No differences were detected in growth, feed utilization and N and P excretion between fish feed diets S60 and SM60. The results of this study show that 40% of fish meal protein could be replaced by SBM in diets of juvenile P. ussuriensis without having a significant negative effect on growth or feed efficiency, but that higher dietary SBM levels reduce fish performance.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate the effect of replacement of fish meal (FM) with fermented soybean meal (FSM) on growth performance, intestinal morphology and microbiota of juvenile large yellow croaker (Larimichthys crocea). Replacement ratio of FM with FSM were 0%, 15%, 30%, 45%, 60% and 75%, respectively (marked as FSM0, FSM15, FSM30, FSM45, FSM60 and FSM75). The results indicated that the survival ranged from 84.78% to 99.44%, and no significant differences were observed among all treatments (> 0.05). Weight gain ratio (WGR) and specific growth rate (SGR) significantly decreased when the replacement level of FM protein exceeded 60%, and fish fed the FSM60 and FSM75 diets had lower WGR and SGR than those fed the other diets. Feed intake (FI) and feed conversion rate (FCR) significantly increased with replacement levels of FM increasing. Illumina high‐throughput sequence analyses showed that the alpha diversity did not differ among the diets of FSM0, FSM15 and FSM75. The whole community of tested samples was not modified by FSM, Firmicutes and Proteobacteria were the dominant flora in the intestines based on the phyla level. The dominant phyla in the water sample were Proteobacteria, Bacteroidetes. Fish fed the diet containing FSM75 significantly reduced the species abundance of Paenibacillus. There was a certain correlation between the intestine microbiota and SGR, antioxidant, and immune. Results indicated that up to 45% of FM can be replaced by FSM without negative effects on growth performance and intestinal integrity of juvenile large yellow croaker.  相似文献   

6.
To investigate the effects of high level of lupin meal (LM) supplemented with organic selenium (OS) on the growth and blood biochemistry of barramundi (Lates calcarifer), four isocaloric and isonitrogenous diets were prepared, containing either non‐fermented or fermented LM, and either supplemented with 2 mg OS/kg (LM, LMOS, FLM and FLMOS), or not. A fishmeal (FM)‐based diet formulated for juvenile barramundi was used as a control diet. Fish (initial mean weight of 5.88 g) were triplicated and fed the test diets for 75 days. The findings demonstrated that growth performance of fish fed with the FLM and FLMOS diets were similar to fish fed with the FM diet (> .05). The antioxidant glutathione peroxidase (GPx) activity, and haemoglobin (Hb) of fish fed with the FLMOS diet were significantly higher than that of FM‐fed fish (< .05). Plasma alanine aminotransferase (ALT) activity was significantly increased in fish fed with non‐fermented diets (LM and LMOS) than in those fed with fermented LM diets (FLM and FLMOS) (< .05). However, there were no significant differences in ALT activity among LMOS, FLM, FLMOS and FM diets. There was an interaction between the LM and OS on plasma CK activity; the CK of fish fed with diets supplemented with OS was higher in non‐fermented LM diets but lower in fermented LM diets (< .05). This study suggests that fermented LM have an obvious potential to substantially replace 75% FM protein in the diets of barramundi.  相似文献   

7.
The objective of this study was to assess the effects of fishmeal (FM) replacement with 0, 350 or 700 g/kg soybean meal (SBM) in combination with the supplementation of lactic acid (LA; 0, 10 or 20 g/kg) in the diets of juvenile beluga sturgeon (Huso huso; 700 ± 30 g). Nine isonitrogenous (400 g/kg protein) and isoenergetic (18 MJ/kg) diets were fed to beluga ad libitum, three times a day, for 60 days. The results showed that replacing FM with SBM without LA significantly reduced fish growth; on the other hand, LA supplementation had positive effects on fish fed diets that FM was replaced by SBM (< .05). Increasing SBM in the diet altered the fatty acid profiles of the fish, reducing long‐chain polyunsaturated fatty acids and the n‐3/n‐6 fatty acids. High amounts of SBM (700 g/kg) caused reductions in the haematocrit, glucose and cholesterol levels in the blood (< .05). In addition, the digestibility of protein, fat, dry matter and phosphorus was reduced when replacing FM with SBM, however, adding LA to the diets increased fish performance (< .05), and this improvement was sharper in 2% LA groups. The number of LA bacteria increased significantly with the dietary supplementation of LA (< .05). Based on these results, replacing 350 g/kg of FM with SBM and adding 20 g/kg LA to their feed do not negatively affect the biological and physiological indices of beluga.  相似文献   

