首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pullet carpet shell Venerupis corrugata is an economically valuable species in several European countries, however, nowadays stocks are under high fishing pressure. Hatchery production of juveniles for release is a major contributor to strengthen the stock and consequently improve the sustainability of the natural stocks. This study aimed to determine the feasibility of rearing V. corrugata larvae with different larval densities (10, 40 and 200 larvae per mL) in a recirculating aquaculture system (RAS), compared with the traditional larval rearing methodology (Batch). The mean survival, growth and metamorphic rate of V. corrugata larvae in RAS was higher (11.1%; 71.3 μm; 21.6% respectively) than in the Batch system, in all tested densities. The larval growth was not affected by the initial density until 40 larvae per mL, however, 200 larvae per mL decreased the larval growth in length nearly 54 μm. The larval rearing time was shortened in 2 days in the RAS system. The physical, chemical and microbiologic parameters suggested that the tested densities were not excessive to disturb the biofilter stability of RAS. The V. corrugata larval rearing performed at high larval stocking densities in RAS system present a reduction in the operating costs to produce this species.  相似文献   

2.
The development of sustainable methods for sea urchin juvenile production is currently constrained by high mortality rates during larval growth and the high costs of larval rearing systems management. With the aim of developing a method for the production of juveniles of the purple sea urchin Paracentrotus lividus in a medium‐scale recirculating system, the present study focused on the effects of high stocking densities on larval growth. Plutei larvae were reared at three different densities (up to 7 ind/ml) in a semi‐static culture system. Larval survival and metamorphosis success were evaluated in order to identify the most effective density range. The highest metamorphosis rates (80%–95%) were obtained at 4 and 7 larvae/ml. These results are comparable with (and in some cases higher than) those reported for the same species at much lower larval densities. In conclusion, the rearing conditions tested here show for the first time that a significantly higher (4 ind/ml) stocking density than those of traditional P. lividus rearing methods (based on large volumes and low densities) can be adopted, thus supporting the feasibility of an increase in the final output of competent larvae with no increase in rearing volumes.  相似文献   

3.
《Aquaculture Research》2017,48(11):5463-5471
Hatchery production of great scallop, Pecten maximus, remains unpredictable, notably due to poor larval survival. Large‐scale flow‐through systems up to 3500 L have been developed to avoid the use of antibiotics in static systems. Alternatively, small‐scale flow‐through systems have been successfully applied for oysters but they proved to be unsuitable to rear scallop larvae. By focusing on physical factors presumed to limit P. maximus larval development, this study aimed to optimize great scallop larvae rearing parameters under controlled conditions. First, the influence of aeration on larval performances, energetic metabolism and antioxidant defences were studied both in static and flow‐through systems. Aeration depressed larval food intake, regardless of the intensities of flow tested (100 ml/min, 155 ml/min and 270 ml/min). On the other hand, antioxidant enzyme activities remained constant or decreased, suggesting that antioxidant defences were inactivated. The increase in citrate synthase activity suggested an increase in metabolic rate possibly due to a turbulent stressful environment. All larvae exposed to such turbulence died before reaching metamorphosis, whereas those reared without aeration survived well (≈ 95%). The effects of water renewal were thereafter studied in 50‐L flow‐through flat‐bottomed tanks. No differences in survival (20.4 ± 0.5%), growth (3.8 ± 0.2 μm/d), competence (5.6 ± 0.2%), energetic metabolism level and antioxidant enzyme activities were observed when comparing 12.5 and 25 L/hr water renewal. Whereas air bubbling leads to detrimental effects, flow‐through in small flat‐bottomed tanks appears to be a suitable technique for scallop larvae rearing.  相似文献   

4.
The major objective of this study was to introduce a newly designed recirculating aquaculture system (RAS) for oyster (Crassostrea angulata) larval culture. The system includes a culture tank, a suspended circular inlet‐pipe, an upwelling aeration pipe, combined “banjo” sieves and a bioreactor chamber containing microalgae life keeping installation. The system was designed to resolve three problems: (i) stranding of larvae caused by water level changes and aeration, (ii) physical clogging of the screens and also (iii) deterioration of diet microalgae. The culture tank, “banjo” sieve size, water flow rate and light intensity for maintaining microalgae activity were all designed according to the pattern of larval movement and feeding behaviour. Results of this study showed the best average SGR for larval length was 6.36%/d (9.5 μm/d) and survival rate was 80%, with initial rearing density of 50 larvae/ml, indicating the problems above were fully resolved. Consequently, the system is fit for larval culture in mass production of oysters.  相似文献   

