首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses; however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO_2 m~(-2)s~(-1), respectively.Furthermore, the average SOC content was 16.97 g kg~(-1) following BC, which was higher than that(13.71 g kg~(-1)) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO_2 m~(-2)s~(-1)), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO_2 m~(-2)s~(-1)). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.  相似文献   

2.
Wind erosion starts when the threshold wind velocity (µt) is exceeded. We evaluated the sensitivity of µt to determine the wind erosion susceptibility of soils under variable climatic conditions. Three years field data were used to calculate µt by means of the equation µt = ūσ Φ−1 (γ), where ū is the mean wind speed (m s−1), σ the ū standard deviation (m s−1), γ the saltation activity and Φ the standard normal distribution function of γ. Saltation activity was measured with a piezoelectric sensor (Sensit). Results showed that ū of the whole studied period (3·41 m s−1) was lower than µt (7·53 m s−1), therefore, wind erosion was produced mainly by wind gusts. The µt values ordered in the sequence: Winter (6·10 m s−1) < Spring (8·22 m s−1) = Summer (8·28 m s−1) < Autumn (26·48 m s−1). Higher µt values were related to higher air humidity and lower wind speeds and temperatures. The µt values did not agree with the erosion amounts of each season, which ordered as follows: Summer (12·88 t ha−1) > Spring (3·11 t ha−1) = Winter (0·17 t ha−1) = Autumn (no erosion). Low µt and erosion amounts of Winter were produced by a scarce number of gusts during eroding storms. We concluded that µt is useful as an index of soil susceptibility to wind erosion of different climatic periods. The use of a unique µt value in wind erosion prediction models can lead to erroneous wind erosion calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
利用PAM防治松散扰动沙土风蚀效果的风洞试验研究   总被引:1,自引:2,他引:1  
翻耕农地和建设工地的扰动松散土是沙尘的重要来源。防止扰动土风蚀是保护生态环境的重要内容。该研究通过室内风洞模拟试验,研究了PAM对于提高松散扰动土起动风速、防止风蚀的效果。试验分别采用0°、10°、20°、30°不同的吹角,地表处理为:喷施PAM(用量分别为0.5,1,2,4 g/m2)、喷施清水和未加处理的自然松散扰动(沙)土。试验结果表明:通过表面喷洒PAM溶液可以显著地提高松散扰动土的起动风速,达到控制风蚀的目的;仅喷洒清水处理也可以在一定程度上提高沙尘的起动风速,但其效果甚微;如果松散(沙)土喷施PAM的表面不被扰动(无裂纹),用于松散土风蚀防治时PAM用量控制在1 g/m2以上就可以有效防止风蚀发生,试样经受风速为14 m/s左右的大风、历时30 min而未产生风蚀。  相似文献   

4.
The application of biochar produced from wood and crop residues, such as sawdust, straw, sugar bagasse and rice hulls, to highly weathered soils under tropical conditions has been shown to influence soil greenhouse gas (GHG) emissions. However, there is a lack of data concerning GHG emissions from soils amended with biochar derived from manure, and from soils outside tropical and subtropical regions. The objective of this study was to quantify the effect on emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) following the addition, at a rate of 18 t ha−1, of two different types of biochar to an Irish tillage soil. A soil column experiment was designed to compare three treatments (n = 8): (1) non-amended soil (2) soil mixed with biochar derived from the separated solid fraction of anaerobically digested pig manure and (3) soil mixed with biochar derived from Sitka Spruce (Picea sitchensis). The soil columns were incubated at 10 °C and 75% relative humidity, and leached with 80 mL distilled water, twice per week. Following 10 weeks of incubation, pig manure, equivalent to 170 kg nitrogen ha−1 and 36 kg phosphorus ha−1, was applied to half of the columns in each treatment (n = 4). Gaseous emissions were analysed for 28 days following manure application. Biochar addition to the soil increased N2O emissions in the pig manure-amended column, most likely as a result of increased denitrification caused by higher water filled pore space and organic carbon (C) contents. Biochar addition to soil also increased CO2 emissions. This was caused by increased rates of C mineralisation in these columns, either due to mineralisation of the labile C added with the biochar, or through increased mineralisation of the soil organic matter.  相似文献   

