首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to assess the effects of rumen-protected conjugated linoleic acid (CLA) on hepatic lipid metabolism in heifers. In particular, it was of interest whether feeding CLA causes development of fatty liver as observed recently in mice. Thirty-six growing heifers with an initial body weight of 185 kg were allotted to three treatment groups and fed daily 250 g of different rumen-protected fats for 16 weeks: The control group received 250 g of a CLA-free control fat, the CLA100 group received 100 g of a CLA fat containing 2.4% of cis-9, trans-11 CLA and 2.1% of trans-10, cis-12 CLA and 150 g control fat and the CLA250 group received 250 g of the CLA fat. CLA supplementation had no effect on animal performance parameters, liver weight and hepatic triglyceride concentration. Moreover, mRNA expression of hepatic genes involved in lipogenesis, β-oxidation and fatty acid transport was not influenced by dietary CLA. The fatty acid composition of hepatic total lipids, with particular consideration of ratios of fatty acids indicative of Δ9-, Δ6- and Δ5-desaturation, was also less influenced by dietary CLA. In conclusion, the study shows that dietary rumen-protected CLA has less effect on hepatic lipid metabolism in young heifers and does not induce the development of a fatty liver such as in mice.  相似文献   

2.
Thirty-six Angus x Hereford heifers were used in a 3 x 2 factorial (3 dietary treatments; 2 supplementation times) to examine the effect of dietary lipid supplementation on lipid oxidation, lipid composition, and palatability of ribeye steaks and ground beef. Lipid was supplied in the diets as corn oil or a partially rumen-protected CLA salt for 2 specific treatment periods of the final 32 or 60 d on feed, corresponding to a total time on feed of 89 or 118 d. After an initial 56-d feeding period (basal diet), the heifers were fed 1 of 3 dietary treatments (DM basis): 1) a basal diet containing 88% concentrate and 12% grass hay (CON), 2) the basal diet plus 4% corn oil (OIL), or 3) the basal diet plus 2% partially rumen-protected CLA (RPCLA) containing 31% CLA. Heifers were randomly allotted to dietary treatments at the initiation of the study and fed individually. At 48 h postmortem, the right forequarter of each carcass was fabricated into retail cuts. Steaks (2.54-cm thick) were obtained from the posterior end of the ribeye roll (NAMP 112), and beef trim was ground for all subsequent analyses. Dietary treatment did not affect (P > 0.05) lipid oxidation in ground beef or ribeye steaks. Total trans-octadecenoate fat and trans-10 octadecenoic acid content in ribeye steaks increased (P < 0.05) with RPCLA compared with CON. Total CLA and the cis-9 trans-11 isomer of CLA contents in ribeye steaks were unchanged (P > 0.05) by lipid supplementation. In ground beef, RPCLA supplementation increased (P < 0.05) the amount of trans fat and trans-10 octadecenoic acid compared with CON or OIL; supplementation of RPCLA increased (P < 0.05) the amount of CLA cis-9 trans-11 isomer and total CLA. Lipid supplementation did not alter (P > 0.05) off-flavor ratings in ground beef or ribeye steaks. Supplementation of corn oil increased (P < 0.05) total PUFA content of ribeye steaks compared with CON and RPCLA. Dietary RPCLA supplementation increased the amount of trans fat per serving (85.5 g, broiled) by 110 and 88% in ribeye steak and ground beef, respectively, and CLA cis-9 trans-11 by 58% in ground beef compared with CON. Supplementing OIL or RPCLA resulted in minimal changes in lipid oxidation and sensory attributes of steaks and ground beef.  相似文献   