5.
Hilsa, Tenualosa ilisha has received much attention for culture due to decline of the natural population. Lack of knowledge on larval rearing is the bottleneck for its culture. This study was aimed at developing larval rearing protocols for hilsa shad. Hilsa larvae (4 days old, 4.76 ± 0.06 mm/0.49 ± 0.01 mg) were stocked in fibreglass‐reinforced plastic tanks (1.7 m3 water volume) at 300, 600 and 1,200 nos/m3 in triplicates in three experimental systems viz., E‐I (circular, 0.567 m water depth), E‐II (circular, 0.962 m water depth) and E‐III (rectangular, 0.567 m water depth) and reared for 46 days. The larvae were supplied with Chlorella vulgaris, Brachionus calyciflorus, mixed phytoplankton and mixed zooplankton during 4–50, 6–25, 8–50 and 26–50 days of their age respectively. In each system, higher (p < 0.05) fry survival at 300 nos/m3 than in higher densities indicates density dependent stress. Circular tanks showed higher survival (13.3%–61.31%) than in rectangular tanks (6.88%–27.26%) in each stocking density, indicating the importance of tank shape for rearing. Water depth affected fry survival in circular tanks (E‐I and E‐II) at 300 nos/m3; at 0.962 m depth, survival was higher (61.31%, p < 0.05) than that of 0.567 m depth (49.93%). Good fry survival was achieved through feeding the larvae initially with Chlorella followed by co‐feeding with Brachionus, mixed phytoplankton and zooplankton and rearing in circular tanks at 300 nos/m3 densities at 1 m depth. This first‐ever larval rearing protocol is useful for mass production of fry to support hilsa aquaculture in future.  相似文献   

6.
Knowledge of broodstock manipulation, gametogenesis, artificial fertilization and larval nutrition is a prerequisite to reach a large‐scale production of the polychaete Hediste diversicolor. In this study, the characteristics of oogenesis and spermatogenesis and embryonic and larval development were observed. Moreover, the effect of temperature on embryonic development and effect of diets and sediment on earlier juvenile development were tested. Mature oocytes were characterized by a spherical shape with a diameter of about 200 μm. They showed radial symmetry with a large centric nucleus surrounded by four distinctive layers. Embryo cleavage started between 4 and 10 hr after fertilization, and developed to the swimming trochophore stage after 5–6 days after fertilization at 11°C. The rate of embryonic development increased with a temperature increase from 6.1 to 21.2°C. The trochophore larvae increased in length from day 9 and commenced differentiation into 3‐setiger stage larvae at day 12. The length growth of larvae until 7‐setiger stage was 0.43 mm/day when fed with fish feed, while those fed shellfish diet and smolt sludge both grew around 0.21–0.23 mm/day. The results suggest that fish feed is a superior diet compared to shellfish diets and smolt sludge for the early larval stage of H. diversicolor.  相似文献   

7.
Identification of fish larval behavioural traits permitting capture of specific live prey sizes is an important part of optimizing production of marine larvae. We investigated the capture success of turbot larvae (Scophthalmus maximus) at two development stages, 8 and 10 days post‐hatch (DPH), when offered small nauplii (129–202 μm), large nauplii (222–278 μm) and copepodites (342–542 μm), of the calanoid copepod Acartia tonsa. At 8 DPH, turbot larvae had the highest capture success (67%) when offered small nauplii, with a lower capture success of large nauplii (27%) but totally lacked the capabilities to capture copepodites. At DPH 10, the larvae increased the capture success of large nauplii (47%) and achieved a few successful attacks on copepodites. Energetically, large nauplii were the most beneficial at both larval development stages. The swimming kinematics of the period prior to a strike by the larva on the copepod was examined, and the approach pattern of the larva was identified as a controlling mechanism for their strike distance, with the initial approach speed of larva at DPH 10 being significantly less than at DPH 8. In all successful attacks, the strike distance was less than 1.17 mm and was significantly lower than unsuccessful attacks. Since the approach pattern of the larva is linked to its capture success, it could be used as the basis for a feeding scheme based on the swimming performance of individual batches of turbot larvae.  相似文献   

