首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
African catfish (Clarias gariepinus) and lemon fin barb hybrid (LFBH) (Hypsibarbus wetmorei ♂ × Barbodes gonionotus ♀) were cultured in either a biofloc technology (BFT) system or an individual recirculating aquaculture system (RAS) and their survival, growth, feeding efficiencies and biochemical composition were then compared after 8 weeks. LFBH and African catfish were chosen based on their different feeding habits. In the BFT treatments, glycerol was added to create a carbon to nitrogen ratio of 15, while the RAS system consisted of a fine mesh mechanical and biological filter. Each of the four treatments was triplicated, with each replicate consisting of 20 African catfish (0.98 ± 0.05 g) or LFBH (1.77 ± 0.02 g). Water quality and biofloc formation were examined weekly while the biofloc proximate composition was measured in weeks 5 and 8. During weeks 6, 7 and 8 the total viable bacterial colony forming units (CFU) were quantified. Regardless of species, biofloc formation was similar but the crude protein, lipid and ash significantly decreased from week 5 to week 8. However, biofloc crude protein and ash were significantly higher in the LFBH treatment. Total viable CFU were significantly higher (P < 0.05) in BFT compared to RAS, with LFBH having significantly more (P < 0.05) than African catfish. The proximate composition of the fish were unaffected by either system. Implementing BFT significantly (P < 0.05) improved both African catfish and LFBH growth, but this improvement was substantially higher for LFBH (41.6%) than for African catfish (7.6%). This may be due to a better ability of LFBH to consume smaller particles. Preliminary results also indicate that the nutritional composition of bioflocs could be influenced by biofloc age, which could have implications to solids management.  相似文献   

2.
The biofloc technology (BFT) has recently gained attention as an economic and environmentally sustainable system for aquaculture. The use of BFT with salinized water could be used to minimize the negative effects of nitrogenous waste and improve the growth performance of Nile tilapia. This work evaluated the growth performance, survival, gill lesions, and fillet composition of tilapia fingerlings (Oreochromis niloticus) reared during 70 days with different salinities (0, 4, 8, 12, and 16 g/L) in a biofloc previously developed. The results indicated that the use of mature bioflocs alone was sufficient to avoid fingerling mortality due to nitrite peaks. Moreover, the salinized water, especially between 4 and 8 g/L (maximum points around 6 g/L), can be recommended in BFT to improve the growth performance of tilapia in the initial culture phase. The salinity level that was evaluated did not affect fillet composition nor the occurrence of gill lesions. The total ammonia nitrogen concentration was lower in freshwater than in salinized water (p < 0.05). Nitrite peaks in salinities of 12 and 16 g/L appeared later and were higher in comparison to other treatments. Considering minimal water exchange in BFT, the use of salinized water in this system may be environmentally viable.  相似文献   

3.
A 10 weeks trial was performed to investigate how different carbon sources (sugar beet molasses: SBM+BFT, sugar: S+BFT, corn starch: CS+BFT) along with control affect welfare status of common carp (Cyprinus carpio L.) fingerlings in biofloc‐based tanks. Three hundred healthy fingerlings (22.5 ± 0.2 g) were randomly distributed in 12 tanks (70 L) at a density of 8.02 kg/m3 (25 fish/tank). The fish in BFT treatments fed only 75% feeding rate of control. At the end of the experiment no differences were seen between the groups in case of growth performance, but the fish reared in CS+BFT had a significant lower food conversion ratio compared with the others (p < .05). Different carbon sources did not affect on haematological parameters (p > .05). Total serum protein and antibody concentration differed in treatments, and the highest values were found in S+BFT and CS+BFT treatments (p < .05). No significant differences were observed in case of lysozyme, superoxide dismutase and complement activity in treatments (p > .05), whereas the fish in BFT treatments showed a significant higher total antioxidant capacity and lower glutathione peroxidase than the control (p < .05). Different carbon sources resulted in no change in goblet and kupffer cells in intestine and liver respectively. The highest relative percentage survival was obtained in the CS+BFT and S+BFT (50%) in comparison with SBM+BFT (20%) treatment. The results obtained in this experiment, suggest that corn starch improves immune response, diseases resistance and histology of digestive and respiratory systems in carp fingerlings when used as a carbon source in zero water exchange system.  相似文献   