3.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

4.
Two experiments were conducted to determine the effectiveness of a rumen-protected CLA (pCLA) supplement and the impact of feeding this pCLA on carcass characteristics and tissue fatty acid composition of lambs. In Exp. 1, a CLA-80 preparation (80% pure CLA; contained similar proportions of cis-9, trans-11, and trans-10, cis-12 CLA), protected against rumen degradation, was fed to sheep, and the proportion of CLA reaching the duodenum was determined. A 3 x 3 Latin square design was used with 3 diets (1.4 kg of concentrate-based control diet, the same control diet plus 22 g of CLA-80, or the same control diet plus 110 g of pCLA/d), 3 feeding periods, and 3 rumen and duodenally cannulated sheep (Mule x Charolais males, 10 mo of age, BW 55.3 +/- 1.8 kg). After 7 d of feeding, sheep were ruminally infused with chromium EDTA and Yb acetate for 7 d, after which samples of duodenal digesta were collected every 6 h for 48 h to determine the quantity of CLA reaching the small intestine each day. The amounts of CLA cis-9, trans-11 and trans-10, cis-12, and combined isomers, flowing through the duodenum each day were greater (P = 0.01) in sheep fed pCLA. Approximately 65% of the pCLA avoided rumen biohydrogenation, with the ratio of the 2 main isomers remaining similar. In Exp. 2, 36 Mule x Charolais ewe lambs (approximately 13-wk old, average initial BW 29.3 kg) were fed 3 levels of the pCLA or Megalac, which were fed to provide an equivalent energy content at each pCLA level. Lambs were randomly assigned to 1 of 7 treatment groups, which were fed for 10 wk to achieve a growth rate of 180 g/d. Treatments included the basal diet and the basal diet plus 25, 50, or 100 g of pCLA/kg of diet or the equivalent amount of Megalac. In liver (P < 0.001) and all adipose tissue depots studied, the proportions of both CLA isomers increased (P = 0.02) with the amount of pCLA fed but were not altered with increasing of Megalac. Although there was no effect of treatment on cis-9, trans-11 CLA content, accumulation (P < 0.001) in the LM with increasing of pCLA supplementation was observed for the trans-10, cis-12 isomer. Although tissues had been enriched with CLA, there was no evidence of a reduction in adipose tissue or an increase in muscle mass in these sheep. However, an effect of pCLA on tissue fatty acid composition was consistent with an inhibition of stearoyl-CoA desaturase.  相似文献   

5.
In the current study, we hypothesized that diets high in linoleic acid would increase conjugated linoleic acid (CLA) tissue content, reduce adiposity and leptin production, and result in an increase in the age at puberty in heifers. Heifers were weaned and blocked by body weight (heavy, n = 10, and light, n = 10) and allocated randomly within block to receive isocaloric and isonitrogenous diets with either added fat (HF, n = 10) or no added fat (C, n = 10) from 4 mo of age until post-pubertal slaughter. Whole sunflower seed (55% oil; 70% linoleic acid) was used as the fat source in HF diets and provided 5% added fat from the start of the study until heifers weighed 250 +/- 8 kg, at which time added fat was increased to 7% of dry matter until slaughter. Body weights were recorded weekly, and blood samples were collected weekly for total cholesterol and hormone analyses. Puberty was confirmed based on serum concentrations of progesterone and ultrasonographic confirmation of corpora lutea. Heifers were slaughtered at 325 +/- 10 d of age, and longissimus muscle between the 9th and 11th rib was collected and analyzed to estimate carcass composition. Subcutaneous and kidney, pelvic, and heart fat were collected at slaughter for fatty acid analyses. The HF heavy group tended (P < 0.10) to reach puberty later than all other groups, and one HF light heifer did not reach puberty during the study. Linoleic acid and cis-9, trans-11 CLA tissue contents were higher (P < 0.03) in HF heifers than controls, but neither total carcass fat nor percentage of dry matter differed by dietary group, although the percentage of protein tended (P < 0.10) to be lower in HF heifers. Mean serum concentrations of leptin did not differ due to diet; however, leptin increased (P < 0.01) linearly as puberty approached. Circulating concentrations of growth hormone and insulin-like growth factor I increased or remained relatively constant between wk 2 to 10 of feeding, and then declined (P < 0.01) until the onset of puberty. Serum IGF-I was lower (P < 0.01) in heifers receiving the HF diet. Mean serum concentrations of insulin and total cholesterol increased (P < 0.01) with time in both groups, but only total cholesterol was increased by the HF diet (P < 0.05). Results indicate that diets high in linoleic acid fed to growing beef heifers beginning early in life have little or no effect on total carcass fat, circulating leptin, or age at puberty despite measurable increases in CLA accumulation.  相似文献   