5.
We studied the effects of maize residue application on some life-cycle parameters of the earthworm Aporrectodea trapezoides in saline agricultural soils with electrical conductivity (EC) ranging from 1.58 to 7.35 dS m−1. This experiment was carried out under controlled laboratory conditions for 150 days. Results showed that soil salinity significantly affected the growth and reproduction of earthworms, decreasing survival, numbers and mean fresh weights of adults, juveniles and cocoons. Maize residue application gave a greater survival of earthworms at all salinity levels, but the differences were only significant at an EC of 7.35 dS m−1, although the mean weight of adult earthworms was significantly increased by maize residue application at all salinity levels. At an EC of 1.58 dS m−1 and 3.35 dS m−1, the application of maize residues gave significantly higher numbers of cocoons and juveniles, but in soils with 5.26 dS m−1 and 7.35 dS m−1 earthworms did not produce any cocoons over the experimental period, irrespective of maize residue application. These results indicated that maize residue application alleviated the negative effects of soil salinity on the growth and reproduction of A. trapezoides up to 3.35 dS m−1, above which maize residues only increased the growth but not on the reproduction of earthworms.  相似文献   

6.
Biochar has the potential to decrease salinity and nutrient loss of saline soil. We investigated the effects of biochar amendment (0–10 g kg−1) on salinity of saline soil (2.8‰ salt) in NaCl leaching and nutrient retention by conducting column leaching experiments. The biochar was produced in situ from Salix fragilis L. via a fire-water coupled process. The soil columns irrigated with 15 cm of water showed that biochar amendment (4 g kg−1) decreased the concentration Na+ by 25.55% in the first irrigation and to 60.30% for the second irrigation in sandy loam layer over the corresponding control (CK). Meanwhile, the sodium adsorption ratio (SAR) of soil after the first and second irrigation was 1.62 and 0.54, respectively, which were 15.2% and 49.5% lower than CK. The marked increase in saturated hydraulic conductivity (Ks) from 0.15 × 10–5 cm s−1 for CK to 0.39 × 10–5 cm s−1, following 4 g kg−1 of biochar addition, was conducive to salt leaching. Besides, biochar use (4 g kg−1) increased NH4+-N and Olsen-P by 63.63% and 62.50% over the CK, but accelerated NO3-N leaching. Since 15 cm hydrostatic pressure would result in salt accumulation of root zone, we would recommend using 4 g kg−1 of biochar, 30 cm of water to ease the problem of salt leaching from the surface horizon to the subsoil. This study would provide a guidance to remediate the saline soil in the Yellow River Delta by judicious application of biochar and irrigation.  相似文献   

7.
In dryland areas, integrating biochar soil amendment with in situ rainwater harvesting systems may decrease soil erosion, improve soil quality, and increase crop productivity and yield. This study was conducted to investigate the effect of maize straw biochar amendment and ridge-furrow rainwater harvesting systems on run-off, sediment yield and the physico-chemical properties of a Calcic Cambisol soil in semiarid areas. The experiment was conducted on alfalfa (Medicago sativa) production land at the Anjiagou Catchment experimental station in Gansu province, China. The experimental layout was a split-plot design with three replications. Biochar was applied at a rate of 0 and 30 t ha−1, respectively. The tillage treatments were flat planting, open-ridging, and tied-ridging (TR). Overall, the integration of maize straw biochar with TR decreased soil bulk density at 0–40 cm depth. Biochar application reduced run-off by 37.8% and soil loss by 55.5% during alfalfa-growing seasons compared to the control. In general, biochar addition increased soil total potassium, but the same effect was not observed for soil pH, total nitrogen, total phosphorus, and available phosphorus. These findings demonstrate the potential of integrating maize straw biochar and tillage systems to reduce soil erosion and improve soil quality for rainfed crop production in semiarid areas. Further studies on the effect of biochar-tillage system interaction are warranted to improve soil conditions for plant growth and increase crop yield in dryland areas.  相似文献   