8.
An 8‐week feeding trial was conducted to evaluate the potential of replacing fish meal with poultry by‐product meal (PBM) and feather meal (FEM) in giant croaker (Nibea japonica) diet. The control diet (C) contained 400 g/kg fish meal, and 20%, 40%, 60% and 80% of the fish meal in diet C was replaced by a blend of PBM and FEM (PBM: FEM = 7:3) in diets B20, B40, B60 and B80, respectively. The weight gain and feed intake of fish fed diet C did not differ from those of fish fed diets B20 and B40 (> .05), but were higher than those of fish fed diets B60 and B80 (< .05). Phosphorus retention efficiency was lower in fish fed diets C, B20 and B40 than in fish fed diets R60 and R80 (< .05). No significant differences were found in feed conversion ratio, nitrogen retention efficiency, condition factor, hepatosomatic index, body composition and nitrogen waste among the treatments (> .05). Ratio of fish meal consumption to fish production linearly declined with the decrease in dietary fish meal level. This study indicates that dietary fish meal for giant croaker could be reduced to 240 g/kg by inclusion of the blend of PBM and FEM.  相似文献   

9.
A 9‐week study was conducted to evaluate the potential of processed animal protein (PAP) in comparison with soybean meal (SM) to replace fish meal (FM) in practical diets for European catfish, Silurus glanis, on growth performance, liver transaminase activities and expression of growth‐related genes. Seven isonitrogenous (440 g kg‐1 crude protein) and isoenergetic (16.70 MJ/kg) practical diets were formulated by replacing 0 (control), 30%, 60% and 100% FM with either SM or PAP. Each diet was randomly assigned to triplicate groups of 25 fish per cages fixed in the pond. Fish fed the diet substituted 100% FM from SM or PAP had lower (p < .05) growth performance, feed efficiency and protein retention compared to control and other groups. The decreased growth performance occurred concomitant with a decline in the expression level of liver GHR/IGF‐I axis genes. The gene expression and activity of liver protein metabolism enzymes also positively correlated with growth performance. Findings of this study indicated that both SM and PAP were equally effective in replacing FM up to 60% in the practical diet of Silurus glanis. Total replacement of FM either with SM or PAP induced negative influences on growth and feed utilization.  相似文献   

10.
The current high demand and cost of fish meal (FM) necessities the evaluation of alternative plant protein ingredients in diets of farmed marine fish. A 56‐day feeding trial was performed to study the effects of replacement of FM with soy protein concentrate (SPC) in diets of Acanthopagrus schlegelii. Diets were prepared at levels of 0%, 30%, 47.5%, 65%, 82.5% and 100% SPC, respectively, replacing FM. The results indicated no significant differences (p > .05) in % weight gain (WG) and specific growth rate of fish fed S30% to S82.5% diets compared with the control diet while, further inclusion at 100% significantly depressed growth performance. SPC inclusion and phytase supplementation significantly affected the phosphorous discharge (P‐load) showing lowest value (3.83 ± 0.53 g/kg WG) in S100% compared to control (14.79 ± 0.37 g/kg WG) and in fish fed S30% diet (13.24 ± 0.89 g/kg WG) (p < .05). The results of this study showed that FM could be substituted up to 82.5% by SPC in the diet of Acanthopagrus schlegelii fingerlings (5.53 ± 0.12 g) without any adverse effects. Phytase supplementation SPC based diets could be effective in reducing the phosphorus load in the aquatic culture environment.  相似文献   

11.
Six equal‐protein and equal‐lipid diets were formulated: the fish meal (FM) diet, the soya bean meal (SBM) diet with 40% of FM protein replaced by SBM protein and tributyrin (TB) diets with 0.05% (TB0.05), 0.10% (TB0.1), 0.20% (TB0.2) and 0.40% (TB0.4) tributyrin supplemented in the SBM‐based diet. Each kind of diet was randomly fed to triplicate tanks with 20 fish per tank. Fish were fed apparent satiation twice daily for 56 days. No significant difference in weight gain rate (WGR) and feed efficiency rate (FER) was observed between fish fed the FM, TB0.1 and TB0.2 diets (p > .05). Muscle histidine and arginine proportion of fish fed TB0.1 diet was significantly higher than that of fish fed the SBM diet (p < .05). Intestine morphology results indicated that the supplementation of 0.1% tributyrin significantly improved the mucosal fold height, microvilli length and microvilli density when compared with those of fish fed the SBM diet (p < .05). The supplementation of dietary tributyrin suppressed the pro‐inflammatory gene expression, which may be due to the improvement of physical barrier and modification of microbial communities, such as Acinetobacter, Rhodocyclaceae, Brevundimonas, Sphingopyxis, Hydrogenophaga, Methyloversatilis and Devosia. In conclusion, dietary 0.1% tributyrin supplementation in high‐soya bean meal diet improved growth performance, flesh quality and intestinal morphology structure integrity of yellow drum.  相似文献   