6.
One hundred sixty-eight crossbred steers (317.1 +/- 1.0 kg) were used to evaluate the effects of supplemental fat in finishing diets on the fatty acid composition, including the 9,11 isomer of conjugated linoleic acid, of beef. Steers were allotted within three weight blocks to a randomized complete block design with a 3 x 2 + 1 factorial arrangement of dietary treatments. Main effects were level of yellow restaurant grease (RG; 0, 3, and 6%), and level of alfalfa hay (AH; 3.5 and 7%) with an added treatment containing 6% tallow (T) and 7% AH in barley-based diets containing 15% potato by-product and 7% supplement (all dietary levels are on a DM basis) fed for an average of 165 d. Fatty acids of the LM and s.c. fat from four randomly selected steers per pen were quantified using GC after methylation with sodium methoxide. Dietary treatment did not (P > 0.10) affect total fatty acid (FA) content of the LM (143 +/- 5.2 mg/g) or fat (958 +/- 7.9 mg/g). Myristic acid increased linearly (P < 0.01) with increasing RG from 3.1 to 3.7 +/- 0.1 g/100 g of FA in muscle. Stearic acid increased linearly (P < 0.05) as RG increased in the diet, from 11.4 to 12.9 +/- 0.4 g/100 g of FA in LM and from 9.9 to 12.2 +/- 0.3 g/100 g of FA in fat. Compared with T, steers fed 6% RG had more (P < 0.05) oleic acid in LM (42.7 vs. 40.3 +/- 0.5 g/100g FA) and in fat (43.0 vs. 40.9 +/- 0.5 g/100g FA). The cis-9, trans-11 conjugated linoleic acid (CLA) increased quadratically (P < 0.01) with increasing dietary RG in LM from 0.45 to 0.64 to 0.62 +/- 0.03 g/100 g of FA and increased in fat from 0.61 to 0.84 to 0.83 +/- 0.04 g/100 g of FA. Moreover, cis-9, trans-11 CLA was higher (P < 0.05) in fat from steers fed RG compared with T (0.81 vs. 0.69 +/- 0.04 g/100 g of FA), and tended to be higher (P = 0.07) in muscle (0.62 vs. 0.54 +/- 0.03 g/100 g of FA. Feeding yellow restaurant grease increased content of cis-9, trans-11 CLA in beef without an increase total FA content.  相似文献   

7.
Crossbred Angus steers (n = 30) were used to determine whether the conjugated linoleic acid (CLA) content of beef fat could be increased by feeding varying levels of extruded full-fat soybeans as a source of polyunsaturated fatty acids for rumen biohydrogenation. Diets were as follows: 1) control, 2) 12.7% extruded full-fat soybeans (LESB), and 3) 25.6% extruded full-fat soybeans (HE SB). Steers were individually housed and fed the diets for 111 d during the finishing period. Over the experimental period, treatment groups were similar in ADG (1.7 +/- 0.1 kg/d) and had a similar slaughter weight (603 +/- 11.6 kg). Dressing percentage averaged 61.6% and carcass composition averaged 14.3% protein, 30.9% lipid, and 54.8% water. At slaughter, the intramuscular, intermuscular, and subcutaneous fat depots were sampled from the rib longissimus, eye of round, and chuck tender muscles. Across all fat depots, the CLA content differed (P < 0.05), averaging 6.6, 6.7, and 7.7 mg/g of fatty acids for the control, LESB, and HESB diets, respectively. There were significant differences in CLA content between fat depots within a cut, but differences were relatively small and the hierarchy in fat depots was not consistent among cuts. The cis-9, trans-11 isomer was the predominant CLA isomer and its content in fat was related to trans-11 C18:1 content (r = 0.53; P < 0.001). There was substantial individual variation in CLA content and this varied from 2.6 to 17.0 mg/g fatty acids across all treatments and fat depots. Overall, results demonstrated that including extruded full-fat soybeans in the diet of finishing steers increased the CLA content of beef fat. Differences were relatively small and the relationship of this to rumen fermentation and endogenous synthesis of CLA is considered.  相似文献   

8.
Our objective was to determine the effect of oil supplementation of pasture fed, beef cattle on the fatty acids, particularly CLA and PUFA, of muscle and s.c. adipose tissue. Forty-five Charolais crossbred heifers were blocked on BW and randomly assigned to 1 of 3 dietary regimens in a randomized complete block design (n = 15). The 3 treatments were: unsupplemented grazing (GO), restricted grazing plus a sunflower oil-enriched ration (SO), or restricted grazing plus a linseed oil-enriched ration (LO). Heifers were fed the experimental diets for approximately 158 d. Samples of LM muscle and s.c. adipose tissue were taken postmortem, the muscle fat was separated into neutral lipid and polar lipid (no separation was performed on the s.c. adipose tissue), and the fatty acid profile was determined by GLC. No effect of dietary treatment on carcass weight or total fatty acid concentration (mean 2,571 mg/100 g of muscle) in muscle fat was detected. Heifers offered SO had a greater (P < 0.001) proportion of CLA and C18:1trans-11 (1.90 and 9.35 vs. 1.35 and 6.89 g/100 g of fatty acids, respectively) in neutral lipid of muscle fat compared with those offered LO, which had a greater proportion of CLA and C18:1trans-11 than heifers offered GO (0.78 and 3.37 g/100 g of fatty acids, respectively). Similar effects were observed in the polar lipid and s.c. lipid. The PUFA:SFA ratio was greater in muscle fat and s.c. adipose tissue from supplemented heifers than in those offered GO (P < 0.001). Compared with LO, the PUFA:SFA ratio was greater (P < 0.05) in muscle fat of heifers offered SO, but there was no difference between SO and LO for this ratio in s.c. adipose tissue. The n-6:n-3 PUFA ratio was similar in muscle and s.c. adipose tissue for GO and LO, but it was greater (P < 0.05) for SO. It is concluded that supplementation of pasture-fed cattle with plant oil-enriched concentrates resulted in an increase in beef fat of some fatty acids considered to be of benefit to human health. Concentrates enriched with sunflower oil were more effective in increasing the CLA concentration, whereas linseed oil-enriched concentrates resulted in a more favorable n-6:n-3 PUFA ratio. The relevance to human health of the associated increase in C18:1trans-11 merits investigation.  相似文献   