8.
Although the addition of biochar has been shown to reduce the phosphorus (P) adsorption capacity of soil, quantitative evidence of this has mainly been provided by incubation experiments and it is therefore essential to conduct long-term field trials to draw general conclusions. It is largely unknown whether bone char has a greater effect than lignocellulosic biochar on P adsorption–desorption processes and crop yield. The aim of this study was to determine the long-term (8 years) effect of bone char and biochar on P adsorption–desorption and crop yield in low-input acidic soils. The results showed that bone char decreased the maximum P adsorption capacity (Qm) by 10% and increased the desorption capacity (Ds) by 150% compared with the control (i.e. without a soil amendment). The desorption ratio was highest for the bone char treatment (10.3%) and three times more than the control. Plant-available P was seven times greater under bone char than the control. There was no variation in adsorption–desorption characteristics, desorption ratio and plant-P available content between bone char and lignocellulosic biochar treatments. The average yield increment following the application of bone char and biochar was 1.7 and 1.4 Mg ha−1 for maize and 1.8 and 1.9 Mg ha−1 for soya bean, respectively. Despite the low application rate (4 t ha−1 year−1), these findings demonstrated that the long-term application of bone char and biochar-based amendments enhanced P availability in low-input cropping systems, mainly by altering the P adsorption and desorption capacity of soils.  相似文献   

9.
The incorporation of organic amendments from pruning waste into soil may help to mitigate soil degradation and to improve soil fertility in semiarid ecosystems. However, the effects of pruning wastes on the biomass, structure and activity of the soil microbial community are not fully known. In this study, we evaluate the response of the microbial community of a semiarid soil to fresh and composted vegetal wastes that were added as organic amendments at different doses (150 and 300 t ha−1) five years ago. The effects on the soil microbial community were evaluated through a suite of different chemical, microbiological and biochemical indicators, including enzyme activities, community-level physiological profiles (CLPPs) and phospholipid fatty acid analysis (PLFA). Our results evidenced a long-term legacy of the added materials in terms of soil microbial biomass and enzyme activity. For instance, cellulase activity reached 633 μg and 283 μg glucose g−1 h−1 in the soils amended with fresh and composted waste, respectively. Similarly, bacterial biomass reached 116 nmol g−1 in the soil treated with a high dose of fresh waste, while it reached just 66 nmol g−1 in the soil amended with a high dose of composted waste. Organic amendments produced a long-term increase in microbiological activity and a change in the structure of the microbial community, which was largely dependent on the stabilization level of the pruning waste but not on the applied dose. Ultimately, the addition of fresh pruning waste was more effective than the application of composted waste for improving the microbiological soil quality in semiarid soils.  相似文献   