12.
In this experiment, 23% of fish meal protein was replaced with protein from Australian soybean meal (SBM), lupin meal (LM), corn gluten meal (CGM) and meat meal (MM) in nutritionally balanced experimental diets. Growth and growth efficiencies of juvenile Australian short‐finned eel Anguilla australis australis (Richardson) elvers (2.23±0.4‐g average wet weight) were compared. Elvers were fed twice a day to a total of 5% body weight per day for 63 days. Total weight gain (g), specific growth rate (% day?1), protein efficiency ratio (%) and productive protein value (%) were significantly higher (P<0.05) for elvers fed the MM diet than for those fed the LM diet. There were no differences in diurnal ammonia‐nitrogen excretion rates. However, diurnal urea‐nitrogen excretion rates were significantly (P<0.05) affected by diet and rates were two to three times higher for all diets, except CGM, 4 h following the afternoon feed. Diet significantly affected apparent digestibility (AD); ADs of protein for SBM and LM were significantly (P<0.001) higher than for control diet, CGM and MM; AD of energy for LM was significantly (P<0.05) lower than for all the other diets. Fish meal protein was replaced by CGM, SBM and MM without compromising growth rates of the Australian short‐finned eel. However, whole lupin seed meal (LM) depressed growth and growth efficiencies most likely because of the high indigestible carbohydrate content.  相似文献   

13.
A 56‐day feeding trial was conducted to investigate the effects of replacing fish meal (FM) with soybean meal (SBM) and fermented soybean meal (FSBM) on growth performance, nutrition utilization and intestinal histology of largemouth bass. The basal diet contained 350 g/kg FM (control), and then, FM was replaced with SBM or FSBM of 15%, 30%, 45% and 60% respectively. The results showed that the specific growth rate of fish fed FSBM‐60, SBM‐45 and SBM‐60 diets significantly decreased, and the feed conversion ratio of SBM‐30, SBM‐45, SBM‐60, FSBM‐45 and FSBM‐60 groups increased when compared to the control group (p < .05). The apparent digestibility coefficients of dry matter and crude protein of SBM‐45, SBM‐60 and FSBM‐60 groups were significantly lower than those of the control group (p < .05), and the substitution of FM with SBM and FSBM (45% and 60%) significantly reduced the protein retention (p < .05). Serum total protein contents of SBM‐60 and FSBM‐60 groups and serum cholesterol contents of SBM‐45, SBM‐60 and FSBM‐60 groups were significantly lower than those of the control group (p < .05). The SBM‐30 and SBM‐60 groups showed significantly higher alanine aminotransferase activity than the control group (p < .05). The intestinal histology analysis resulted that the villus length of the SBM‐60 group and the villus width of the SBM‐45, SBM‐60 and FSBM‐60 groups decreased when compared to the control (p < .05). In conclusion, FSBM could replace 30% FM in diet of largemouth bass containing 350 g/kg FM, while the substitution level of FM with SBM was only 15%.  相似文献   

14.
This study was conducted to investigate the effects of replacing fish meal (FM) with fermented soybean meal (FSM) and soybean meal (SM) on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). The basal diet contained 350 g/kg FM (CON), and then, FM was replaced with SM and FSM at the ratios of 30% and 60% (SM‐30, SM‐60, FSM‐30 and FSM‐60), respectively. The largemouth bass (4.43 ± 0.13 g) were fed for 8 weeks. The results showed that weight gain of fish fed with FSM‐60 and SM‐60 diets was significantly lower, and feed conversion ratio of SM‐30, SM‐60 and FSM‐60 groups was significantly higher than the CON group (p < .05). The intestinal villus height of SM‐60 group and the villus width of SM‐60 and FSM‐60 group were significantly lower than the CON group (p < .05). The 30% FM replacement by SM and FSM significantly increased the abundance of Cetobacterium and Mycoplasma, respectively (p < .05). In conclusion, FSM could replace 30% FM in diet without negative impacts on the growth performance of largemouth bass, while the SM should be controlled below 30%.  相似文献   