8.
Survival rates of the larvae of sutchi catfish Pangasianodon hypophthalmus are reported to be three times higher under dim conditions (0.1 lx) than those under 100 lx. In this study, larval behaviour of sutchi catfish was examined under various light intensities (<0.01, 0.1, 1, 10 and 100 lx) using a CCD camera to understand why survival rates vary under different light intensities. Five‐day‐old larvae showed significantly higher swimming activity under <0.01, 0.1 and 1 lx than those under 10 and 100 lx. On the other hand, the larvae showed significantly higher aggressive behaviour under 10 and 100 lx; swimming larvae attacked resting individuals more frequently under 10 and 100 lx than those under 0 and 0.1 lx. Aggressive behaviour was considered to induce lesions, inflicted by the sharp teeth of attacking larvae, on larval skin surfaces. It is considered that the chemical substances would generate from injured skin surfaces then acted as stimuli, causing the cannibalistic behaviour in other fish around the injured fish. This study provided evidence that the observed higher survival rates depended on lower frequency of aggressive behaviour under dark or dim conditions. It is therefore recommended that larval rearing of sutchi catfish be conducted under dim (less than 1 lx) conditions.  相似文献   

9.
The spider crab Maja brachydactyla is overexploited on the NW coast of Spain. Aquaculture of this species can be the solution to the problem, and consequently, several attempts of intensive larval rearing have been conducted. However, most of the studies already published do not provide enough zoo technical data, especially in terms of larval and prey densities or the nutritional quality of diets used for rearing.Three experiments were carried out to evaluate the conditions for intensive larval rearing of M. brachydactyla. Larval stocking density (10, 50 and 100 larvae L− 1), prey:larva ratio (15, 30 and 60 enriched Artemia larva− 1) and diet (enriched Artemia, non-enriched Artemia and polychaete supplement) effects on growth and survival of this species were studied. For larval culture nine, 35 L, 150 μm mesh-bottomed PVC cylinders (triplicates for each treatment and larval stage) connected to a recirculation unit, were used. Temperature and salinity were kept constant at 18 °C and 36‰ respectively. A 12 to 18 day trial was conducted for each experiment and samples of larvae were collected at each larval stage (zoea I, zoea II, megalopa) in the inter-molt phase and at first juvenile. Survival, carapace length and width, dry weight (DW), and proximate biochemical content (protein, carbohydrates and total lipid) as well as lipid class composition were determined.Stocking densities of 100 larvae L− 1 resulted in higher growth in DW and higher content in lipids and protein for zoea I (ZI) and zoea II (ZII) than 10 larvae L− 1. However, survival decreased with increasing stocking density.The use of 60 preys larva− 1 produced larvae with significantly higher DW and protein content, especially at ZII stage, than lower prey densities. Survival rate obtained feeding 60 preys larva− 1 up to the megalopa stage was almost two-fold (42.2%) the rate obtained using 15 preys larva− 1 (24.8%).Larvae fed on enriched Artemia (EA) showed an increase in weight up to megalopa (518.9 ± 26.5 μg) in contrast to larvae fed on non-enriched prey (A) (467.9 ± 6.9 μg). Variation in DW correlated with the total lipid content (L) of the larvae (LEA = 70.1 ± 37.5 μg ind− 1; L= 28.9 ± 3.2 μg ind− 1) especially in terms of neutral lipids. The use of an initial density of at least 50 larvae L− 1 and 60 enriched Artemia larva− 1 can be considered the most adequate rearing parameters in order to obtain good results in growth and survival of M. brachydactyla.  相似文献   

10.
Natural spawning, early development and larviculture of the ornate goby Istigobius ornatus in captivity were studied for the first time. I. ornatus spawned 46 times from 31 October 2013 to 31 October 2014. Fecundity ranged from 246 to 10,214 eggs per clutch, with an average hatching rate of 77.8% ± 9.9% (M ± SEM). Fertilized eggs (1.31–1.54 × 0.46–0.50 mm in diameter) were adhesive demersal and oval‐shaped. Embryonic development lasted 84 hr at 27.5 ± 0.5°C. Newly hatched larvae [2.12 ± 0.04 mm in total length (TL)] transformed to the juvenile stage completely when TL was 7.79 mm. Effects of different water temperatures (24, 28 and 32°C) and salinities (10, 15, 20, 25, 30, 35 and 40 g/L) on per cent survivals (%) and survival activity indices (SAIs) were tested. Survival was not significantly different under different temperatures; SAIs was significantly higher at 28°C. Larvae showed the significantly higher survival and SAIs at salinities 10–30 g/L than at 35 and 40 g/L. Effect of different prey densities on survival was significantly higher in 7 days post hatch larvae fed 20 and 30 rotifers/ml. These findings could guide future programs in captive breeding technology development and commercial production of other marine ornamental gobies.  相似文献   