9.
Eighteen steers were used to evaluate the effect of supplemental corn oil level to steers grazing endophyte-free tall fescue on fatty acid composition of LM, stearoyl CoA desaturase (SCD) activity and expression as well as cellularity in s.c. adipose. Corn oil was supplemented (g/kg of BW) at 0 (none), 0.75 (medium), and 1.5 (high). Cottonseed hulls were used as a carrier for the corn oil and were supplemented according to pasture availability (0.7 to 1% of BW). Steers were finished on a rotationally grazed, tall fescue pasture for 116 d. Fatty acid composition of LM, s.c. adipose, and diet was determined by GLC. Total linoleic acid intake increased linearly (P < 0.01) with corn oil supplementation (90.7, 265.1, and 406.7 g in none, medium, and high, respectively). Oil supplementation linearly reduced (P < 0.05) myristic, palmitic, and linolenic acid percentage in LM and s.c. adipose. Vaccenic acid (C18:1 t11; VA) percentage was 46 and 32% greater (linear, P = 0.02; quadratic, P = 0.01) for medium and high, respectively, than none, regardless of tissue. Effect of oil supplementation on CLA cis-9, trans-11 was affected by type of adipose tissue (P < 0.01). In the LM, CLA cis-9, trans-11 isomer was 25% greater for medium than for none and intermediate for high, whereas CLA cis-9, trans-11 CLA isomer was 48 and 33% greater in s.c. adipose tissue for medium and high than for none, respectively. Corn oil linearly increased (P 0.05) the percentage of total SFA, MUFA, or PUFA but linearly increased (P = 0.03) n-6:n-3 ratio from 2.4 to 2.9 in none and high, respectively. Among tissues, total SFA and MUFA were greater in s.c. adipose than LM, whereas total PUFA, n-6, and n-3 fatty acids and the n-6:n-3 ratio were lower. Trans-10 octadecenoic acid, VA, and CLA trans-10, cis-12 were greater (P < 0.01) in s.c. adipose than in LM. Oil supplementation did not alter (P > 0.05) stearoyl CoA desaturase activity or mRNA expression. Corn oil supplementation to grazing steers reduced the percentages of highly atherogenic fatty acids (myristic and palmitic acids) and increased the percentages of antiatherogenic and anticarcinogenic fatty acids (VA and cis-9, trans-11 CLA).  相似文献   