4.
This study compared the effect of three sources of carbohydrates: sugar, wheat and malt flours, on water quality, water consumption, bacterial load, growth and flesh quality of Nile tilapia. Adults (120.6 ± 0.64 g) were stocked in 1.2‐m3 fibreglass tanks at a rate of 25 fish/m3. Carbohydrates were added to the biofloc tanks at a C:N ratio of 20:1. Water flow in the non‐biofloc control tanks was adjusted to 0.6 L/day. The 105‐day experiment was conducted in triplicates. Results showed that biofloc treatments (BFT) with zero water exchange had significantly higher mean total ammonia, nitrites, nitrates, alkalinity, total suspended solids and lower pH than the control treatment. The sugar BFT had the highest floc volume. Growth parameters and feed conversion ratio did not differ significantly among treatments. However, tilapia in the malt flour and control treatments had close values. Gross fish yield was higher (p < .05) in the control than the BFT treatments. Water consumption/kg tilapia produced in the control was 42 times higher than the BFT groups. Protozoa dominated the biofloc biota, and wheat flour was the best in harbouring higher bacterial populations in the gut. Protein content and ∑n‐3 fatty acids were highest in the wheat flour biofloc, while malt flour biofloc had the highest lipids. The sugar biofloc had the highest n‐3/n‐6 ratio. Tilapia muscles in the malt flour and control treatments had the highest protein and lipid contents respectively. Tilapia muscles in the wheat flour BFT had the highest ∑n‐3 fatty acids and n‐3/n‐6 ratio. It can be concluded that farming tilapia in BFT using malt or wheat flours as carbon sources is more economical in saving great amount of water with minimal discharge of pollutants without affecting tilapia growth or flesh quality.  相似文献   

5.
The objective of the study was to evaluate the utilization of biofloc meal as a feed ingredient in enhancing the growth and health status of African catfish (Clarias gariepinus) juvenile. The study consisted of two experiments, that is digestibility and growth experiments. The digestibility of two biofloc meals produced with two different carbon sources, that is tapioca and molasses, were assessed in the digestibility experiment. Whereas the effect of four dietary treatments with different levels of biofloc meal, that is 0%, 5%, 10% and 20%, on the fish growth performance, feed utilization, immuno‐haematological response, antioxidant status and robustness against environmental stress were evaluated in the growth experiment. The results showed that the digestibility of dry matter, protein, lipid and phosphorus of biofloc grown using molasses as the carbon source were remarkably higher than that grown using tapioca (p < 0.05). The inclusion of biofloc meal in the diets at 10% and 20% resulted in higher feed intake, fish growth and final biomass and protein efficiency ratio, and lower feed conversion ratio (p < 0.05). Furthermore, the red blood cells counts, phagocytic, lysozyme activities and antioxidative capacity were significantly enhanced in the fish provided with diet containing 20% biofloc meal (p < 0.05).The fish survival following salinity stress test was higher in the treatments with biofloc meal at 10% and 20% inclusion levels. In conclusion, dietary inclusion of biofloc meal could improve the growth performance and health status of African catfish juvenile and an inclusion level of 20% could be recommended.  相似文献   