11.
The combined effects of stocking density (0.2, 0.5, 1, 2, 4 and 8 inds/ml) and dietary microalgal ration (20,000 and 40,000 cells/ml) and the sole effect of temperature (10, 12, 14, 16, 18 and 22°C) on the specific growth rate (SGR), per cent survival and per cent metamorphosis of auricularia larvae of the California sea cucumber, Parastichopus californicus, were evaluated in two separate experiments. The SGR was not significantly affected by stocking densities in the range of 0.2 to 4 inds/ml, but was significantly reduced at 8 inds/ml. The SGR of larvae fed 20,000 cells/ml was significantly reduced in comparison to those fed 40,000 cells/ml. Larvae had significantly higher per cent survival and per cent metamorphosis when reared at densities of 0.2 and 0.5 inds/ml compared with those reared at 2–8 inds/ml. Microalgal ration level did not significantly impact survival or metamorphosis. Larvae reared at 16 and 18°C had significantly higher SGRs and per cent metamorphosis than those held at all other temperatures, while per cent survival was highest at 16°C. Based on these results, we recommend rearing auricularia larvae of P. californicus at a stocking density at or below 0.5 inds/ml, a dietary ration of 40,000 cells/ml, and a temperature of 16°C.  相似文献   

12.
Survival, growth and fatty acid composition of Ostrea edulis larvae (L.) fed four different single species, microalgal diets, Tisochrysis lutea (T), Chaetoceros neogracile (Cg), Skeletonema marinoi (Sm) or Tetraselmis suecica (Ts) from broodstock to pre‐settlement, were studied. Lower larval growth (5.5 μm to 6.5 μm/d) was recorded in progeny continuously fed single Smarinoi or Tsuecica, whereas good growth was achieved with single T. lutea (7.8 μm/d). Larvae, originated from broodstock receiving Sm or Ts, exhibited growth compensation when fed a bispecific balanced diet (TCg). This did not occur when broodstock and larvae were fed Cg or T, for which single or mixed diets led to similar larval growth. Furthermore, survival was high (>90%) regardless of microalgal diet, except for larvae fed from broodstock to pre‐settlement T (53%) or Ts (2%). There were significant differences in 20:5 (n‐3) and 22: 6 (n‐3) contents in polar and neutral fractions of O. edulis expelled larvae dependent on broodstock diet, as well as throughout larval development, but no clear trend was apparent when comparing fatty acid (FA) relative composition of both fractions of O. edulis larvae fed different diets at release or prior to settlement. In contrast, such correlation occurred when FA was expressed in absolute content but exclusively for larvae‐fed single diets and was particularly noticeable between 22: 6 (n‐3) and growth and survival. In the present work, broodstock nutritional deficiencies have been revealed in O. edulis progeny, compensated thereafter by feeding the larvae a mixed diet, and in this balanced condition, no obvious relation with larval development indicators was found with main fatty acid contents.  相似文献   

13.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

14.
We evaluated the mass production of competent larvae of the sea urchin Lytechinus variegatus cultured at three initial densities (0.25, 0.5, and 1 larvae per ml) and fed Chaetoceros muelleri. Survival, length, dry weight of larvae, and larval stage index (LSI) were estimated in each treatment as a function of the density. Density decreased during the experiment due to mortality, but the percentage was similar in all three treatments (68.5, 66.7, and 76.0%). The experiment was stopped at 13 days after fertilization, when most of the larvae were competent and had settled. There were no significant differences in survival (exceeded 65% in all treatments), length and larval stage index among treatments. However, larvae weight in the two low density treatments (1.1 ± 0.11 mg and 1.2 ± 0.05 mg, respectively) was greater than the high density treatment (0.59±0.376 mg). This study demonstrates that competent larvae of Lytechinus variegatus can be produced with less than 25% mortality in 13 days when cultures are started at densities of 0.25–1 larvae/ml. Culturing at higher densities (0.5–1 larvae/ml) had no apparent disadvantages and would reduce the cost of production.  相似文献   