10.
Our objective was to determine the effect of the duration of grazing before slaughter on the fatty acid composition of muscle fat and s.c. adipose tissue (SAT) of beef heifers. Sixty crossbred Charolais heifers (n = 15 per treatment) were assigned randomly to one of four dietary treatments: 45 animals (Treatments 1, 2, and 3, respectively) were housed at the beginning of the experiment, and 15 (Treatment 4) were fed at pasture. Two groups of 15 heifers were moved to pasture 40 d (Treatment 2) and 99 d (Treatment 3) before slaughter, respectively, resulting in preslaughter grazing periods of 0, 40, 99, or 158 d for Treatments 1, 2, 3, and 4, respectively. Before grazing the predominantly perennial ryegrass pasture, animals were housed and offered grass silage ad libitum and 3 kg of concentrate diet (650 g of grass silage/kg of total DMI). After slaughter, the fatty acid profile of the neutral (NL) and polar lipid (PL) fractions of muscle fat from the LM and the total lipids from SAT were analyzed by gas chromatography. Duration of grazing showed a quadratic tendency on mean carcass weight (P = 0.08), but did not affect growth (P = 0.27) or the lipid content (P = 0.13) of the LM. Increasing the duration of grazing led to a linear increase (P < 0.001) in the concentration (on fresh-tissue basis) of CLA in muscle fat (from 11.80 to 17.75 mg/100 g of muscle in NL, and from 0.52 to 0.82 mg/100 of g muscle in PL) and in SAT (from 3.98 to 10.23 mg/g of SAT; P < 0.001), and increased the concentration of C18:1trans-11 in both muscle fat fractions (P < 0.001) and in SAT (P < 0.001). In the total muscle lipids, the polyunsaturated to saturated fatty acid ratio (P:S) increased from 0.12 to 0.15 with increased duration of grazing following a linear (P < 0.05) and cubic pattern (P < 0.05). Increasing the duration of grazing led to a linear decrease in the n-6:n-3 ratio of muscle fat from 2.00 to 1.32 (P < 0.001), and from 2.64 to 1.65 in the SAT lipids (P < 0.001), mainly as a consequence of the increased concentration of C18:3n-3. It is concluded that muscle fat and SAT fatty acid profile was improved from a human health perspective by pasture feeding, and that this improvement depended on the duration of grazing.  相似文献   

11.
An 8-wk study of the effects of CLA, rendered animal fats, and ractopamine, and their interactive effects on growth, fatty acid composition, and carcass quality of genetically lean pigs was conducted. Gilts (n = 228; initial BW of 59.1 kg) were assigned to a 2 x 2 x 3 factorial arrangement consisting of CLA, ractopamine, and fat treatments. The CLA treatment consisted of 1% CLA oil (CLA-60) or 1% soybean oil. Ractopamine levels were either 0 or 10 ppm. Fat treatments consisted of 0% added fat, 5% choice white grease (CWG), or 5% beef tallow (BT). The CLA and fat treatments were initiated at 59.1 kg of BW, 4 wk before the ractopamine treatments. The ractopamine treatments were imposed when the gilts reached a BW of 85.7 kg and lasted for the duration of the final 4 wk until carcass data were collected. Lipids from the belly, outer and inner layers of backfat, and LM were extracted and analyzed for fatty acid composition from 6 pigs per treatment at wk 4 and 8. Feeding CLA increased (P < 0.02) G:F during the final 4 wk. Pigs fed added fat as either CWG or BT exhibited decreased (P < 0.05) ADFI and increased (P < 0.01) G:F. Adding ractopamine to the diet increased (P < 0.01) ADG, G:F, and final BW. The predicted carcass lean percentage was increased (P < 0.05) in pigs fed CLA or ractopamine. Feeding either 5% fat or ractopamine increased (P < 0.05) carcass weight. Adding fat to the diets increased (P < 0.05) the 10th rib backfat depth but did not affect predicted percent lean. Bellies of gilts fed CLA were subjectively and objectively firmer (P < 0.01). Dietary CLA increased (P < 0.01) the concentration of saturated fatty acids and decreased (P < 0.01) the concentration of unsaturated fatty acids of the belly fat, both layers of backfat, and LM. Ractopamine decreased (P < 0.01) the i.m. fat content of the LM but had relatively little effect on the fatty acid profiles of the tissues compared with CLA. These results indicate that CLA, added fat, and ractopamine work mainly in an additive fashion to enhance pig growth and carcass quality. Furthermore, these results indicate that CLA results in more saturated fat throughout the carcass.  相似文献   

