首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
不同种类中国杉对土壤养分状况的影响   总被引:2,自引:0,他引:2  
The effects of different types of Chinese fir stand,including those with varous composition (pure and mixed),in various cropping systems (first and continuous cropping system)and at different ages,on the nutrient status of soils the hilly regions of southern Anhui Province were studied by means of ecological sequential comparison on the basis of similar climate and soil type.The work was carried out in the Xiaoxi Forest Farm of Jingxian County and the Caijiaqiao Forest Farm of Jingde Coundy,where the soil is parayellow soil derived from phyllite and sandstone,The results revealed that with the increase of age,Chinese fir pure stand could accumulate organic matter and nitrogen in the soil but it resulted in decreasing of soil pH and base ions(especially Ca^2 ) compared to its mixed stand with broad-leaf trees such as Chinese sassafras,In order to improve the soil fertility,It would be better to mix Chinese fir with broad-leaf trees when afforestation In the management of Chinese fir pure stand,base compounds and phosphates should be added to the soil for mintaining soil fertility and raising and raising forest productivity.  相似文献   

2.
This paper deals with a study on the effects of Chinese fir,lobolly pine and deciduous oak forests o the nutrient status of soils in northern subtropics of China,adopting the principle of forest ecology in the case of similar climate and soil type.The experimental area was situated in the Xiashu Experimental Centre of Forest,where the soil is yellow-brown soil derved from siliceous slope wash.Sample plots of these 3 stands were established to study the nutrient status in litter ,the amount of nutrient uptake by roots,the quantity of nutrient output by percolating water outside the deep layer of soil,and the seasonal dynamics of available nutrient in surface soil.It was whown that the intensity of nutrient cycling in soil under deciduous oak was the highest,and the effect of oak in improving soil fertility was the best.The result of improving soil fertility by Chinese fir was the most inferior,though the intensity of nutrient cycling under that stand was higher than that under loblolly pine stand.The influence of loblolly pine on the improvement of soil fertility was better than that of Chinese fir,in spite of its lowest intensity of nutrient cycling.  相似文献   

3.
中国杉连作对土壤肥力的影响   总被引:10,自引:0,他引:10  
The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soil samples from different forest stands:the first and second plantations of Chinese fir,evergreen broad-leaved forests,and clear-cut and burnt Chinese fir land located at Xihou Village,Nanping of Fujian Province.The soils were humic red soil originated from weathered coarse granite of the Presinian system.Soil pH,CEC,base saturation ,exchangeable Ca^2 ,exchangeable Mg^2 and A1-P declined after continuous plantation of Chinese fir.The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leaching of nutrients,soil erosion and nutrient losses due to clear cutting and slash burning of the preceduing plantation caused the soil deterioration .Only some of main soil nutrients decreased after continuous plantation of Chinese fir,depending on specific silvicultural system,which was different from the conclusions in some other reports which showed that all main nutrients,such as OM,total N,available P and available K decreased,Some neccessary step to make up for the lost base,to apply P fertilizer and to avoid buring on clear cut lands could be taken to prevent soil degradation and yield decline in the system of continuous plantation of Chinese fir.  相似文献   

4.
Conversion of natural forests into pure plantation forests is a common management practice in subtropical China. To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm) were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming, Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05) in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.  相似文献   

5.
Soil properties were investigated in sites where three succeeding generations of Chinese fir (Cunninghamia lanceolata (Lambert) Hooker) in Nanping, Fujian, China, were cultivated in order to show the impact of a repeated monoculture on site productivity. Compared with the first generation (FG) stand the soil structure deteriorated in the second generation (SG) and the third generation (TG) stands. For instance, the destruction rate of the peds increased by 55%-115% in the SG and the TG stands compared to the FG stand. Soil nutrient storage and nutrient availability also decreased in the SG and the TG stands. For surface soils of 0-20 cm, the organic matter content, total N and P, and available N and P decreased by 3%-20% relative to those in the FG stand. For many soil parameters, the differences between the FG stand and the SG and the TG stands were statistically significant (LSD test, P < 0.05). Furthermore, with each succeeding generation of Chinese fir, the total number of soil microbes declined, the soil enzyme activity weakened, and the soil biological activity decreased. In order to maintain sustainable site productivity, new silvicultural practices need to be developed for management of Chinese fir plantations.  相似文献   

