首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid (DHA/EPA) ratios on growth performance, survival and fatty acid composition of juvenile swimming crab (Portunus trituberculatus). Four isonitrogenous and isoenergetic experimental diets were formulated to contain different DHA/EPA ratios (0.70, 0.84, 1.06 and 1.25). There were three replicates (15 crabs per replicate) for each diet treatment. The crabs were fed (about 6–8% body weight) twice daily for 8 weeks. A good growth performance and feed utilization were observed in swimming crabs fed the diets with DHA/EPA ratios of 0.70 and 0.84. Crabs fed diet with 0.70 DHA/EPA ratio showed a significantly higher weight gain (WG) compared with the crabs fed the diet with DHA/EPA ratio of 1.25 (P < 0.05). The result of this study showed that the survival increased with decreasing the ratio of DHA/EPA. The DHA/EPA ratios in polar lipid from tissues were influenced by the dietary DHA/EPA ratios. Results of this study indicated that the growth performance and survival of juvenile swimming crab are correlated to the DHA/EPA ratio in the diets, and the best growth performance and survival were achieved with the ratios of 0.70–0.84.  相似文献   

2.
The main objective of this investigation was to study the lipid requirements of the early juvenile (C1) swimming crab (Portunus trituberculatus) based on growth performance, survival, moulting and fatty acid profile. Four test diets were formulated with graded lipid levels (3.63%, 6.70%, 10.72% and 13.91%). Each diet was fed to 4 replicates of crabs (30 crabs per replicate initial weight (8.4 ± 0.1 mg). In this study, crabs fed diets with 13.91% lipid had significantly (< 0.05) higher survival than crabs fed with 3.63% lipid, but no significant (> 0.05) improvement of survival was observed when dietary lipid increase from 6.70% to 13.91%. Crabs fed diets with 10.72% and 13.91% lipid had significant higher weight gain(WG) than crabs fed with 3.63% lipid. While crabs fed with diets containing 6.70%, 10.72% and 13.91% lipid showed no significant (> 0.05) difference in weight gain(WG). Moreover, the lowest moulting number was observed in crabs fed diets with 3.63% lipid, but there was no significant difference (> 0.05) among other groups. The content of LC‐PUFA and DHA in the crabs fed diets with 3.63% lipid was significant (< 0.05) lower compared to other groups. But there was no significant (> 0.05) difference in EPA and ARA content among all groups. The activity of lipase increased as dietary lipid level increased (from 6.70% to 10.72%). However, beyond 10.72%, a significant (< 0.05) decreased in lipase activity was observed. The regression analysis of weight gain data indicated that crab fed diet containing 10.47% lipid level is considered as optimum lipid level for its maximum growth and moulting process.  相似文献   

3.
Four iso‐nitrogenous and iso‐lipidic diets were designed to investigate the effects of dietary phospholipids (PL) levels (with 0%, 1%, 2%, and 4% PL supplementation) on growth performance, lipid metabolism, and antioxidant capacity in early juvenile green mud crab (Scylla paramamosain). There were three replicates of 28 crabs (initial body weight from 42.02 to 42.44 mg) for each diet treatment, and growth trial lasted for 8 weeks. At the end of the growth trial, there was no significant difference in survival among all treatments. Crabs fed diet with 2% PL obtained highest weight gain (WG) and specific growth rate than other crabs. The molting frequency was not affected by different dietary PL addition. Besides, the contents of whole body lipid and long chain highly unsaturated fatty acids significantly increased with elevating dietary PL levels. In the hepatopancreas, crabs fed diet with 0% PL had significantly higher malondialdehyde concentration than other crabs. And crabs fed diet with 2% PL obtained significantly higher superoxide dismutase activity than crabs fed diets with 0% and 4% PL. Moreover, the mRNA expression of Na+/K+‐ATPase was significantly down‐regulated with dietary PL supplementation over 2%. Based on the second order polynomial regression analysis of WG, 2.37% dietary PL level was the optimal demand for early juvenile S. paramamosain. Moreover, we found crabs fed diet with 2% PL obtained better antioxidant capacity than other crabs.  相似文献   

