首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
155,000 years of West African monsoon and ocean thermal evolution   总被引:3,自引:0,他引:3  
A detailed reconstruction of West African monsoon hydrology over the past 155,000 years suggests a close linkage to northern high-latitude climate oscillations. Ba/Ca ratio and oxygen isotope composition of planktonic foraminifera in a marine sediment core from the Gulf of Guinea, in the eastern equatorial Atlantic (EEA), reveal centennial-scale variations of riverine freshwater input that are synchronous with northern high-latitude stadials and interstadials of the penultimate interglacial and the last deglaciation. EEA Mg/Ca-based sea surface temperatures (SSTs) were decoupled from northern high-latitude millennial-scale fluctuation and primarily responded to changes in atmospheric greenhouse gases and low-latitude solar insolation. The onset of enhanced monsoon precipitation lags behind the changes in EEA SSTs by up to 7000 years during glacial-interglacial transitions. This study demonstrates that the stadial-interstadial and deglacial climate instability of the northern high latitudes exerts dominant control on the West African monsoon dynamics through an atmospheric linkage.  相似文献   

2.
On the basis of a carbon isotopic record of both marine carbonates and organic matter from the Triassic-Jurassic boundary to the present, we modeled oxygen concentrations over the past 205 million years. Our analysis indicates that atmospheric oxygen approximately doubled over this period, with relatively rapid increases in the early Jurassic and the Eocene. We suggest that the overall increase in oxygen, mediated by the formation of passive continental margins along the Atlantic Ocean during the opening phase of the current Wilson cycle, was a critical factor in the evolution, radiation, and subsequent increase in average size of placental mammals.  相似文献   

3.
Over the past 40 years, Southern Hemisphere circumpolar westerly winds have strengthened. In his Perspective, Karoly highlights the modeling study by Gillett and Thompson, who show that these observed Southern Hemisphere climate changes in spring and summer can be explained as a response to stratospheric ozone depletion over Antarctica. The observed strengthening of the circumpolar westerlies in winter is less likely to be the response to springtime Antarctic ozone depletion, but may be due in part to increasing atmospheric greenhouse gases. Understanding the different causes and practical impacts of these trends in Southern Hemisphere circulation is an important next step for climate researchers.  相似文献   

4.
Passive microwave radiometry from satellites provides more precise atmospheric temperature information than that obtained from the relatively sparse distribution of thermometers over the earth's surface. Accurate global atmospheric temperature estimates are needed for detection of possible greenhouse warming, evaluation of computer models of climate change, and for understanding important factors in the climate system. Analysis of the first 10 years (1979 to 1988) of satellite measurements of lower atmospheric temperature changes reveals a monthly precision of 0.01 degrees C, large temperature variability on time scales from weeks to several years, but no obvious trend for the 10-year period. The warmest years, in descending order, were 1987, 1988, 1983, and 1980. The years 1984, 1985, and 1986 were the coolest.  相似文献   

5.
Atmospheric carbon dioxide levels over phanerozoic time   总被引:1,自引:0,他引:1  
Berner RA 《Science (New York, N.Y.)》1990,249(4975):1382-1386
A new model has been constructed for calculating the level of atmospheric CO(2) during the past 570 million years. A series of successive steady states for CO(2) is used in order to calculate CO(2) level from a feedback function for the weathering of silicate minerals. Processes considered are: sedimentary burial of organic matter and carbonates; continental weathering of silicates, carbonates, and organic matter; and volcanic and metamorphic degassing of CO(2). Sediment burial rates are calculated with the use of an isotope mass-balance model and carbon isotopic data on ancient seawater. Weathering rates are calculated from estimates of past changes in continental land area, mean elevation, and river runoff combined with estimates of the effects of the evolution of vascular land plants. Past degassing rates are estimated from changes in the rate of generation of sea floor and the shift of carbonate deposition from platforms to the deep sea. The model results indicate that CO(2) levels were high during the Mesozoic and early Paleozoic and low during the Permo-Carboniferous and late Cenozoic. These results correspond to independently deduced Phanerozoic paleoclimates and support the notion that the atmospheric CO(2) greenhouse mechanism is a major control on climate over very long time scales.  相似文献   

6.
Global warming from the increase in greenhouse gases has become a major scientific and political issue during the past decade. That infrared radiation is trapped by greenhouse gases and particles in a planetary atmosphere and that the atmospheric CO(2) level has increased by some 25 percent since 1850 because of fossil fuel combustion and land use (largely deforestation) are not controversial; levels of other trace greenhouse gases such as methane and chlorofluorocarbons have increased by even larger factors. Estimates of present and future effects, however, have significant uncertainties. There have also recently been controversial claims that a global warming signal has been detected. Results from most recent climatic models suggest that global average surface temperatures will increase by some 2 degrees to 6 degrees C during the next century, but future changes in greenhouse gas concentrations and feedback processes not properly accounted for in the models could produce greater or smaller increases. Sea level rises of 0.5 to 1.5 meters are typically projected for the next century, but there is a small probability of greater or even negative change. Forecasts of the distribution of variables such as soil moisture or precipitation patterns have even greater uncertainties. Policy responses range from engineering countermeasures to passive adaptation to prevention and a "law of the atmosphere." One approach is to implement those policies now that will reduce emissions of greenhouse gases and have additional societal benefits. Whether the uncertainties are large enough to suggest delaying policy responses is not a scientific question per se, but a value judgment.  相似文献   