6.
Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients,B,Mo,Cu,Zn,Fe,and Mn,in soils derived from various parent materials in the forest area of Tailhu Lake region in southeast China,The results showed that the dry weight of individual current-year needle of Chinese fir(Cunninghamia lanceolata) grown on the soil derived from granite parent rock was increased by 8% and 13% in comparison with that grown on the soils derived from sandstone and ash-tuff parent rock,respectively.And such dry weight of loblolly pine (Pinus taeda) grown on the soil derived from sandstone parent rock was increased by 21% in comparison with that on the soil derived from ash-tuff parent rock.One of the reasons for those results was that micronutrients content in the soil derived from ash-tuff parent rock were not sufficient to meet the requirement of the growth of Chinese fir and loblolly pine ,i.e.,micronutrients in soil were deficient and/or induced defiient.The amounts of Cu,Zn,Fe,and Mn uptake by Chinses fir and loblolly pine were in agreement with the contents of available micronutrients in soil respectively,except for B and Mo.Meanwhile,there might exist and “antagonism“ between the uptake of B versus Mo by trees,although more studies are needed to confirm it .Regression analysis indicated that amount of a soil available micronutrient was correlated to the type of parent material and its total amount in the forest floor, except for B.The F test identified that the correlation of each equation reached the significant level to different extents,respectively,The t test confirmed that amount of available forms was mainly depended on the type of parent material for Mo,Cu,Zn and Mn but on the forest floor for ,Fe,There was a feedback effect of forest stand on the amount of soil available micronutrients.The ability of accumulating available micronutrients in soil was better by the sawtooth oak(Quercus acutissima) stand than by the Chinese fir stand (except for B).The ability of accumulating available Zn,Fe,Mn and Mo in soil was better by the Chinese fir stand than by the loblolly pine stand ,while as for available B and Cu,by the latter was better than by the former,When discussing the efect of forest stand on the amount of soil available micronutrients,not only the amount of micronutrient in the forest floor and the parent materials but also the amount of micronutrient taken up by current-year needles have to be considered.  相似文献   

7.
土地利用变化对中国西南热带湿润地区土壤磷动态的影响   总被引:3,自引:0,他引:3  
Land use changes can greatly influence soil phosphorus (P) dynamics, especially when converting native forests to agricultural land. Soils in Xishuangbanna, which is one of southwest China’s tropical areas that maintain fragments of primary forests, were studied to a) evaluate the effect of two common land use changes, conversion of forests to agricultural land or rubber tree plantation, on the dynamics of available P and total P in bulk soils as well as total P in particle size fractions; b) assess the relationship between soil P dynamics and soil organic carbon (SOC); and c) elucidate the relationship between soil P content and soil properties such as pH and texture. Clearing secondary forests with subsequent shifting cultivation and establishment of rubber tree plantation caused significant decreases (P < 0.05) in available P in 0--20 cm soil depths, whereas for total P there was a significant decrease (P < 0.05) when converting to shifting cultivation, rubber tree plantation, or fallow fields at both 0--20 and 20--40 cm depths. Abandonment of fields used for shifting cultivation led to significant increases (P < 0.05) in available P at 20--40 cm depth. In addition, there was a significant positive relationship between soil organic carbon and soil P content. Compared to secondary forests, the ratio of organic carbon to total P in surface soils (0--20 cm) of shifting cultivation and rubber tree plantation was significantly lower (P < 0.05).  相似文献   