4.
An 8‐week feeding trial was conducted to evaluate the effects of replacement of fish oil (FO) with blending vegetable oils (VOs) on growth performance, antioxidant enzyme activities and fatty acid composition in tissue of swimming crab Portunustrituberculatus. Five isonitrogenous and isolipidic diets were formulated to contain VOs (colza oil: palm oil: linseed oil = 4:2:1) to replace 0 (the control diet), 250, 500, 750 and 1000 g/kg of FO (defined D0, D25, D50, D75, D100). Three hundred juvenile swimming crabs (initial weight 2.34 ± 0.08 g) were randomly stocked and sorted into 300 individual rectangle plastic baskets in three cement pools. Each treatment has three replicates, one replicate has 20 swimming crabs, and each diet fed 60 crabs distributed in 60 baskets. The results indicated that crabs fed the control diet showed significantly higher survival, final body weight, per cent weight gain (PWG), specific growth rate and moulting frequency, crude protein and crude lipid contents in muscles than those fed the D75 and D100 VO diets (p < .05). Crabs fed the D25 VO diet showed significantly higher concentration of triglyceride, low‐density lipoprotein cholesterol and total protein, activities of superoxide dismutase, catalase and glutathione peroxidase (GSH‐Px) in haemolymph than those fed the control diet (p < .05). Fatty acid composition in hepatopancreas was positively correlated with dietary composition. In summary, based on the PWG, the optimal replacement of FO with VOs was estimated to be 250 g/kg. These findings demonstrated that swimming crabs make better use of FO than VOs.  相似文献   

5.
Six experimental diets were designed with two phospholipid (PL; 0% and 1.5%) and three fish oil levels (0%, 1% and 3%) to evaluate the effects of dietary fish oil and PL levels on growth, survival and fatty acid composition of juvenile swimming crab, Portunus trituberculatus. Diets were iso‐energetic and iso‐nitrogenous and each diet was fed to triplicate groups (initially weight, 24.88 ± 0.04 g per crab) for 59 days. Weight gain (WG) and specific growth rate (SGR) increased with dietary PL addition to 0% fish oil‐supplemented diets (P < 0.05). On the other hand, WG and SGR decreased with dietary PL addition to 3% fish oil diets (P < 0.05). Crabs fed PL supplemented diets had higher haemolymph low‐density lipoprotein cholesterol concentrations and muscle crude lipid levels (P < 0.05) than crabs fed a none PL supplemented diet. The percentage of highly unsaturated fatty acids (HUFA; % total FA) in both polar and neutral lipids fractions of muscle tissue only increased in case of PL addition to 0% and 1% fish oil‐supplemented diets (P < 0.05). HUFA levels in the neutral lipids fraction of the hepatopancreas increased by dietary PL addition at each dietary fish oil level (P < 0.05). In this study, both dietary fish oil and PL addition contributed to a high n‐3/n‐6 ratio in muscle and hepatopancreas of P. trituberculatus. In conclusion, PL addition is only meaningful with fish oil‐deficient diets, in which case it enhanced lipid transport and HUFA absorption efficiency, hence improving the nutritional value of the diet.  相似文献   

6.
7.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

8.
An 8‐week feeding trial was conducted to determine the optimal dietary arginine requirement for juvenile swimming crab Portunus trituberculatus. Six isonitrogenous and isolipidic experimental diets were formulated to contain graded arginine levels which ranged from 15.9 to 33.0 g kg?1. Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (4.72 ± 0.12 g). The results indicated that dietary arginine had significant effects on weight gain (WG), specific growth rate (SGR), protein productive value, feed efficiency and protein efficiency ratio. Weight gain and SGR significantly increased with the dietary arginine increasing from 15.9 to 27.4 g kg?1, while with the further increasing from 27.4 to 33.0 g kg?1, WG and SGR did not increase significantly. Maximum arginine, proline and total essential amino acid contents in muscle were observed in 27.4 g kg?1 group diet. The swimming crab fed the diet with lower dietary arginine level showed higher AST and lower ALT in the serum. Crab fed with the lower dietary arginine level had significantly lower ALT in the serum than the other groups. Haemolymph indexes were significantly affected by the dietary arginine level except for the cholesterol concentration, and the highest values were all found in 27.4 g kg?1 group diet. The two slope broken‐line model using SGR showed that the optimal dietary arginine requirement was 27.7 g kg?1 of the dry matter (56.0 g kg?1 dietary protein) for juvenile swimming crab.  相似文献   