15.
Six isoenergetic diets were formulated as follows: fish meal (FM) 700 g kg–1 (control, C), FM 300 g kg–1 + soy protein concentrate 300 g kg–1 (SPC), FM 300 g kg–1 + enzyme‐treated SPC 300 g kg–1 (ESC), FM 170 g kg–1 + soy protein isolate 300 g kg–1 (SPI), FM 160 g kg–1 + enzyme‐treated SPI 300 g kg–1 (ESI) and FM 150 g kg–1 + conglycinin 300 g kg–1(CG). Forty fish (3.9 g) were randomly distributed into each of eighteen 300‐L tanks, fed twice daily until satiation for 8 weeks. The final body weight, specific growth rate and condition factor did not show significant differences among the fish fed with diets C, SPC, ESC and ESI (> .05). The survival was significantly lower in fish fed with diets SPI and CG. Feed efficiency was significantly higher in fish fed with diets SPC and C than in fish fed with other diets (< .05). There were no significant differences in nutrients retention efficiencies in fish fed with diets C, SPC, ESC and ESI. A significantly higher phosphorus retention efficiency in fish fed with soymilk protein diets resulted in lower phosphorus discharge to the environment (< .05). These results suggest that the soymilk proteins can comfortably replace 570–770 g FM kg–1 diet of red sea bream juvenile, which will ensure significant ecological benefits through reducing phosphorus load to the environment.  相似文献   

16.
An 8‐week growth trial was conducted with juvenile Chinese mitten crab fed a high fishmeal (FM) diet (PC), a low FM diet (NC) and three other diets (NC125, NC150 and NC175) supplemented with 125, 150 and 175 mg/kg of a dietary protease. In the NC diets, a portion of FM (from PC diet) was replaced by a combination of plant proteins. All diets were isoproteic (404 ± 3 g/kg) and isoenergetic (18.6 ± 0.2 kJ/g). No differences were observed among treatments in most parameters except protein (PRE, %) and lipid (LRE, %) retention efficiencies, where LRE was the highest (37.9%) in NC175 followed by the PC. A linear regression demonstrated significant effects of protease on hepatopancreatic trypsin activity (HPRO,= .001), and PRE (= .05) and LRE (= .014) but not on energy retention efficiency (ERE). Dietary protease level was positively correlated with HPRO and nutrient retention efficiency (< .05). On the other hand, the specific growth rate (SGR) was positively correlated with portein deposition (PD), lipid deposition (LP) and recovered energy (RE) and negatively correlated with survival (< .05). This study is first to demonstrate that mainly nutrient retention efficiencies are modulated by specific dietary enzymes in animals.  相似文献   

17.
玉米蛋白粉替代鱼粉对大菱鲆摄食、生长及体组成的影响   总被引:3,自引:2,他引:1  
以鱼粉和玉米蛋白粉作蛋白源,配制6种等氮等能的饲料。其中5种饲料(C0、C12、C25、C38和C50.5)分别含有0%、12%、25%、38%和50.5%的玉米蛋白粉以替代相应的鱼粉蛋白。其余1种饲料(C50.5CAA)是在饲料C50.5基础上补充1.8%晶体氨基酸混合物(L-lysine:1.2%,L-arg:0.6%)。经7周的生长试验,结果表明随着饲料中玉米蛋白粉替代水平的升高,大菱鲆(12.51±0.02)g的摄食率、特定生长率、饲料效率和蛋白质效率均显著下降。饲料中玉米蛋白粉含量为50.5%时,大菱鲆摄食率显著低于其他处理组(P<0.05)。当饲料中玉米蛋白粉含量超过25%时,大菱鲆特定生长率显著低于对照组(C0)(P<0.05)。当饲料中玉米蛋白粉含量超过38%时,饲料效率和蛋白质效率与对照组(C0)相比显著下降(P<0.05)。C50.5CAA组的摄食率、特定生长率和蛋白质效率与C50.5组相比都有升高的趋势,但差异不显著。而饲料中添加晶体氨基酸显著提高了大菱鲆的饲料效率(P<0.05)。饲料中玉米蛋白粉替代鱼粉对大菱鲆鱼体水分、粗蛋白、粗脂肪及灰分含量均无显著影响。饲料中玉米蛋白粉替代鱼粉对大菱鲆血清甘油三酯和尿素氮含量也不产生显著影响,然而,随着饲料中玉米蛋白粉含量升高,血清总胆固醇含量显著下降(P<0.05)。  相似文献   