8.
中国亚热带地区冷杉和砂仁 农林系统的土壤肥力研究   总被引:4,自引:0,他引:4  
A trial of interplanting and non-interplanting villous amomum(Amomum villosum Lour.) under the canopy of Chinese fir(Cunninghamia lanceolata Hook.)at age 22 was established in Sanming,Fujian of China,and a survey on soil fertility was carried out 10 years after its establishment .Compared with the control(non-interplanting), the properties of soil humus in agroforestry system were ameliorated,with a higher level of humification and resynthesis of organic detritus .The soil microbial population and enzymatic actvities were both higher under the influence of villous amomum.Both the nutrient supplying and nutrient conserving capacities of the soil were improved,This agroforestry system exhibited an advantage of improved soil fertility,as well as an accelerated rowth of Chinese fir ,it was therefore a sustainable management system suited for Chinese fir in South China.  相似文献   

9.
The distribution and growing conditions of Cupressus chengiana forests along with the physical and chemical properties of soils in Northwest Sichuan were studied in 2002 to investigate the conditions and characteristics of soil fertility of C. chengiana and to compare and investigate differences of soil fertility for six C. chengiana populations and their relationships with vegetation, climate and disturbance. The results of the study at 0-20 cm soil depth showed that 1) significant differences (P〈0.05) existed among populations for soil bulk density, soil total porosity, capillary porosity, maximum water-holding capacity, capillary water-holding capacity and topsoil natural water content; 2) chemical characteristics of soil organic matter, total N, total P, alkali-hydrolyzable N, available P, available K and cation exchange capacity were significantly different among the populations; and 3) based on the significant effect of soil fertility factors on forest growth, soil physical and chemical characteristics could be selected as an integrated fertility index (IFI) for evaluation of different C. chengiana populations. Principal component and cluster analyses showed significant differences probably due to the difference of vegetation conditions, management measurements, human-induced disturbances and environmental factors. In order to protect the soil ecological functions in fragile ecological regions, C. chengiana could be used in programs enclosing the hill for natural afforestation, natural forest protection programs, and programs replacing agriculture with afforestation measures.  相似文献   

10.
亚热带气候环境条件下不同森林类型的土壤CO2通量的研究   总被引:1,自引:0,他引:1  
The flux of carbon dioxide(CO2) from soil surface presents an important component of carbon(C) cycle in terrestrial ecosystems and is controlled by a number of biotic and abiotic factors. In order to better understand characteristics of soil CO2 flux(FCO2) in subtropical forests,soil FCO2 rates were quantified in five adjacent forest types(camphor tree forest,Masson pine forest,mixed camphor tree and Masson pine forest,Chinese sweet gum forest,and slash pine forest) at the Tianjiling National Park in Changsha,Hunan Province,in subtropical China,from January to December 2010. The influences of soil temperature(Tsoil),volumetric soil water content(θsoil),soil pH,soil organic carbon(SOC) and soil C/nitrogen(N) ratio on soil FCO2 rates were also investigated. The annual mean soil FCO2 rate varied with the forest types. The soil FCO2 rate was the highest in the camphor tree forest(3.53 ± 0.51 μmol m-2s-1),followed by,in order,the mixed,Masson pine,Chinese sweet gum,and slash pine forests(1.53 ± 0.25 μmol m-2 s1). Soil FCO2 rates from the five forest types followed a similar seasonal pattern with the maximum values occurring in summer(July and August) and the minimum values during winter(December and January). Soil FCO2 rates were correlated to Tsoiland θsoil,but the relationships were only significant for Tsoil. No correlations were found between soil FCO2 rates and other selected soil properties,such as soil pH,SOC,and C/N ratio,in the examined forest types. Our results indicated that soil FCO2 rates were much higher in the evergreen broadleaved forest than coniferous forest under the same microclimatic environment in the study region.  相似文献   