10.
生物黑炭被作为土壤改良剂应用逐渐被认可,但其应用机制特别是生物黑炭对氮素形态和根际微生物的影响机理尚不明确,影响其推广。本文采用盆栽试验,研究了玉米和水稻秸秆烧制的生物黑炭按不同量施入土壤后,对玉米苗期株高、生物量和根际土壤氮素形态及相关微生物的影响。结果表明,施入60 g·kg-1玉米黑炭和40~60 g·kg-1水稻黑炭均对玉米苗期株高有显著(P0.05)降低作用,其中水稻黑炭的降低效果更为明显;分别施入60 g·kg-1玉米黑炭和20~60 g·kg-1水稻黑炭后,玉米植株地上部生物量均显著降低。施入60 g·kg-1玉米黑炭后根际土壤含水量和微生物量氮显著提高。随两种生物黑炭施入量的不断增加,玉米苗期根际土壤全氮、硝态氮含量以及固氮作用强度也显著增加,且均在60 g·kg-1施用量下达最大值。施用40 g·kg-1玉米黑炭可显著提高玉米苗期根际土壤氨态氮含量。同时,施用两种生物黑炭后,均不同程度地抑制了玉米根际土壤中细菌总体数量,促进了固氮菌和纤维素降解菌的生长,其中施入60 g·kg-1玉米黑炭的效果最为明显。综上,玉米和水稻秸秆生物黑炭的适量施用,可以促进玉米根际土壤氮素的循环转化,影响相关微生物的群落结构,且与水稻秸秆相比,玉米秸秆生物黑炭的施用效果更加明显。本文针对作物生长、土壤氮素形态及相关微生物数量3个方面研究生物黑炭施入土壤对氮有效性的影响,能够更全面、更准确地将生物黑炭如何影响土壤氮素转化展现出来,促进生物黑炭的深入开发利用,对黑土肥力保护具有一定意义。  相似文献   

11.
Biochar has a great potential for enhancing soil fertility and carbon sequestration while enabling beneficial waste disposition. Because of the potential for widespread application, it is essential to proactively assess and mitigate any unintended consequences associated with soil biochar amendment. We conducted soil avoidance tests, growth and reproduction tests, and oxidative stress assays with the earthworm Eisenia foetida to assess the potential toxicity of soil amended with biochar produced from apple wood chips. Earthworms avoided soils containing 100 and 200 g/kg dry biochar at statistically significant levels (p < 0.05), and after 28-day incubation, these earthworms lost more weight than those in control (unamended) soil. However, biochar did not affect the reproduction of earthworms. We investigated whether the observed avoidance was due to nutrition deficiency, desiccation, or the presence of toxic polynuclear aromatic hydrocarbons (PAHs) formed during biochar production by pyrolysis. Nutrition deficiency was excluded by the lack of earthworm avoidance to soil amended with nutrient-deficient sand instead of biochar. Although traces of PAH were detected in the tested biochar (e.g., 25.9 μg/kg fluorene, 3290 μg/kg naphthalene, and 102 μg/kg phenanthrene), the lack of lipid peroxidation and no increase in superoxide dismutase activity in biochar-exposed earthworms suggests that presence of toxic compounds was not a likely reason for avoidance. Furthermore, wetting the biochar to its field capacity resulted in statistically undetectable avoidance relative to control soil, indicating that insufficient moisture could be a key factor affecting earthworm behavior in soil amended with dry biochar. To avoid desiccation of invertebrates and enable their beneficial ecosystem services, we recommend wetting biochar either before or immediately after soil application.  相似文献   

12.
Biochar application to soil may impact soil nitrogen (N) dynamics, but the effects on N uptake and utilization by crop remain largely unknown, especially the effects of the rate of biochar application. To investigate the effects of biochar on soil 15N retention rate and 15N utilization efficiency (15NUE) by maize, a six-month 15N isotope tracer technique combined with in situ pot experiment was conducted in Mollisol. The experiment included four treatments: no biochar applied (CK) and biochar applied at the rates of 12 t ha−1 (P12), 24 t ha−1 (P24) and 48 t ha−1 soil (P48). Compared with CK, biochar application reduced soil bulk density and 15N loss rate, and significantly improved total N and 15N retention amount in the 0–30 cm soil depth. The P24 treatment had the largest increase in 15N retention rate throughout the 0–40 cm depth. After biochar application, the 15N uptake and 15NUE were significantly increased in the grain and leaf, which promoted grain yields. Contrary to this, the P48 treatment appeared to lower 15N uptake and 15NUE compared with P12 and P24. In conclusion, biochar application improves the potential of the soil to retain N and the improvement in 15N uptake and utilization are more pronounced in maize leaves and grain. Moreover, biochar application promotes 15N utilization in maize plant and improves maize yield. However, when biochar application rate is high (i.e. P48 treatment), the 15N retention by the soil and 15N utilization by the maize are reduced markedly compared with P12 and P24.  相似文献   