7.
The late Paleozoic deglaciation is the vegetated Earth's only recorded icehouse-to-greenhouse transition, yet the climate dynamics remain enigmatic. By using the stable isotopic compositions of soil-formed minerals, fossil-plant matter, and shallow-water brachiopods, we estimated atmospheric partial pressure of carbon dioxide (pCO2) and tropical marine surface temperatures during this climate transition. Comparison to southern Gondwanan glacial records documents covariance between inferred shifts in pCO2, temperature, and ice volume consistent with greenhouse gas forcing of climate. Major restructuring of paleotropical flora in western Euramerica occurred in step with climate and pCO2 shifts, illustrating the biotic impact associated with past CO2-forced turnover to a permanent ice-free world.  相似文献   

8.
Changes in solar radiation, as it affects the rate of weathering of silicates on the continents, and other changes involving weathering and the degassing of carbon dioxide (CO(2)) have been included in a long-term carbon-cycle model. These additions to the model show that the major controls on CO(2) concentrations during the Paleozoic era were solar and biological, and not tectonic, in origin. The model predictions agree with independent estimates of a large mid-Paleozoic (400 to 320 million years ago) drop in CO(2) concentrations, which led to large-scale glaciation. This agreement indicates that variations in the atmospheric greenhouse effect were important in global climate change during the distant geologic past.  相似文献   

9.
The preservation, age, and stratigraphic relation of an in situ ashfall layer with an underlying desert pavement in Arena Valley, southern Victoria Land, indicate that a cold-desert climate has persisted in Arena Valley during the past 4.3 million years. These data indicate that the present East Antarctic Ice Sheet has endured for this time and that average temperatures during the Pliocene in Arena Valley were no greater than 3 degrees C above present values. One implication is that the collapse of the East Antarctic Ice Sheet due to greenhouse warming is unlikely, even if global atmospheric temperatures rise to levels last experienced during mid-Pliocene times.  相似文献   

10.
Sulfur isotopic composition of cenozoic seawater sulfate   总被引:2,自引:0,他引:2  
A continuous seawater sulfate sulfur isotope curve for the Cenozoic with a resolution of approximately 1 million years was generated using marine barite. The sulfur isotopic composition decreased from 19 to 17 per mil between 65 and 55 million years ago, increased abruptly from 17 to 22 per mil between 55 and 45 million years ago, remained nearly constant from 35 to approximately 2 million years ago, and has decreased by 0.8 per mil during the past 2 million years. A comparison between seawater sulfate and marine carbonate carbon isotope records reveals no clear systematic coupling between the sulfur and carbon cycles over one to several millions of years, indicating that changes in the burial rate of pyrite sulfur and organic carbon did not singularly control the atmospheric oxygen content over short time intervals in the Cenozoic. This finding has implications for the modeling of controls on atmospheric oxygen concentration.  相似文献   

11.
The effect of variations in cloud cover, optical properties, and fractional distribution with altitude on the mean surface temperature of a model of the early earth has been investigated. In all cases examined, cloud-climate feedbacks result in temperatures greater than those in models with no cloud feedbacks. If the model of hydrospheric feedback effects is correct, then cloud feedbacks are as important to the climate as changes in solar luminosity and atmospheric composition during the earth's atmospheric evolution. In particular, the early earth need not become completely ice-covered if strong negative cloud feedbacks occur. However, until a proper understanding of cloud feedbacks is available, conclusions regarding conditions in the early atmosphere must remain in doubt.  相似文献   

12.
A tropical Pacific climate state resembling that of a permanent El Ni?o is hypothesized to have ended as a result of a reorganization of the ocean heat budget approximately 3 million years ago, a time when large ice sheets appeared in the high latitudes of the Northern Hemisphere. We report a high-resolution alkenone reconstruction of conditions in the heart of the eastern equatorial Pacific (EEP) cold tongue that reflects the combined influences of changes in the equatorial thermocline, the properties of the thermocline's source waters, atmospheric greenhouse gas content, and orbital variations on sea surface temperature (SST) and biological productivity over the past 5 million years. Our data indicate that the intensification of Northern Hemisphere glaciation approximately 3 million years ago did not interrupt an almost monotonic cooling of the EEP during the Plio-Pleistocene. SST and productivity in the eastern tropical Pacific varied in phase with global ice volume changes at a dominant 41,000-year (obliquity) frequency throughout this time. Changes in the Southern Hemisphere most likely modulated most of the changes observed.  相似文献   