15.
The natural amorphous polymer poly‐β‐hydroxybutyrate (PHB‐A: lyophilized Ralstonia eutropha containing 75% PHB) was used as a biological agent to control bacterial pathogens of blue mussel (Mytilus edulis) larvae. The larvae were supplied with PHB‐A at a concentration of 1 or 10 mg/L for 6 or 24 hr, followed by exposure to either the rifampicin‐resistant pathogen Vibrio splendidus or Vibrio coralliilyticus at a concentration of 105 CFU/ml. Larvae pretreated 6 hr with PHB‐A (1 mg/L) survived a Vibrio challenge better relative to 24 hr pretreatment. After 96 hr of pathogen exposure, the survival of PHB‐A‐treated mussel larvae was 1.41‐ and 1.76‐fold higher than the non‐treated larvae when challenged with V. splendidus and V. coralliilyticus, respectively. Growth inhibition of the two pathogens at four concentrations of the monomer β‐HB (1, 5, 25 and 125 mM) was tested in vitro in LB35 medium, buffered at two different pH values (pH 7 and pH 8). The highest concentration of 125 mM significantly inhibited the pathogen growth in comparison to the lower levels. The effect of β‐HB on the production of virulence factors in the tested pathogenic Vibrios revealed a variable pattern of responses.  相似文献   

16.
Polychaetes are commercially exploited as fishing bait and supplemental diet to crustacean and finfish broodstock. However, scarcity of supply and biosecurity issues limits its use. Polychaete aquaculture has become the best alternative to wild resources. In this study, two different culture techniques (1‐sediment tank throughout the culture period and 2‐nursery tank with bioflocs for 30 days; thereafter, juveniles were transferred to sediment tank until harvest) using two diets [bioflocs (BF) and feed mill sweepings (FS)] were tested to determine the survival, growth and biomass of polychaete Marphysa iloiloensis (Glasby et al., Zootaxa, 2019, 4674) in the grow‐out. The 180‐day trial was conducted in 16 tanks (0.20 m2) stocked with 5,066 ± 575 M. iloiloensis trochophore larvae/tank which were assigned randomly into four culture treatments with four replicates each. The treatments were labelled as: (a) BFS – fed BF in sediment tank for 180 days; (b) BF + BFS – fed BF in nursery tank for 30 days, juveniles were transferred in sediment tank and fed BF for another 150 days; (c) FSS – fed FS in sediment tank for 180 days; and (d) BF + FSS – fed BF in nursery tank for 30 days, juveniles are transferred in sediment tank and fed FS for another 150 days. Results showed that polychaetes in BF + FSS had significantly higher survival than BFS. Polychaetes in both BF + FSS and FSS had significantly higher body weight than BF + BFS and BFS, while biomass in BF + FSS (175.73 ± 42.25 g/tank) was significantly higher compared to other treatments (p < .05). Polychaetes fed with FS had 61%–64% protein and 12%–13% fat, while those fed with BF exclusively had 66%–70% protein and 3.50%–4.50% fat. The findings indicate that FS whether or not BF is included in the diet can improve both survival and growth of polychaetes but significantly higher biomass can be achieved with the combination of BF and FS. Additionally, polychaetes in BF + FSS contained 64% protein and 13% fat. Therefore, BF can be used as an alternative diet to FS in the early life stages of M. iloiloensis and nursery rearing using BF is imperative to increase its biomass in the grow‐out production.  相似文献   

17.
This study examined the effect of a commercial mix of Bacillus sp. on survival, growth and digestive enzyme activities of Florida pompano, red drum and common snook. Larvae were fed either live feed enriched with Algamac 3050 (Control), Algamac 3050 and probiotics (PB), or the previous diet combined with a daily addition of probiotics to the tank water (PB+). Survival was not affected by the treatments for any of the species. At the end of the pompano and snook trial, standard lengths of larvae from the PB and PB+ treatments were significantly greater than for the control larvae. Microbiological analyses were performed at the end of the pompano trial, and numbers of presumptive Vibrio were not a concern in the system. For both pompano and snook, trypsin‐specific activity was higher in PB and PB+ larvae compared with the control larvae. Similarly, alkaline phosphatase activity was higher for the pompano larvae fed the PB and PB+ treatments and for the snook larvae fed the PB+ treatment compared with the control larvae. This experiment suggests that a mix of Bacillus sp. can promote growth through an early maturation of the digestive system during the early larval stages of pompano and snook.  相似文献   