9.
A 56‐day feeding trial was conducted to investigate the effect of dietary cholesterol (CHOL) levels on growth performance, body composition and gene expression of juvenile mud crab (Scylla paramamosain). Four isonitrogenous and isoenergetic diets were formulated with 0.4%, 0.8%, 1.2% and 1.6% CHOL supplemented, and the final dietary CHOL concentrations were 0.72%, 1.11%, 1.49% and 1.83% respectively. Each dietary treatment was performed with three replicates (28 crabs per replicate, initial body weight 0.04 g). At the termination of the experiment, although the survival had no statistic difference in all treatments, the mud crabs fed the lowest CHOL diet had the lowest survival rate. The weight gain (WG) of mud crab significantly increased with dietary CHOL level up to 1.11% and then significantly decreased with dietary CHOL level further increased. The total‐cholesterol (T‐CHOL) content in whole body had an increasing trend with the dietary CHOL level increased. Besides, dietary CHOL supplement generally increased the hepatic superoxide dismutase (SOD) activity, and the mud crabs fed diets CHOL1.11 and CHOL1.49 showed significantly higher value than those fed other diets. The hepatic aspartate aminotransferase (AST) activity decreased slightly with dietary CHOL level up to 1.11% and then significantly increased with CHOL level further increased. The mRNA expression of ecdysone receptor (EcR) gene in the eyestalk obviously increased with dietary CHOL level up to 1.11% and then significantly decreased with dietary CHOL further increased. These results suggested that about 1.11% dietary CHOL seem fulfil to maintain good growth performance and healthy condition for juvenile S. paramamosain.  相似文献   

10.
It is assumed that Florida pompano have dietary EPA (20:5n‐3) and DHA (22:6n‐3) requirements. However, it is unclear whether both are equally important in meeting demand for n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFAs) or whether the requirement(s) can be influenced by other fatty acids. Accordingly, we assessed production performance and tissue composition of juvenile Florida pompano (41.0 ± 0.5 g) fed diets containing fish oil; beef tallow; or beef tallow partially or fully supplemented with EPA, DHA or both. After 8 weeks, no signs of fatty acid deficiency were observed. Although fish performance did not vary significantly among the dietary treatments, fish fed the DHA‐supplemented feeds exhibited numerically superior growth than those fed the other diets. Fillets of fish fed the beef tallow‐based diets contained reduced levels of n‐3 fatty acids and LC‐PUFAs and elevated levels of MUFAs and n‐6 fatty acids, although dietary supplementation with EPA and/or DHA attenuated these effects somewhat. Our results suggest that beef tallow is suitable as a primary lipid source in Florida pompano feeds and n‐3 LC‐PUFA requirements may be met by as little as 4 g/kg EPA and 4 g/kg DHA. However, there may be value in supplementing tallow‐based diets with DHA to enhance tissue levels and possibly growth.  相似文献   

11.
The importance of dietary 20:5n‐3 (EPA), 22:6n‐3 (DHA) and 20:4n‐6 (ARA) for growth, survival and fatty acid composition of juvenile cockles (Cerastoderma edule) was investigated. Cockles of 6.24 ± 0.04 mm and 66.14 ± 0.34 mg (live weight) were distributed into three treatments where live microalgae diets were fed constantly below the pseudofaeces production threshold, for three weeks. Diets had distinct fatty acid profiles: high EPA (53% Chaetoceros muelleri + 47% Pyramimonas parkeae), no DHA (47% Brachiomonas submarina + 53% Tetraselmis suecica) and low ARA concentrations (73% P. parkeae + 27% Phaeodactylum tricornutum). Growth was positively affected by high EPA and low ARA diets, whereas no significant growth was observed for the no DHA diet. High mortality of cockles fed no DHA diet raises questions about its suitability for cockles. In balanced diets with EPA and DHA, lower concentrations of ARA do not limit growth. The impact of dietary fatty acids was evident in the fatty acids of neutral and polar lipids of cockles. In polar lipids of all cockles, there was a decrease in EPA, in contrast to an increase in DHA. The combination of EPA and DHA in a live microalgae diet was beneficial for the growth and survival of juvenile cockles.  相似文献   

12.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

13.
The objective of this study was to evaluate the effects of different phospholipids (PL) and cholesterol (CH) levels on the growth, moulting and fatty acid composition of juvenile swimming crab, Portunus trituberculatus. Six diets were designed to contain three PL levels (0, 10 and 20 g/kg) and two CH levels (2 and 8 g/kg). Juvenile swimming crabs (3.48 ± 0.02 g/crab) were reared for 8 weeks. The weight gain (WG) was significantly (< .05) increased by supplementation of 8 g CH/kg of diet. However, no significant interaction between dietary PL and CH levels was found on the growth performance (p > .05). The moulting frequency (MF), protein efficiency ratio (PER) and feed efficiency ratio (FCR) were not significantly (p > .05) affected by the dietary treatments. The serum total cholesterol (TCH) significantly (> .05) increased with increasing dietary PL level. The C20:4n‐6 and C20:5n‐3 content of the whole body of crabs increased with the addition of PL to the diet containing 2 g/kg CH of diet. An interaction was observed between PL and CH on certain saturated and unsaturated fatty acid concentrations of body.  相似文献   