13.
The Holocene Asian monsoon: links to solar changes and North Atlantic climate   总被引:29,自引:0,他引:29  
A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years. Although the record broadly follows summer insolation, it is punctuated by eight weak monsoon events lasting approximately 1 to 5 centuries. One correlates with the "8200-year" event, another with the collapse of the Chinese Neolithic culture, and most with North Atlantic ice-rafting events. Cross-correlation of the decadal- to centennial-scale monsoon record with the atmospheric carbon-14 record shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.  相似文献   

14.
The analysis of air bubbles from ice cores has yielded a precise record of atmospheric greenhouse gas concentrations, but the timing of changes in these gases with respect to temperature is not accurately known because of uncertainty in the gas age-ice age difference. We have measured the isotopic composition of argon in air bubbles in the Vostok core during Termination III (approximately 240,000 years before the present). This record most likely reflects the temperature and accumulation change, although the mechanism remains unclear. The sequence of events during Termination III suggests that the CO2 increase lagged Antarctic deglacial warming by 800 +/- 200 years and preceded the Northern Hemisphere deglaciation.  相似文献   

15.
The Phanerozoic record of global sea-level change   总被引:5,自引:0,他引:5  
We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 +/- 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 10(4)- to 10(6)-year scale, but a link between oxygen isotope and sea level on the 10(7)-year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present).  相似文献   

16.
Earth's energy imbalance: confirmation and implications   总被引:2,自引:0,他引:2  
Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space. This imbalance is confirmed by precise measurements of increasing ocean heat content over the past 10 years. Implications include (i) the expectation of additional global warming of about 0.6 degrees C without further change of atmospheric composition; (ii) the confirmation of the climate system's lag in responding to forcings, implying the need for anticipatory actions to avoid any specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration and sea level rise.  相似文献   

17.
Because sources of sulfur and nitrogen oxides distributed broadly across eastern North America have greatly overlapping zones of influence, it is difficult to determine detailed relations between emissions and the resulting acid deposition. Although substantial progress has been made in the past decade in understanding the pertinent atmospheric processes and in describing them in numerical models, because of the complexities of these processes and the wide range of the time and space scales involved, credible source-receptor relations for regional-scale acid deposition are not yet at hand. Consequently, near-term strategies for reducing acid deposition should be based on considerations other than detailed atmospheric source-receptor relations, but with confidence that regional deposition will be reduced equivalently to any reduction in regional emissions.  相似文献   

18.
Growing algal and bacterial stromatolites composed of nearly amorphous silica occur around hot springs and geysers in Yellowstone National Park, Wyoming. Some Precambrian stromatolites may be bacterial rather than algal, which has important implications in atmospheric evolution, since bacterial photo-synthesis does not release oxygen. Conophyton stromatolites were thought to have become extinct at the end of the Precambrian, but are still growing in hot spring effluents.  相似文献   

19.
Body size plays a critical role in mammalian ecology and physiology. Previous research has shown that many mammals became smaller during the Paleocene-Eocene Thermal Maximum (PETM), but the timing and magnitude of that change relative to climate change have been unclear. A high-resolution record of continental climate and equid body size change shows a directional size decrease of ~30% over the first ~130,000 years of the PETM, followed by a ~76% increase in the recovery phase of the PETM. These size changes are negatively correlated with temperature inferred from oxygen isotopes in mammal teeth and were probably driven by shifts in temperature and possibly high atmospheric CO(2) concentrations. These findings could be important for understanding mammalian evolutionary responses to future global warming.  相似文献   

20.
● For 8000 years, agricultural practices have affected atmospheric CO2 concentrations. ● Paddy rice cultivation has impacted atmospheric CH4 concentration since 5000 years ago. ● Modern agricultural practices must include carbon storage and reduced emissions. ● Sustainable management in agriculture must be combined with decarbonizing the economy and reducing population growth. Since humans started practicing agriculture at the expense of natural forests, 8000 years ago, they have affected atmospheric CO2 concentrations. Their impact on atmospheric CH4 started about 5000 years ago, as result of the cultivation of paddy rice. A challenge of modern agricultural practices is to reverse the impact cropping has had on greenhouse gas emissions and the global climate. There is an increasing demand for agriculture to provide food security as well as a range of other ecosystem services. Depending on ecosystem management, different practices may involve trade-offs and synergies, and these must be considered to work toward desirable management systems. Solution toward food security should not only focus on agricultural management practices, but also on strategies to reduce food waste, more socially-just distribution of resources, changes in lifestyle including decarbonization of the economy, as well as reducing human population growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号