12.
We conducted a series of experiments to evaluate the effects of conjugated linoleic acids (CLA) on lipid metabolism and energy homeostasis in lactating dairy cows. In all experiments, multiparous Holstein cows in mid to late lactation were abomasally infused with CLA for 5 d. The initial study established that trans-10, cis-12 CLA markedly reduced milk fat yield whereas cis-9, trans-11 CLA, the predominant CLA isomer in milk fat, had no effect. Across the three investigations, infusions of the pure trans-10, cis-12 CLA isomer (3.5 to 14.0 g/d) resulted in a 25 to 50% decrease in milk fat yield and this was energetically equivalent to 6 to 11% of net energy intake. Effects were specific for milk fat as there were little or no changes in feed intake and the yield of milk or milk protein. In Exp. 1, infusing trans-10, cis-12 CLA had no effect on circulating plasma concentrations of glucose, insulin, or leptin. Basal NEFA concentrations were also unaffected, but lipolytic response to an epinephrine challenge was reduced (33%) when cows received trans-10, cis-12 CLA; this minor change in lipolytic response would be consistent with the slightly more positive net energy balance when cows received trans-10, cis-12 CLA. In Exp. 2, infusing differing amounts of trans-10, cis-12 CLA had only minor effects on basal NEFA concentrations, but again cows receiving trans-10, cis-12 CLA tended to have reduced (24%) lipolytic response to trans-10, cis-12 CLA compared to the control period. In Exp. 3, infusing trans-10, cis-12 CLA had no effect on basal glucose concentrations or glucose response to an insulin challenge. The fractional rate of glucose clearance in response to insulin was also not altered by treatment. In summary, the effects of trans-10, cis-12 CLA in lactating dairy cows appear to be specific for the mammary gland, resulting in reduced milk fat synthesis; adipose tissue response to a homeostatic signal regulating lipolysis (epinephrine), whole-body response to a homeostatic signal regulating glucose homeostasis (insulin), and plasma variables associated with lipid metabolism and energy homeostasis were relatively unaffected by treatment with trans-10, cis-12 CLA.  相似文献   

13.
Thirty-six Angus x Hereford heifers (365 kg) were used to determine effects of dietary lipid supplementation from two sources during the final 32 or 60 d of feeding on serum and adipose tissue leptin concentrations, animal performance, and carcass characteristics. Following an initial feeding period of 56 d, heifers were fed one of three diets in a 3 x 2 factorial arrangement: 1) basal diet, 2) basal diet plus 4% (DM basis) corn oil, or 3) basal diet plus 2% (DM basis) rumen-protected conjugated linoleic acid (a mixture of Ca-salts of palm oil fatty acids with 31% conjugated linoleic acid). Jugular blood samples were collected at 28-d intervals (d 28 to 118) and serum subsequently harvested for leptin quantification via RIA. Real-time ultrasound measurements were collected at 28-d intervals across time on feed. At slaughter, samples were obtained from various adipose depots. Data were analyzed with dietary treatment, length of supplementation, adipose depot (when appropriate), and all two- and three-way (when appropriate) interactions in the repeated measures model. Measures of feedlot performance, including ADG, DMI, and gain:feed did not differ (P > 0.23) with dietary treatment or supplementation length. Heifers supplemented with corn oil tended (P < 0.07) to have higher marbling scores following 32 d of treatment than those supplemented with rumen-protected conjugated linoleic acid, with controls intermediate. Quality grade and hot carcass weight did not differ (P > 0.15) with treatment or length of supplementation. Leptin concentrations were higher (P < 0.05) from d 57 to 118 on feed than the initial period (d 0 to 56) of dietary adaptation when all animals received the basal diet. Circulating leptin concentrations were not affected by dietary treatment. However, leptin concentrations in adipose tissues were greater (P < 0.05) for heifers supplemented with corn oil than either control or rumen-protected conjugated linoleic acid diets, which did not differ. Compared with adipose tissues from rumen-protected conjugated linoleic acid-supplemented animals, tissues from heifers fed corn oil contained 68% greater leptin concentration. Correlations between performance, carcass traits, and serum leptin concentrations were low. Serum leptin concentrations across time on feed were not associated with carcass and performance data, including ADG, DMI, and gain:feed. Based on these data, concentrations of leptin are not related to indices of feedlot performance and carcass quality in beef cattle.  相似文献   

14.
Xu CX  Oh YK  Lee HG  Kim TG  Li ZH  Yin JL  Jin YC  Jin H  Kim YJ  Kim KH  Yeo JM  Choi YJ 《Journal of animal science》2008,86(11):3033-3044
The present study was conducted to examine the effects of different plant oils or plant oil mixtures and high-temperature, microtime processing (HTMT) on the CLA content in Hanwoo steers. Experiment 1, consisting of 3 in vitro trials, was conducted to determine how the biohydrogenation of C18 fatty acids and CLA production were affected by fat sources (tallow, soybean oil, linseed oil, or mixtures of soybean oil and linseed oil) or HTMT treatment in the rumen fluid. The results showed that HTMT was capable of protecting unsaturated fatty acids from biohydrogenation by ruminal bacteria. The HTMT-treated diet containing 4% linseed oil (LU) and a supplement containing 2% linseed oil and 1% soybean oil treated with HTMT + 1% soybean oil (L(2)S(1)U+S(1)) produced an increased quantity of trans-11 C18:1 and cis-9, trans-11 CLA, and a reduced quantity of trans-10, cis-12 CLA. Based on these results, in vivo studies (Exp. 2) were conducted with LU and L(2)S(1)U+S(1). These 2 treatments increased the content of cis-9, trans-11 CLA in LM compared with the control diet. The content of trans-10, cis-12 CLA in subcutaneous fat was also increased in the L(2)S(1)U+S(1) treatment compared with other treatments. The subcutaneous fat thickness in the LU treatment was decreased compared with the L(2)S(1)U+S(1) treatment. The LU treatment significantly decreased fatty acid synthase expression but simultaneously increased leptin expression. In this report, we showed that diets containing LU and L(2)S(1)U+S(1) were capable of increasing CLA in the intramuscular fat of beef.  相似文献   