11.
Mineralization of soil organic carbon (C) plays a key role in supplying nutrient elements essential to plant growth. Changes of C mineralization of mixed stands of Chinese fir and Michelia macclurei (a broadleaf tree), pure M. macclurei stands, and pure Chinese fir (Cunninghamia lanceolata) stands established in 1983 after clear‐felling of a first‐generation Chinese fir forest were analyzed in Huitong, Hunan Province, China, and compared with those of a stand of native secondary evergreen broadleaf forest (NBF). The results showed that NBF soil had the greatest C mineralization. Mixture of Chinese fir and M. macclurei had no effect on total soil organic C in comparison with pure Chinese fir plantation, but significantly increased C mineralization from soils was detected in this study. This positive influence on C mineralization could be explained by the increase of soil labile C pools and soil microbial biomass and activity. From the analysis of C mineralization, soil microbial properties, and labile organic C, mixtures of broadleaf and Chinese fir can be considered to be an effective sustainable management model for a Chinese fir plantation. Given strong correlations with microbiological and biochemical characteristics of soils and an easier process of determination, hot water extraction, hot water–extractable C (HWC) could be used as an integrated measure of forest soil quality in mid‐subtropics.  相似文献   

12.
Abstract. After clear-felling of a first generation Chinese fir ( Cunninghamia lanceolata ) forest, mixed stands of Chinese fir and Michelia macclurei (a broadleaf tree) (MCM), pure M. macclurei stands (PMS) and pure Chinese fir stands (PCS) were established in 1983. The effects on soil were evaluated 20 years after planting by measuring physicochemical, microbiological and biochemical parameters. Both broadleaf monoculture and mixtures of broadleaf and conifer exerted a favourable effect on soil fertility. A soil quality index (SQI) decreased in the order: PMS (0.62) > MCM (0.57) > PCS (0.41). Improvement in soil quality, enhanced biological activity and forest productivity demonstrated that mixed stands are an effective measure to maintain sustainable forest productivity, as well as to control soil degradation under successive stands of Chinese fir. In addition, since the microbiological and biochemical parameters measured were sensitive to the forest management, they may be potential indicators for assessing the sustainability of different management systems. The results also showed that total organic carbon, cation exchange capacity and microbial biomass carbon are effective indicators of the improvement or deterioration of soil quality under forest.  相似文献   

13.
华蓥市山区典型林分水源涵养功能评价   总被引:2,自引:1,他引:1  
为研究南方丘陵山区典型人工林的生长现状和涵养水源能力,选取华蓥市6种林分作为研究对象,通过测定林下枯落物层和土壤层特征,分析比较不同林地枯落物和土壤的持水能力,对林地水源涵养能力进行评价。结果表明:杉木纯林(近自然经营)枯落物现存蓄积量最大,枯落物持水能力排序为杉木纯林(近自然经营)杉木纯林马尾松—檵木混交林(近自然经营)杉木—响叶杨混交林柏木纯林马尾松—杉木混交林;杉木纯林的土壤层总孔隙度、毛管孔隙度、有效持水量均为最优,分别达到67.67%,60.39%,138.11 t/hm~2;6种林地土壤有效持水量大小顺序为杉木纯林杉木纯林(近自然经营)马尾松—杉木混交林杉木—响叶杨混交林柏木纯林马尾松—檵木混交林(近自然经营);综合枯落物层和土壤层持水能力可知,杉木纯林(近自然经营)的水源涵养能力最强,为309.77 t/hm~2,马尾松—杉木混交林最弱。  相似文献   

14.
对杉木萌芽林冠下营造细柄阿丁枫后形成的杉阔混交林土壤腐殖质及土壤结构性状研究结果表明 ,杉阔混交林土壤有机质和腐殖质含量增加 ,腐殖质中HA/HF 值和E4值升高 ,E4/E6值变小 ,土壤松结合态和紧结合态腐殖质含量及比值增加 ,土壤腐殖质活化度增强 ,土壤结构和水分性状得以改善。  相似文献   