6.
Effect of different carbon sources on nursery performance of Pacific white shrimp (Litopenaeus vannamei) cultivated in biofloc system was investigated. Shrimp postlarvae (98.47 ± 8.6 mg) were fed for 32 days in tanks with water volume of 130 L and density of 1 individual L?1. One control treatment and four biofloc treatments (BFT1, BFT2, BFT3 and BFT4) with adding different carbon sources including molasses, starch, wheat flour and mixture of them, respectively, were considered at equal weight ratios. According to the results, salinity, dissolved oxygen and pH were not significantly different among the biofloc treatments (P > 0.05). Maximum pH (8.27) and maximum dissolved oxygen (6.35 mg L?1) were recorded in the control. Maximum (0.43 mg L?1) and minimum (0.09 mg L?1) ammonia were recorded in the control and BFT2, respectively (P < 0.05). Using simple carbohydrates (molasses and starch) lowered the ammonia concentration significantly. The highest increase in body weight (1640.43 ± 231.28 mg), growth rate, specific growth rate (8.97 ± 0.42% per day) and biomass (190.29 ± 26.83 mg) were found in BFT1 and the highest survival (90 ± 0.77%) was found in BFT4. The highest feed conversion (1.52 ± 0.23) and the lowest feed efficiency (66.81 ± 7.95) were observed in the control (P < 0.05). The proximate composition analysis revealed an increase in lipid and ash in biofloc treatments. Results indicated that using biofloc technology with zero‐water exchange system and adding carbon sources could help to recycle waste and improve the water quality. Moreover, the type of carbonaceous organic matter as a substrate for heterotrophic bacteria would be effective in degradation and metabolization of ammonia and nitrite.  相似文献   

7.
The objective of this study was to evaluate the effect of the addition of Navicula sp. on the growth and fatty acids profile of Litopenaeus vannamei postlarvae in a biofloc system (BFT). Four treatments were used: BFT; BFT 2.5N (addition of 2.5 × 104 cells/ml of Navicula sp.); BFT 5N (addition of 5 × 104 cells/ml of Navicula sp.) and BFT 10N (addition of 10 × 104 cells/ml of Navicula sp.), all in triplicate. The shrimp (1 ± 0.01 mg) were stocked at a density of 3,000 postlarvae/m3 and fed with commercial feed. The diatom was added every 10 days, and at the end of 42 days, shrimp performance, water quality and proximal composition were evaluated. The BFT 5N and BFT 10N treatments had higher performance values, highlighting the values of productivity (2.30 and 2.42 kg/m3) and specific growth rate (15.92 and 16.08%/day), which were higher than the other treatments. In addition, the highest levels of fatty acids were observed in treatments with diatom (BFT 5N and BFT 10N), indicating the benefits of Navicula sp. on growth enhancement and fatty acid content of L. vannamei postlarvae grown in biofloc systems.  相似文献   

8.
Shrimp farming at low salinity is a trend that will continue to grow globally. Performance of Litopenaeus vannamei postlarvae in the nursery at different salinities with a biofloc technology (BFT) system needs to be explored further, as the nursery is currently used as a transitional stage between the hatchery and grow-out ponds. Hence, this study evaluated the effect of seven salinity levels (2, 4, 8, 12, 16, 25, and 35 ‰) on the performance of L. vannamei postlarvae reared with a BFT system and zero-water exchange at 2000 org/m3. Additionally, this study evaluated the water quality of all salinity treatments. After 28 days of culture, the findings showed that, under biofloc conditions, salinity affected the performance of some variables of water quality in some cases, but only the combination of a high nitrite-N concentration (>4 mg/l) and low salinity (2 and 4 ‰) caused up to 100 % shrimp mortality in the first 2 weeks. In the rest of the treatments (8, 12, 16, 25, and 35  ‰), shrimp survival was >72 %. Shrimp mortality was affected by salinity, especially when it decreased from 35–25–16 to 12 and 8 ‰. The organisms reared at low salinities presented lower final weights and specific growth rate than those reared at higher salinities. An inverse relationship was shown between the ion concentration and the final weight of shrimp.  相似文献   

9.
10.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

11.
The objectives of this study were: (1) Compare two systems for pre‐maturation of Litopenaeus vannamei in terms of spermatophore and sperm quality, (2) Compare the effect of feeds with different protein levels on reproductive quality of males reared in a biofloc‐dominated system. Animals (36.40 ± 3.13 g) reared under biofloc technology (BFT) were used in the 30‐day experiment, which involved four treatments: one in a clear water system (CW) and other three in a BFT system. The BFT treatments were differentiated by feed: mix of fish, squid and crab (BFT+FF) composed of 68.48% dietary protein (DP); broodstock feed (BFT+BF) composed of 52.51% DP; and juvenile feed (BFT+JF) composed of 39.91% DP. Feed in the CW was also the mix of fresh food. Spermatophore and sperm quality were analyzed at the beginning and end of the experiment. Higher normal sperm rate was recorded in the CW compared with the BFT+FF. Among the BFT treatments, the BFT+FF had the lowest normal sperm rate. Thus, the use of BFT for pre‐maturation of L. vannamei allowed the reduction in dietary protein levels from 68.48% (BFT+FF) to 39.91% (BFT+JF) and the maintenance of spermatophore and sperm quality compared to the system based on high daily exchange rate.  相似文献   