15.
Two experiments were conducted to determine if feeding melatonin alters plasma concentrations of melatonin, growth and carcass composition of postpubertal beef heifers exposed to 16 h light (L):8 h dark (D). In Exp. 1, 16 heifers were blocked by initial body weight (318 +/- 5.6 kg). Four heifers were killed before starting the melatonin treatment to obtain initial carcass composition. Six heifers received vehicle (95% ethanol) and six were fed melatonin (4 mg/100 kg body weight) daily for 58 d at 1330 to coincide with the middle of the 16-h light period. On d 59 heifers were slaughtered. Melatonin feeding increased the percentage of fat in rib (P less than .05) and longissimus muscle (LD; P less than .10) and carcass fat accretion 28% (P less than .09) but reduced the percentage of protein 8% in rib (P less than .05) and carcass protein accretion 30% (P less than .09). Other measures in the carcass and body weight gain were not affected (P greater than .10) by feeding melatonin. Plasma concentrations of melatonin increased (P less than .01) from 10 to 140 pg/ml within 30 min of feeding melatonin. In Exp. 2, 24 heifers were blocked by initial body weight (348 +/- 13.7 kg). Eight heifers were killed initially, eight received vehicle and eight were fed melatonin for 63 d as described in Exp. 1. Melatonin did not influence (P greater than .10) body weight gain or any measure in the carcass; however, these heifers were fatter (40.1%) than those in Exp. 1 (30.9%) at the beginning of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has many beneficial effects, including decreased tumor growth in animal cancer models. The cis-9, trans-11 isomer of CLA (CLA9,11) can be formed in the rumen as an intermediate in biohydrogenation of linoleic acid. Recent data, however, indicate that tissue desaturation of trans-fatty acids is an important source of CLA9,11 in milk. Our objective was to determine whether supplementing a high-corn diet with soybean oil (SBO; a source of linoleic acid) would increase concentrations of CLA in ruminal contents and tissue lipids. Four ruminally cannulated steers were utilized in a Latin square design with 28-d periods. A control diet (80% cracked corn, 2.0% corn steep liquor, 8.0% ground corn cobs, and 10% supplement [soybean meal, ground shelled corn, minerals, and vitamins]) was supplemented with 2.5, 5.0, or 7.5% (DM basis) SBO. Supplemental SBO did not affect ruminal pH or concentrations of the major VFA. The proportion and amount (mg FA/g DM ruminal contents) of CLA9,11 were not increased by increasing dietary SBO. However, the proportion and amount of the trans-10, cis-12 CLA isomer (CLA10,12) in ruminal contents increased linearly (P < 0.006) as dietary SBO increased. Trans-18:1 isomers in ruminal contents increased linearly (P < 0.02) as dietary SBO increased. The proportion of CLA10,12 was correlated positively (P < 0.001) with proportions of trans-C 18:1 isomers in ruminal contents. Conversely, CLA9,11 was correlated negatively (P < 0.05) with the proportions of trans-18:1 in ruminal contents. The same high-corn diet, supplemented with 0 or 5% SBO, was fed to 20 Angus-Wagyu heifers for 102 d in a randomized complete block design to determine the effect of added SBO on tissue deposition of CLA. Supplemental SBO did not affect feed intake, gain:feed, or carcass quality. Tissue samples were obtained from the hindquarter, loin, forequarter, liver, large and small intestine, and subcutaneous, mesenteric, and perirenal adipose depots. The concentration of CLA9,11 was greatest in subcutaneous adipose tissue but was not affected in any tissue by SBO. Supplementing high-corn diets with SBO does not increase CLA9,11 concentrations in tissues of fattening heifers. Research is needed to identify regulatory factors for pathways of biohydrogenation that lead to increased concentrations of CLA10,12 in ruminal contents when high-oil, high-concentrate diets are fed.  相似文献   