15.
套种是杉木人工林经营的重要措施,磷是南方森林生态系统中主要限制性养分元素之一,但套种模式对土壤磷素的影响尚不明确。以亚热带杉木人工林表层(0-10 cm)土壤为对象,研究套种林(杉阔套种幼林、杉阔套种成熟林)和杉木幼林土壤理化性质和土壤各形态磷含量差异,分析套种对杉木人工林土壤磷含量的影响。结果表明:(1)不同套种林显著改变土壤总磷、土壤总无机磷、土壤总有机磷、土壤微生物生物量磷(MBP)和土壤酸性磷酸酶活性(APA),大小顺序均为杉阔套种成熟林>杉阔套种幼林>杉木幼林。(2)土壤各磷组分中活性磷含量较低,其中NaHCO3-Po在活性组分中占主导;土壤NaOH-Po是中等活性磷的主要组分,杉阔套种成熟林尤为显著;闭蓄态磷(Residual-P)在总磷含量中最高。(3)与杉木幼林相比,杉阔套种成熟林显著增加了树脂提取态磷(Resin-Pi)、碳酸氢钠提取态有机和无机磷(NaHCO3-Pi、NaHCO3-Po)、氢氧化钠提取态有机和无机磷(NaOH-Pi、NaOH-Po)、氢氧化钠残留提取态有机磷(NaOHu.s-Po)、盐酸提取态磷(HCl-Pi)和闭蓄态磷(Residual-P)含量;土壤总无机磷、NaHCO3-Po、HCl-Pi、NaHCO3-Pi、NaOHu.s-Pi和Residual-P对杉阔套种幼林的响应不敏感。(4)除含水率外不同林龄下杉阔套种林土壤磷形态与土壤理化性质(土壤总碳氮、土壤可溶性有机氮、土壤微生物生物量磷、酸性磷酸酶)呈正相关性(P<0.05)。冗余分析表明,土壤磷组分的变化主要受MBP调控,且MBP与有机磷组分(NaOHu.s-Po、NaOH-Po)和HCI-Pi呈显著正相关。总之,套种林的土壤磷素有效性高于杉木幼林,土壤养分状况更佳。  相似文献   

16.
黄土高原半干旱丘陵区不同树种纯林土壤性质极化研究   总被引:7,自引:0,他引:7  
人工或天然纯林土壤性质呈现偏离原平衡态并朝某个方向非平衡或极端化发展的现象被作者称为极化。作者提出了抗极化域(W)、抗极化度(R)、极化度(P)和极抗比(I)等土壤极化的表征指标,并采用多样地多样点混合采土法对黄土高原半干旱丘陵区进入成熟生长期的不同树种纯林和混交林土壤性质进行了广泛测定和极化分析。结果表明:(1)不同树种林地属于极强度极化(P>0.20)的土壤性质分别为:油松纯林的化学性质,侧柏、刺槐和沙棘纯林的化学和生物学性质,白榆纯林的化学、生物学性质和微量元素,白桦纯林的生物学性质,茶条槭纯林的生物学和物理性质。(2)总体而言,油松和刺槐纯林会引起土壤的严重贫养化;侧柏纯林会引起土壤的严重富养化;白榆纯林虽然会引起土壤的富养化,但却使得微量元素越来越缺乏;白桦纯林主要会引起土壤生物学性质的恶化;茶条槭纯林土壤有偏贫养化和生物学性质恶化的趋势;沙棘纯林会导致土壤严重贫养化和生物、物理性质的恶化;小叶杨纯林土壤性质尚未发生明显极化。(3)总体而言,小叶杨、油松的抗极化能力均较强,而白榆的抗极化能力最低;相对于林木抗极化能力,土壤的绝对综合极抗比属于中等以上(Ia>0.40)的性质分别为:油松纯林的化学、物理性质,侧柏、刺槐和白榆纯林的所有性质,白桦纯林的生物学、物理和化学性质。  相似文献   