14.
Effects of dietary cholesterol levels on moulting performance, lipid accumulation, ecdysteroid concentration and immune enzymes activities of juvenile Eriocheir sinensis were investigated. Crabs were fed with feeds contained various cholesterols of 1100, 2100 and 3200 mg kg?1 in both paddy fields and laboratory experiments. In paddy fields trial, the crabs fed with diets contained 3200 mg kg?1 cholesterol achieved higher growth rate than those fed with diets contained no supplemental cholesterol (1100 mg kg?1). In laboratory trial, moulting frequencies of crabs fed with diets contained 3200 mg kg?1 cholesterol were higher than those of crabs fed with diets contained no supplemental cholesterol from the 6th to 10th moult. Further laboratory experiment indicated that intermoults of crabs fed with diets contained 3200 mg kg?1 cholesterol significantly shortened compared with crabs fed with the basal feeds (1100 mg kg?1 cholesterol). In the intermoult, total lipid content, ecdysterone concentration and three immune enzymes in crabs were increased with the increment of dietary cholesterol levels between the 7th and the 8th moult in laboratory experiments. Taken together, dietary cholesterol not only enhanced moulting performances of growth, survival and moult frequency, but also enhanced total lipid storage, ecdysterone concentration and three immune enzymes activities in the intermoult period.  相似文献   

15.
An experiment was conducted to measure the survival and growth of juvenile Dungeness crabs ( Cancer magister ) when fed purified crustacean diets in intensive laboratory culture. Wild-caught juvenile crabs were held individually and fed either a casein-based diet previously used for lobster experimentation (diet BML-81 S), a crab protein-based diet (HFX-CRD-84), or a closed-formula commercial fish (trout) diet. Diets BML-81 S and HFX-CRD-84 have been proposed as possible general crustacean reference diets. The crab protein-based diet appeared to be more attractive to the crabs, but after a 90 day experimental period there were no significant differences ( P < 0.01) in growth or survival between crabs fed the proposed reference diets; however, survival on the trout diet was significantly reduced. Results are discussed in relation to the rearing conditions and the composition and physical characteristics of the diets.  相似文献   

16.
ABSTRACT:   The present study was conducted to investigate the effect of eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) on the survival and the occurrence of molting failure to megalops of mud crab Scylla serrata larvae fed enriched Artemia . Survival rate, intermolt period, carapace width at the first crab stage, ratio of chela to carapace length at the fifth zoeal stage and the occurrence of molting failure to megalops were observed. Mud crab larvae were reared in 1-L plastic beakers and fed with Artemia enriched at five different levels of EPA (0.31% to 1.36% EPA; referred to as E25, E50, E75 and E100) or four different levels of DHA (0.75–0.95% EPA and 0.49–1.38% DHA; referred to as D25, D50, D75 and D100). As a negative control, larvae were fed Artemia enriched with oleic acid (OA). Mud crab larvae fed Artemia containing low (0.41–0.45% EPA and trace DHA) or high (1.36% and 0.95% EPA and 0.16% and 1.38% DHA) amounts of EPA and DHA showed a significantly lower survival rate and prolonged intermolt period ( P  < 0.05). Moreover, a high frequency of molting failure to the megalops stage (34 and 33%) occurs coincident with a high chela to carapace length ratio (43 and 44%) in mud crab larvae fed high amounts of EPA and DHA (E100 and D100), suggesting that both of these treatments contain EPA and DHA in excess. These results indicate that during Artemia feeding, EPA and DHA content should be adjusted to 0.71–0.87% and 0.49–0.72% for maintaining a high survival, accelerating the intermolt period, and producing larger carapace width in the first crab stage.  相似文献   