13.
The wind erosion equation (WEQ) was used for several decades for predicting soil loss by wind erosion, but few systematic studies on the uncertainty of predicting wind erosion have been conducted. Several researchers found that WEQ is not accurately representing soil erosion and under‐represents soil erodibility that consequently results in WEQ underestimations. WEQ was modified under Canadian conditions for the National Agri‐Environmental Health Analysis and Reporting Program, referred as (WEQ‐NAHARP). The model, input, and parameter uncertainties that control model efficiency were used to analyze the local and universal uncertainties for WEQ‐NAHARP. One and ninety‐nine percentiles were used as lower and upper boundaries of uncertainty bound when using general likelihood uncertainty estimation for estimating the uncertainty of WEQ‐NAHARP's prediction. The soil erodibility (I ), climate factor (C ), and soil surface roughness factor (K ) were found as the three most sensitive factors in predicting wind erosion in WEQ‐NAHARP. The vegetation cover factor (V ) was discovered not sensitive to the prediction model as it is less than 1,000 kg ha−1 and became very sensitive as V ‐value is greater than 5,000 kg ha−1 . Field length along the prevailing wind erosion direction (L ) and V have lower local sensitivity indexes than the other three factors. WEQ‐NAHARP underestimated wind erosion rate of Pampas, Argentina, and overestimated at Washington State, USA. This probably reflected the nature of WEQ‐NAHARP's behavior, which had a great uncertainty of its prediction. The model appears to underestimate total annual soil loss for coarse soil and overestimate annual soil loss for finer soil. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Recent studies have shown both increased (positive priming) and decreased (negative priming) mineralisation of native soil organic carbon (SOC) with biochar addition. However, there is only limited understanding of biochar priming effects and its C mineralisation in contrasting soils at different temperatures, particularly over a longer period. To address this knowledge gap, two wood biochars (450 and 550 °C; δ13C −36.4‰) were incubated in four soils (Inceptisol, Entisol, Oxisol and Vertisol; δ13C −17.3 to −28.2‰) at 20, 40 and 60 °C in the laboratory. The proportions of biochar- and soil-derived CO2–C were quantified using a two-pool C-isotopic model.Both biochars caused mainly positive priming of native SOC (up to +47 mg CO2–C g−1 SOC) in the Inceptisol and negative priming (up to −22 mg CO2–C g−1 SOC) in the other soils, which increased with increasing temperature from 20 to 40 °C. In general, positive or no priming occurred during the first few months, which remained positive in the Inceptisol, but shifted to negative priming with time in the other soils. The 550 °C biochar (cf. 450 °C) caused smaller positive priming in the Inceptisol or greater negative priming in the Entisol, Oxisol and Vertisol at 20 and 40 °C. At 60 °C, biochar caused positive priming of native SOC only in the first 6 months in the Inceptisol. Whereas, in the other soils, the native SOC mineralisation was increased (Entisol and Oxisol) and decreased (Vertisol) only after 6 months, relative to the control. At 20 °C, the mean residence time (MRT) of 450 °C and 550 °C biochars in the four soils ranged from 341 to 454 and 732−1061 years, respectively. At 40 and 60 °C, the MRT of both 450 °C biochar (25−134 years) and 550 °C biochar (93−451 years) decreased substantially across the four soils. Our results show that biochar causes positive priming in the clay-poor soil (Inceptisol) and negative priming in the clay-rich soils, particularly with biochar ageing at a higher incubation temperature (e.g. 40 °C) and for a high-temperature (550 °C) biochar. Furthermore, the 550 °C wood biochar has been shown to persist in soil over a century or more even at elevated temperatures (40 or 60 °C).  相似文献   