17.
Problems in phosphorus (P) nutrition of forest trees raise questions concerning the soil P concentrations, pools and turnover in forests. In addition, it is not clear if, and to what extent, tree species diversity has an influence on the soil P status and turnover. The aim of this study was to investigate the P status and turnover in beech ( Fagus sylvatica L.) -dominated forest ecosystems on loess over limestone and to elucidate what role heterogeneities in tree species diversity would play. The soils of mixed species stands contained more organically bound P (710–772 kg ha−1) than those of pure beech stands (378 kg ha−1), whereas the inorganic P content differed little between the stand types. A large proportion (44–55%) of the total soil P was organically bound. This fraction was mainly dependent on the clay content of the soils and not on the tree diversity. The P input with leaf litter (1.4–2.1 kg ha−1 year−1) showed a tendency to increase with increasing diversity. The apparent P turnover times in the organic surface layers differed, with shorter turnover times in mixed species stands (2–3 years) than in pure beech stands (10 years). Possible explanations for the different turnover times were differences in the litter quality, interactions in mixed species litters and the soil pH and base saturation. Hence, the tree species mainly influence the apparent P turnover time in the organic surface layer, whereas the P concentrations and pools in the mineral soil are determined by the soil properties, particularly the clay content.  相似文献   

18.
Case studies are necessary to assess the effects of changes to tree species on the physicochemical and chemical properties of soils. To achieve this, the fine earth under five tree species was investigated. This study was performed in the Breuil-Chenue experimental forest site located in the Morvan Mountains (France). This site contains two adjacent blocks with replicated stands. The native forest (old beech and oak coppice with standards) was partially clear-felled and replaced in 1976 with mono-specific plantations of European beech, Norway spruce, Laricio pine and Douglas fir. The same changes in soil properties were revealed in both blocks, thus confirming the tree species effect. The percentage of exchangeable acidity on the cation exchange capacity (CEC) was greater under spruce, Douglas fir and pine than under the other species. Spruce stands, and to a lesser extent those of Douglas fir and pine, had a less acidic soil pH than hardwood stands (which was unusual in view of the data in the literature) and smaller CEC values. The small quantities of carbon added to the soil under these tree species provide an explanation for these effects through a partial control of both CEC and pH. This case study thus demonstrated that the tree species effect was not unequivocal and different criteria are necessary for its interpretation. Tree species significantly influenced certain aspects of the chemical properties of topsoil and have the potential to have an impact on current soil fertility.  相似文献   

19.
Interest in mixed‐species plantations in the tropics has increased because they appear to provide a wider range of options, such as yield, biodiversity, nutrient cycling, and C sequestration than pure stands. Pure stands of Pinus patula Schlecht. and Charm., Juniperus procera Hochst., and Grevillea robusta A. Cunn., and mixed stands of P. patula/G. robusta, P. patula/J. procera, and P. patula/Podocarpus falcatus R. Br. at Wondo Genet in S Ethiopia were studied to examine (1) the impact of mixed‐species plantations on soil chemical properties, and (2) the impact of mixed‐species plantations on the nutritional status of constituent trees. Soil (0–50 cm depth) and foliage samples were collected from four random plots (100 m2) in each of the pure and mixed‐species plantations. Soil samples were analyzed for organic C, N, and base cations. Foliage samples were analyzed for nutrients (N, P, K, Ca, and Mg). There were little significant differences in soil chemical properties and foliar nutrient concentrations of trees between the pure and mixed stands. Among pure stands, J. procera and G. robusta differed in soil exchangeable Ca++ and K+ at 0–5 cm soil depth and in foliar P and Ca concentration. After 18 and 24 y, mixed stands did not influence soil chemical properties and tree nutrition differently than pure stands. This may be due to additive interaction in mixed‐species stands and the similarity of the constituent tree species in foliar nutrient concentration and their impact on soil chemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号