17.
This study was conducted to determine the optimum phospholipids: highly unsaturated fatty acids (PL/HUFA) ratio in maturation diets for female Chinese mitten crab, Eriocheir sinensis broodstock. Five isolipidtic and isonitrogenous diets were formulated to contain different amounts of pork lard, fish oil and soy lecithin with resulting PL/HUFA levels (%dry weight) of 1.4/0.3 (Diet 1), 1.6/2.5 (Diet 2), 2.3/2.0 (Diet 3), 3.8/1.5 (Diet 4) and 5.1/0.8 (Diet 5). Diet 1 lacked supplemental fish oil and soy lecithin and served as the control. Each of the five formulated diets was fed to a total of 150 female crabs for a period of 7 months. All diet treatments were triplicated with 50 crabs stocked in a pond as a replicate. After 6 months, male crabs were introduced into the ponds where females were kept, mating, spawning and egg hatching (in seawater) occurred in the following month. The nutritional value of various formulated diets was assessed based on survival, gonadosomatic index (GSI), egg production per female, fecundity (eggs/g female weight) of the females fed those diets and egg and larval (newly hatched zoea I larvae) quality.Females fed Diet 1 had the lowest GSI, egg production per female and fecundity while no significant difference were found for survival, hepatosomatic index (HSI) and the percentage of female spawned among the diet treatments (> 0.05). Although there were no significant differences in egg diameter, egg wet or dry weights among all treatments (> 0.05), the highest and the second highest proportions of essential fatty acids (EFA), i.e. 20:5n-3 (EPA), 22:6n-3 (DHA) and HUFA were found in the eggs produced by the females fed Diet 3 and Diet 2, respectively. Statistical analysis showed that EPA, DHA and HUFA in eggs produced by females fed Diet 3 were significantly higher than those from the other treatments (P < 0.05). Meanwhile, zoea I larvae from crabs fed Diet 3 had significantly larger carapace length than those from the other four treatments (< 0.05). The zoea I larvae from crabs fed Diet 2 and Diet 3 also showed generally better tolerance to starvation and osmotic shock.In conclusion, our results indicated that diet included levels of PL/HUFA around 1.6/2.5 or 2.3/2.0 (% dry weight) fed female E. sinensis broodstock supported increased fecundity and elevated level of HUFA in egg, which in turn resulted in improved overall quality of newly hatched larvae.  相似文献   

18.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

19.
A 6‐week study was conducted to determine the effects of different lipid sources in pelleted diets on juvenile mud crab Scylla paramamosain. Five isonitrogenous and isolipidic diets containing 8% level of fish oil (FO), lard (LD), safflower oil (SO), perilla seed oil (PO) or mixture oil (MO; VFO:VSO:VPO = 1:1:1), and a live food of marine bivalve Potamocorbula rubromuscula as the control diet (CF), were fed to groups of 25 juvenile crabs (average initial weight 7.4 g, carapace width 3.5 cm) in triplicate. The results showed that crabs fed MO had the highest survival (< 0.05). The moisture content was significantly higher in crabs fed LD, SO and PO (< 0.05). Crabs fed SO exhibited the lowest crude protein and lipid (< 0.05). Ash contents were obviously lower in LD group (< 0.05). Highest total lipid in the hepatopancreas and muscle was in LD and FO group respectively. Glucose, total cholesterol and low‐density lipoprotein were higher while high‐density lipoprotein was lower (< 0.05) in LD group. Tissue fatty acid compositions were consistent with those in diets. FO and MO diets had the same depression effect like CF on fatty acid synthase activity and mRNA expression in the hepatopancreas. The results of this study indicated that FO and mixed oil are suitable for preparation of pelleted diets with better effects for juvenile S. paramamosain compared with live food, and the ratio of n‐6/n‐3 fatty acids in pelleted diets must be <1.  相似文献   

20.
Phytoestrogens are putatively able to enhance the biosynthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but have also been shown to affect fish growth dose dependently. The aim of the present study was to identify a concentration for the phytoestrogen genistein and the phytoestrogen metabolite equol that further increases the endogenous biosynthesis of EPA and DHA without impairing fish growth. Juvenile rainbow trout (87.2 ± 0.3 g) were fed seven diets on a fixed ratio for 8 weeks. A vegetable oil‐based diet served as a control diet and was supplemented with equol (EQ) and genistein (G), respectively, at 0.1%, 0.2% and 0.3% of feed dry matter (1, 2 and 3). Growth and nutrient composition of whole body homogenates were not affected by dietary treatments. EPA and DHA levels in liver, fillet and whole body samples were not significantly increased by EQ and G diets. Fish fed EQ diets showed dose dependently increased liver weights and C18:0 liver levels, indicating estrogen‐like effects at increased dietary dosages. In conclusion, the utilization of equol and genistein in plant oil‐based diets in order to enhance the biosynthesis of EPA and DHA seems not reasonable in rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号