12.
Biofloc rearing media provides a potential food source for shrimp reared in limited or zero water exchange systems. This culture system is environmentally friendly as it is based on limited water use and minimal effluent is released into the surrounding environment. In this study, we evaluated the survival, growth performance and salinity stress tolerance of pink shrimp Farfantepenaeus paulensis postlarvae reared from PL10 to PL25 in a biofloc technology limited water exchange system. PL (mean ± SD weight and length of 14 ± 10 mg and 8.10 ± 0.7 mm, respectively) were reared in nine 40-L plastic tanks with a stocking density of 10PL/L. Three culture treatments were applied (1) culture in the presence of bioflocs and commercial feed supply (FLOC + CF); (2) culture in the presence of biofloc without feed supply (FLOC) and (3) culture in clear water with feed supply (control). Final biomass and survival were significantly higher in FLOC + CF treatment than the control (P < 0.05), but did not differ from FLOC. PL reared in the FLOC + CF treatment achieved a significantly higher final weight, weight gain and length in comparison with the other two treatments (P < 0.05). No significant difference (P > 0.05) between treatments was found for salinity tolerance over 24 and 48 h durations. The proximate analysis of floc shown high levels of crude protein (30.4%), but low levels of crude lipids (0.5%). The continuous availability of bioflocs had a significant effect on growth and survival of F. paulensis postlarvae cultured in BFT nursery systems.  相似文献   

13.
The objective of this study was to demonstrate the pH effects on growth, survival, water quality, proximal composition of bioflocs and oxidative stress of Nile tilapia in biofloc technology (BFT) system. Twenty‐five fish (3.68 ± 0.93 g) were distributed in each tank (useful vol. 37.5 L), utilizing treatments with pH 8.3, 7.5 and 6.5 at 60 days. During the experiment, the oxidation of total ammonia was similar among the treatments. However, the NO2?‐ N oxidation was slower at pH 6.5 (10.1 ± 1.0 mg/L) compared to pH 7.5 (7.0 ± 0.6 mg/L) and 8.3 (7.1 ± 1.5 mg/L). The final weight was higher for pH 7.5 treatment (44.1 ± 0.9 g) compared to pH 8.3 (37.1 ± 3.9 g), while the pH 6.5 (40.4 ± 4.1 g) was like to the other treatments. Moreover, the survival, daily growth rate and the food conversion rate were not affected by treatments. When evaluating physiological and biochemical parameters, no alterations were detected, therefore, indicating that fish have a good health status. Thus, the present study demonstrates that BFT for a Nile tilapia nursery, utilizing pH 6.5–7.5, promotes the best results in terms of growth, net yield and efficiency.  相似文献   

14.
In a 30‐day experiment, Farfantepenaeus brasiliensis PL25 (25 ± 10 mg; 17.9 ± 1.6 mm) were raised in nine circular floating cages with a stocking density of 1000 shrimp m?3. Three treatments were evaluated: (1) culture in BFT system plus a commercial feed supply (BFT+CF); (2) culture in BFT system without feed supply (BFT) and (3) culture in clear water with feed supply (control). Post‐larvae (PL) final weight (218.9, 236.5 and 176.0 mg, for BFT+CF, BFT and control respectively), final biomass (17.9, 15.7 and 8.2 g) and weight gain (193.9, 211.5 and 151.0 mg) were similar in the BFT regardless of whether they were fed a commercial diet (P>0.05), but were both significantly higher than the control (P<0.05). Survival (81.5%, 67.0% and 84.8% respectively) and final length did not differ between treatments (P>0.05). The biofloc analysis identified five main microorganism groups: protozoa (ciliate and flagellate), rotifers, cyanobacteria (filamentous and unicellular) and pennate diatoms. Free living bacteria and attached bacteria in bulk were 25.73 ± 8.63 and 0.86 ± 3.17 × 106 mL?1 respectively. Proximate analysis in the biofloc indicated high levels of crude protein (30.4%). Results confirmed favourable nutritional quality of biofloc, and enhanced growth and production of F. brasiliensis PL in biofloc systems.  相似文献   