15.
The large-scale production of biochar for carbon sequestration provides an opportunity for using these materials as inoculum carriers to deliver plant growth-promoting rhizobacteria (PGPR) into agricultural soils. Here, we evaluated the suitability of a biochar produced from pinewood pyrolyzed at 300 °C as a carrier for a well-studied PGPR strain, Enterobacter cloacae UW5. This strain was genetically modified to produce a green fluorescent protein marker that enabled tracking of the inoculum. Results from selective plate count assays and quantitative PCR (qPCR) confirmed that cell survival was slightly improved by addition of bacteria to soil using biochar as a carrier for the inoculant, as compared to soil directly inoculated. Total 16S rRNA genes were quantified using qPCR and DNA templates from the same soil treatments to distinguish the impact of biochar on total bacterial abundance from its influence on inoculum survival. Here total bacterial abundance was not influenced by biochar. All treatments resulted in bacterial colonization of roots at population densities of approximately 105 CFU g−1 root mass. Cucumber plants grown in the biochar amended soils had significantly greater biomass and root development than those planted in un-amended soil, regardless of the presence of inoculum. The ability of bacteria to colonize the plant roots and produce a plant growth hormone was not affected by biochar. However, UW5 inoculum did not promote root development in cucumber in any of the soils tested here. Overall, these experiments suggest that the 300 °C pine biochar is effective for evenly distributing inoculum into soil and promotes cucumber development in sandy loams.  相似文献   

16.
甘肃秦王川灌区种植豆禾混播牧草的农田生态保育效应   总被引:2,自引:1,他引:1  
以裸地(CK)、种植小麦(Triticum aestivum)和苜蓿/无芒雀麦(Medicago sativa/Bromus inermis)豆禾混播牧草地为研究对象,通过测定地表植被特征指标、土壤风蚀量及理化性质等指标,探究秦王川灌区农田风蚀规律及种植春小麦和牧草对土壤及养分流失的影响。结果表明:农田表土损失呈秋末冬初流失较多,冬季较少,春季又明显增强的"U"形曲线模式,从9月至翌年6月,出现2个风蚀高峰期(9—11月和3—5月);耕地裸露造成表土年均流失1.7 kg/m~2,即每年被风吹蚀1.3 mm厚表土,土壤有机质损失236.2 kg/hm~2,而种植小麦和牧草后在地表植被(根茬)覆盖作用下表土流失减少20.1%和52.3%,有机质损失减少12.2%和50.7%;由于风蚀季牧草植被(根茬)的盖度、高度和地表生物量均较小麦大,使得牧草地的地表粗糙度和湿度及表土(0—5 cm)含水率较小麦地高,从而造成土壤和有机质流失较小麦地少;相关和回归分析显示,地表植被特征指标与地表粗糙度和土壤含水率间呈显著正相关,而与地表土壤和有机质流失量呈极显著负相关;植被盖度每提高1%,将使表土和有机质流失减少4.1 g/m~2和59.3 mg/m~2,地表生物量每提高1 g/m~2,将使表土和有机质流失减少2.3 g/m~2和34.0 mg/m~2;春季春播小麦地的表土流失量与裸地相同,而种植多年生豆禾混播牧草可显著减少表土流失和有机质损失。综合以上,甘肃灌区农田春季播种农作物易引起土壤退化,而种植多年生豆禾混播牧草可实现农田生态保育,从而提高耕地质量和区域环境质量。  相似文献   