18.
Despite intensive stocking programmes, wild Maraena whitefish Coregonus maraena (Bloch, 1779)‐stocks are in danger of extinction in the Baltic sea region. Current aquaculture rearing methods in recirculating aquaculture systems (RAS) are lacking efficient protocols for transitioning larvae from endogenous to exogenous feeding. In this 34‐day‐experiment the offspring of wild fish was used. Maraena whitefish larvae were weaned at three different temperatures (15.9°C, 17.9°C, 19.7°C) and three feeding regimes, resulting in nine treatments. The first group received pure live feed (freshly hatched Artemia sp. nauplii) for 10 days and a 1:1‐mixture of live and dry feed for 3 days. The second group received the live and dry feed mixture for 13 days and the third group directly received a commercial dry feed. All nine treatments were stocked in triplicate with 500 larvae per tank (19 ind. L?1). Feeding started 4 days post hatch. Survival was highest in the pure dry feed groups and lowest in the pure live feed groups. In contrast to growth, which was highest in the live feed groups and lowest in the dry feed group. Higher temperature increased growth in the live feed groups but had no effect on survival in all groups. These results will enhance the weaning of C. maraena in recirculation aquaculture.  相似文献   

19.
This study compared the growth of sea urchin Paracentrotus lividus larvae cultured using two different rearing methods: a variable method based on a variable amount of feed (microalgae) and seawater exchange (30% or 50%) established according to the phytoplankton concentration in the larval cultures and a fixed method characterized by a fixed amount of feed and seawater exchange. Three microalgae diets, Isochrysis sp. (Tahitian strain, T‐Iso), Chaetoceros gracilis and a 50:50 mixed diet, were tested with both rearing methods. Larval development and survival were assessed at the 6‐arm pluteus stage (P6), competence (Cp) and metamorphosis (Mt). Data showed that the variable method reduced the requirements for phytoplankton and seawater exchange. Indeed, through the optimization of feed rations, it was possible to reduce the production of debris and settled phytoplankton, minimizing the need for water exchanges. Higher larval survival resulted at Cp and Mt stages for those reared with the variable method as opposed to the fixed one. Survival and development were also influenced by the tested dietary treatments: at Mt stage, the mixed diet resulted in a higher larval survival (63.3 ± 8.9%) than T‐Iso (19.7 ± 12.1%) and C. gracilis (23.4 ± 15.1%) (< 0.05). These results suggest that the use of the variable method improves the larval survival and development and also it reduces resource consumption (phytoplankton, seawater use and work effort), which in turn could potentially improve the hatchery production of P. lividus.  相似文献   

20.
Under controlled conditions of food density and temperature, larval performances (ingestion, growth, survival and settlement success) of the flat oyster, Ostrea edulis, were investigated using a flow‐through rearing system. In the first experiment, oyster larvae were reared at five different phytoplankton densities (70, 500, 1500, 2500 and 3500 μm3 μL?1: ≈1, 8, 25, 42 and 58 cells μL?1 equivalent TCg), and in the second, larvae were grown at four different temperatures (15, 20, 25 and 30°C). Overall, larvae survived a wide range of food density and temperature, with high survival recorded at the end of the experiments. Microalgae concentration and temperature both impacted significantly larval development and settlement success. A mixed diet of Chaetoceros neogracile and Tisochrysis lutea (1:1 cell volume) maintained throughout the whole larval life at a concentration of 1500 μm3 μL?1 allowed the best larval development of O. edulis at 25°C with high survival (98%), good growth (16 μm day?1) and high settlement success (68%). In addition, optimum larval development (survival ≥97%; growth ≥17 μm day?1) and settlement (≥78%) were achieved at 25 and 30°C, at microalgae concentrations of 1500 μm3 μL?1. In contrast, temperature of 20°C led to lower development (≤10 μm day?1) and weaker settlement (≤27%), whereas at 15°C, no settlement occurred. The design experiments allowed the estimation of the maximum surface‐area‐specific ingestion rate  = 120 ± 4 μm3 day?1 μm?2, the half saturation coefficient {XK} = 537 ± 142 μm3 μL?1 and the Arrhenius temperature TA = 8355 K. This contribution put a tangible basis for a future O. edulis Dynamic Energy Budget (DEB) larval growth model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号