18.
The present study was conducted to investigate the effects of sodium butyrate (SB) on the physical barrier function, pro‐inflammatory response and possible underlying mechanisms in the distal intestine (DI) of yellow drum when fed a high‐SBM diet. Three iso‐proteic and iso‐lipidic diets were formulated with fish meal (FM, the control), 45% fish meal protein replaced by SBM (SBM) and 45% fish meal protein replaced by SBM but supplemented with 0.15% SB (SBM + SB). Fish were fed twice daily for 10 weeks. Results indicated that SB supplementation significantly increased the specific growth rate (SGR) and feed efficiency ratio (FER) and methionine content of muscle when compared with those of fish fed the SBM diet (p < .05). The morphologic histology results showed that SB dramatically improved the physical barrier structure, characterized as increases of fold height (FH) and muscular thickness (MT) (p < .05). RT‐qPCR data were accordant with morphologic histology results, in which claudin 3, claudin 4 and occludin were increased while claudin 7 and myosin light chain kinase (MLCK) mRNA expression levels were decreased (p < .05). Sodium butyrate also exerted anti‐inflammatory function, which may be attributed to the suppression of nucleus p65 protein expression. Results suggest SB can be incorporated in high‐SBM diets to ameliorate the negative consequences of alternative dietary ingredients on yellow drum physiology.  相似文献   

19.
A feeding trial was conducted to investigate the effects of partial replacement of soybean meal (SBM) with fermented soybean residue (FSR) on growth performance, body composition and plasma biochemical parameters of largemouth bass, Micropterus salmoides. Soybean residue was fermented with a mixture of microorganisms (Bacillus subtilis, Lactobacillus spp. and Molasses yeast) using the solid‐state fermentation. Four isonitrogenous (crude protein 430 g/kg) and isoenergetic (gross energy 18 MJ/kg) diets were formulated by replacing 0 (the control), 20, 40 and 60g/kg of protein from SBM with FSR (FSR0, FSR20, FSR40 and FSR60, respectively). Each diet was fed to four replicate groups of fish (initial body weight: 17.1 ± 0.19 g) for 12 weeks. Results showed that dietary FSR substitution significantly improved growth of juvenile largemouth bass. The weight gain, specific growth rate and protein efficiency ratio were all significantly improved by dietary FSR level up to 40g/kg substitution level (< .05) and then levelled off beyond this level. Fish fed the diet with 40g/kg and 60g/kg protein from FSR had lower feed conversion ratio than the control group (< .05). The hepatosomatic index, viscera ratio and liver lipid content significantly decreased with increasing dietary FSR level. Total protein content, superoxide dismutase and alkaline phosphates activities in plasma were lower in fish fed the control diet (< .05) than the other groups. However, both alanine aminotransferase and aspartate transaminase were higher in fish fed the control diet (< .05) compared to the other treatments. The plasma catalase activity significantly increased with increasing dietary FSR level, while plasma triglyceride, total cholesterol, glucose and malondialdehyde contents significantly reduced. No significant difference was observed in the glutathione peroxidase activity among dietary treatments. These findings demonstrated that replacing dietary SBM with FSR has beneficial effects on growth of M. salmoides, and the best growth performance was obtained at 40g/kg replacement for SBM protein. In addition, there is a great potential to apply FSR to improve lipid metabolism and antioxidant capacity of M. salmoides.  相似文献   

20.
A 56‐day feeding trial was conducted to evaluate the effects on the growth performance, digestive enzyme activity, inflammatory genes expression and intestine histology of silver sillago, Sillago sihama (Forsskål 1775), by replacing fish meal (FM) with low‐gossypol cottonseed meal (LCSM). Five isonitrogenous and isolipidic diets were formulated, including R0 group (control, containing 550.0 g/kg FM), R16 group (88.5 g/kg LCSM and 461.5 g/kg FM), R32 group (177.0 g/kg LCSM and 373.0 g/kg FM), R48 group (265.5 g/kg LCSM and 284.5 g/kg FM) and R64 group (354.0 g/kg LCSM and 196.0 g/kg FM). Fish fed R0 and R16 groups had a significantly higher weight gain rate (WGR) and specific growth rate (SGR) than R48 and R64 groups (p < .05). In contrast to whole‐body crude protein, whole‐body moisture increased with the FM level of substitution (p < .05). With the increased amount of LCSM in the diet, the activity of intestinal amylase (AMS) increased significantly (p < .05), and intestinal trypsin (TRP) decreased (p < .05). Dietary LCSM substitution upregulated the expression of intestinal tumour necrosis factor‐α (TNF‐α), the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and interleukin one beta (IL‐1β), but downregulated tight junction proteins ZO‐1(ZO‐1), transforming growth factor beta‐3 (TGF‐β3) and interleukin 10 (IL‐10) expression. Histological analysis revealed progressive morphological damage to the mid‐intestine with higher levels of FM replacement. These results showed that 88.5 g/kg (16%) of FM replaced by LCSM with amino acids (methionine and lysine) supplementation did not significantly reduce growth compared with FM‐based control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号