17.
The soil survey of Kuwait has revealed the landscapes dominated by loose sandy material, that are vulnerable to wind erosion. Globally three modes of soil particle movement (creep, saltation & suspension) by wind have been recognized. To evaluate these modes in the deserts of Kuwait, sixty surface soil samples were collected and analyzed for particle sizes to quantify relative occurrence of modes of particle movement in the deserts of Kuwait. This analysis revealed distribution of particles in the size ranges, as follows: saltation (70%) > Creep (20%) > Suspension (10%) confirming saltation is the main mode of soil movement. This has provided basic information to set up a pilot scale experiment to reduce the wind erosion rate through sand stabilization using various sand binding products in three treatments; T1 (native sandy soil); T2 (sand mixed with biochar and animal manure); T3 (sand mixed with biochar, animal manure, Urea Formaldehyde (UF), Sulfonated Naphthalene Formaldehyde (SNF), and Poly Vinyl Alcohol (PVA). The results showed that the erosion rate of native sandy soil (T1) has increased from 3.33, 4.77 to 7.35 g/(m2. min) when wind speed was increased from 5, 10 to 15 m/s, respectively. At the same wind speeds, the measured erosion loss was 1.99, 3.07, 5.32 g/(m2. min) in T2 and 1.17, 2.6, 4.24 g/(m2. min) in T3. From these results, it can be concluded that there is a possibility to reduce wind erosion in the deserts of Kuwait through sand stabilization and save the deserts from further degradation.  相似文献   

18.
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover.High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste-contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine tailings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine tailings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.  相似文献   

19.
Solar vegetable greenhouse soils show low soil organic carbon content and thus also low rates of soil respiration. Processing vegetable residues to biochar and mixing biochar with maize straw might improve soil respiration and increase soil organic carbon stocks, while preventing the spread of soil-borne diseases carried by vegetable residues. In an incubation experiment, we tested how additions of maize straw (S) and biochar (B) added in varying ratios (100S, 75S25B, 50S50B, 25S75B, 100B and 0S0B (control)) affect soil respiration and fraction of added C remaining in soil. Daily CO2 emissions were measured over 60 days incubation, the natural abundance of 13C in soil and in the added biochar and maize straw were analysed. Our result shows that (a) soil CO2 emissions were significantly increased compared to soil without the straw additions, while addition of biochar only decreased soil respiration; (b) cumulative CO2 emissions decreased with increasing ratio of added biochar to maize straw; (c) the abundance of soil 13C was significant positively correlated with cumulative CO2 emissions, and thus with the ratio of straw addition. Our results indicate that incorporation of maize straw in greenhouse soils is a meaningful measure to increase soil respiration and to facilitate greenhouse atmosphere CO2 limitation while producing vegetables. On the other hand, additions of biochar from vegetable residues will increase soil organic carbon concentration. Therefore, the simultaneous application of maize straw and biochar obtained from vegetable residues is an effective option to maintain essential soil functions for vegetable production in sunken solar greenhouses.  相似文献   

20.
The use of biochar in agriculture is a promising management tool to mitigate soil degradation and anthropogenic climate change. However, biochar effects on soil nutrient bioavailability are complex and several concurrent processes affecting nutrient bioavailability can occur in biochar‐amended soils. In a short‐term pot experiment, the concentration of N, P, K, S, Ca, Mg, Cu, Zn, Mn, B, Fe, and Na in the shoots of maize grown in three different soil types [sandy soil (S1), sandy loam (S2), and sandy clay loam (S3)] was investigated. The soils were either unamended or amended with two different biochars [wheat straw biochar (SBC) or pine wood biochar (WBC)] at two P fertilizer regimes (–/+ P). We used three‐way ANOVA and Principal Component Analyses (PCA) of transformed ionomic data to identify the effects of biochar, soil, and P fertilizer on the shoot nutrient concentrations. Three distinct effects of biochar on the shoot ionome were detected: (1) both biochars added excess K to all three soils causing an antagonistic effect on the uptake of Ca and Mg in maize shoots. (2) Mn uptake was affected by biochar with varying effects depending on the combined effect of biochar and soil properties. (3) WBC increased maize uptake of B, despite the fact that WBC increased soil pH and added additional calcite to the soil, which would be expected to reduce B bioavailability. The results of this study highlight the fact that the bioavailability of several macro and micronutrients is affected by biochar application to soil and that these effects depend on the combined effect of biochar and soils with different properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号