15.
An experimental trial was conducted for 90 days to evaluate the growth performance, immunophysiological response of GIFT strain of Tilapia in biofloc‐based rearing system and to assess the relative percentage survival in 3 days after challenging with the virulent strain of Aeromonas hydrophila. Fingerlings with an average body weight 0.98 ± 0.06 g were stocked in triplicate at different stocking densities of 200 (SD1), 250 (SD2), 300 (SD3) and 350 (SD4) m?3 in biofloc‐based treatments and 150 (C) m?3 in control (clear water). Biofloc‐based units (SD1 and SD2) obtained significantly better (P < 0.05) growth performances at the end of the experimental period. Mean body weight of fish in biofloc‐based units showed a decreasing trend with increase in stocking density with 100% survival in all units including control. The stress parameters were significantly lower in biofloc‐based rearing units especially in treatments SD1 and SD2 as compared to the control. The fish from the biofloc‐based units (SD1 and SD2) possessed significantly (P < 0.05) higher immune status as compared to control and other biofloc treatments in terms of respiratory burst, serum lysozyme and myeloperoxidase activity. Relative survival percentages were significantly better in biofloc treatments with highest in SD1 and SD2 (83.33%) after challenge study. GIFT strain of Tilapia at higher stocking densities 200–250 nos m?3 can be taken as optimum stocking density whereas higher stocking densities up to 350 nos m?3 can be reared in the biofloc systems without compromising the growth and immunity.  相似文献   

16.
This 210-day study compared variation in water quality and fish growth for channel catfish (Ictalurus punctatus; 47 g/fish) stocked in earthen ponds (1.5 fish/m2, 14,820/ha) and in a biofloc technology (BFT) production system with high-density polyethylene-lined rectangular tanks (12.6 fish/m2, 126,000/ha). Feed input and culture environment affected water-quality dynamics. In ponds, phytoplankton uptake predominated and little nitrification occurred, whereas in the BFT system phytoplankton uptake and nitrification maintained low ammonia-nitrogen concentrations. Size classes of fish were skewed toward the larger market sizes in ponds and toward smaller market sizes in the BFT system. Mean final fish weight was 630 g/fish in ponds and 542 g/fish in the BFT system. Despite these differences, fish yield was higher in the BFT system (7.7 kg/m3 v. 1.5 kg/m3) because of the greater initial stocking rate.  相似文献   

17.
Aeromonas hydrophila is emerging as one of the major concerns in catfish aquaculture in the Southeastern United States due to recent outbreaks of motile aeromonad septicaemia (MAS) caused by virulent clonal isolates. There is no effective vaccine currently available for the prevention of MAS. In this study, two virulence‐associated proteins of A. hydrophila, aerolysin and haemolysin, were heterologously expressed in Escherichia coli cells. Recombinant aerolysin (rArl) and haemolysin (rHly) were used to immunize catfish. Both rArl‐ and rHly‐induced humoral immune response as evidenced by immunoblotting and cell agglutination; immunized fish had significantly less mortality as compared to control fish upon challenge with virulent A. hydrophila. When a mixture of rArl and rHly was used to immunize the fish, significantly higher relative per cent survival (RPS) was obtained. Sustained RPS of 71–78% were observed at 2–5 weeks post immunization. The results of this study indicated that immunization against aerolysin and haemolysin had significant impact on the establishment of pathogenesis by A. hydrophila, suggesting that these two proteins could serve as general immunogens for future development of recombinant protein vaccines.  相似文献   