18.
Feeding sheep concentrate-based diets increases the oleic acid content of their tissues, whereas the cis-9, trans-11 conjugated linoleic acid (CLA) content is increased by feeding forage diets. Both these metabolic transformations could be attributable to increased activity of stearoyl-CoA desaturase (SCD). Therefore, the effect of forage or concentrate feeding regimens on the fatty acid composition of sheep tissues were investigated to determine whether any changes are related to an alteration of SCD mRNA levels. Twenty-four ewe lambs were randomly allotted to one of three dietary treatment groups: 1) dehydrated grass pellets, 2) concentrate diet fed to achieve a growth rate similar to that of the dehydrated grass pellets, and 3) the same concentrate diet approaching ad libitum intake. As expected, animals fed ad libitum concentrates grew at a greater (P = 0.001) rate (280 g/d) than those fed either of the other two diets (180 g/d), which were similar. In samples of liver and the three adipose tissue depots studied, the concentration of oleic acid from sheep fed either level of the concentrate diet was greater (P < 0.001) than from animals fed forage. This was associated with an increase (P < 0.05) in the ratio of SCD to acetyl-CoA carboxylase mRNA in adipose tissue and liver. Compared with concentrate-fed, the forage-fed lambs had increased (P < 0.05) levels of the cis-9, trans-11 isomer of CLA and C18:1, trans-11 in all their tissues, although the levels of SCD mRNA were lower. It therefore seems that the increased oleic acid content of sheep tissues in response to concentrate-rich diets is associated with an increase in SCD gene expression. By contrast, the increased concentration of CLA in animals fed forage-based diets is associated with an increase in substrate (C18:1 trans-11) availability.  相似文献   

19.
Five beef cattle management regimens were evaluated for their effect on meat quality, fatty acid composition, and overall palatability of the longis-simus dorsi (LD) muscle in Angus cross steers. A 98-d growing phase was conducted using grass silage with or without supplementation of growth promotants (Revalor G and Rumensin) or soybean meal. Dietary treatments in the finishing phase were developed with or without supplementation of growth promotants based on exclusive feeding of forages with no grain supplementation, or the feeding of grain:forage (70:30) diets. Growth promotants increased (P < 0.01) shear force and tended (P = 0.06) to increase toughness of the LD muscle due to limited postmortem proteolytic activity (lower myofibrillar fragmentation index value; P = 0.02). Grain feeding increased DM and intramuscular fat content (P = 0.03 and P = 0.05, respectively) in the LD but decreased the sensory panel tenderness score (P = 0.01). Growth promotants increased (P 相似文献   

20.
The objective of this study was to determine whether increasing levels of dietary safflower oil would alter unsaturated fat (especially CLA) and tocopherol content of lamb, animal performance, carcass characteristics, or color stability of lamb muscle tissue. Targhee x Rambouillet wethers (n = 60) were assigned to one of three diets (four pens per treatment with five lambs per pen) in a completely random design. Diets were formulated with supplemental safflower oil at 0 (control), 3, or 6% (as-fed basis) of the diet. Diets containing approximately 80% concentrate and 20% roughage were formulated, on a DM basis, to be isocaloric and isonitrogenous and to meet or exceed NRC requirements for Ca, P, and other nutrients. A subsample of 12 wethers per treatment was selected based on average BW (54 kg) and slaughtered. Carcass data (LM area, fat thickness, and internal fat content) and wholesale cut weight (leg, loin, rack, shoulder, breast, and foreshank), along with fatty acid, tocopherol, and color analysis, were determined on each carcass. The LM and infraspinatus were sampled for fatty acid profile. Increasing safflower oil supplementation from 0 to 3 or 6% increased the proportion of linoleic acid in the diet from 49.93 to 55.32 to 62.38%, respectively, whereas the percentage of oleic acid decreased from 27.94 to 23.80 to 20.73%, respectively. The percentage of oil in the diet did not (P > or = 0.11) alter the growth and carcass characteristics of lambs, nor did it alter the tocopherol content or color stability of meat. Increasing levels of safflower oil in lamb diets decreased (P < 0.01) the weight percentage of oleic acid in the infraspinatus and LM, and increased linoleic acid (P < 0.01). Oil supplementation increased (P < 0.01) the weight percentage of various isomers of CLA in muscle, with the greatest change in the cis-9,trans-11 isomer. Supplementation of sheep diets with safflower oil, up to 6% of the diet, resulted in increasing levels of unsaturated fatty acids and CLA in the lean tissue, without adversely affecting growth performance, carcass characteristics, or color stability of lamb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号