18.
The aim of this study was to assess the zootechnical performance and water quality of a cachama blanca (Piaractus brachypomus) culture using biofloc technology (BFT) versus a system with daily water exchange (DWE). To do this, 180 juveniles (mean initial weight: 5.40 ± 0.19 g) were distributed in 12 circular plastic tanks with stocking densities of 20 or 40 individuals m3; then, they were cultured for 91 days. BFT treatments kept a C:N ratio approximately of 15:1. Temperature, pH and oxygen were monitored daily, while the other variables were measured weekly. Most productive variables were significantly influenced by both culture system and stocking density with significantly higher values of daily weight gain, total weight gain and total length for fish kept in DWE 20. However, only minor differences were observed within the BFT system. With the exception of the toxic nitrogen compounds (NH4+ and NO2?), all the other water quality parameters were within the acceptable ranges for the cultivation of tropical fish. Microorganisms started to settle from the first week. A total of 23 genera were present, the most outstanding of which being seven genera of ciliates and three rotifers, rhizopods and chlorophytes. In conclusion, both systems BFT and DWE are useful for increasing the production of P. brachypomus in captivity. Additionally, the BFT system can potentially be applied for growing juveniles of this specie in regions with scarce water resources.  相似文献   

19.
A 5‐week study was performed to evaluate the effect of spoilage date extract (SDE) as the biofloc carbon source on Litopenaeus vannamei (5.4 ± 0.3 g) performance. The two levels of dietary protein (15% and 25% crude protein) and two carbohydrate sources (molasses‐M and SDE‐P) were tested including: M15, M25, P15 and P25. The minimum (0.2 ± 0.0 mg/L) and the maximum (0.5 ± 0.0 mg/L) of total ammonia nitrogen were observed in the P15 and M25 groups respectively. The highest protein efficiency ratio (6.1 ± 0.3) and protein productive value (112.3 ± 5.8%) were found in the P15 group (p < 0.05). No significant difference was found between biofloc treatments in the expression of cathepsin L gene in hepatopancreas (p > 0.05). The number of total haemocyte count (THC), semigranular cells (SGC) and granular cells (GC) of shrimp in SDE‐based biofloc treatments was relatively higher than those in molasses‐based biofloc treatments. Following the white spot syndrome virus (WSSV) challenge, a significant decrease in THC, SGC, GC and hyaline cell values was observed in all treatments (p = 0.001). Plasma biochemical parameters were significantly influenced by dietary protein levels, biofloc carbon sources as well as WSSV challenge test. In conclusion, SDE successfully could be used as an alternative carbon source for establishing a biofloc system in L. vannamei production.  相似文献   

20.
A 13-day nursery trial was conducted to evaluate the performance of young Litopenaeus vannamei post-larvae (from PL6 to PL18) reared in both biofloc and microalgae-based systems at a stocking density of 67 PLs L−1. The effects of different concentrations of total suspended solids (TSS) on PL performance were also evaluated. One experimental group was reared in a conventional microalgae-based system with daily water exchange and daily addition of microalgae (herein called microalgae treatment). The other two experimental groups were reared using biofloc technology (BFT) with daily dextrose addition and no water exchange, but in the “Biofloc-500” treatment, TSS were maintained at around 500 mg L−1, while in the “Biofloc-700” treatment, TSS were maintained at around 700 mg L−1. Water quality variables remained within the appropriate range for larval culture. In microalgae treatment, ammonia control was likely associated with its assimilation into microalgae biomass and daily water exchange. In biofloc tanks, however, the addition of dextrose stimulated the production of bacterial biomass from ammonia. This system required only 12.9% of the water used by the microalgae treatment since water was not exchanged during the culture. The nursery of young PLs resulted in similar (P > 0.05) performance in all treatments: survival >94%, PL length ∼ 11.5 mm, and PL dry weight ∼ 1.2 mg. In addition, the salinity stress test (>90.0%) was not significantly different among treatments. Our results indicate that BFT can be as effective as the microalgae-based system for the nursery of young L. vannamei post-larvae. We also found that post-larvae performance was similar (P > 0.05) between biofloc treatments, indicating that organisms can tolerate environments with large quantities of solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号