首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study examined the effects of light, temperature and carbon dioxide on the growth of potato (Solanum tuberosum L.) in a controlled environment in order to ascertain the best growing conditions for potato in life support systems in space. 'Norland' and 'Russet Burbank' were grown in 6-L pots of peat-vermiculite for 56 d in growth chambers at the University of Wisconsin Biotron. Environmental factor levels included continuous light (24-h photoperiod) at 250, 400, and 550 micromoles m-2 s-1 PPF; constant temperature at 16, 20, and 24 degrees C; and CO2 at approximately 400, 1000, and 1600 microliters L-1. Separate effects analysis and ridge analysis provided a means to examine the effects of individual environmental factors and to determine combinations of factors that are expected to give the best increases in yields over the central design point. The response surface of Norland indicated that tuber yields were highest with moderately low temperature (18.7 degrees C), low CO2 (400 microliters L-1) and high light (550 micromoles m-2 s-1 PPF). These conditions also favored shorter stem growth. Russet Burbank tuber yields were highest at moderately low temperature (17.5 degrees C), high CO2 (1600 microliters L-1) and medium analyses will be used to project the most efficient conditions for growth of potatoes in closed ecological life support systems (CELSS) in space colonies.  相似文献   

2.
Information on gas exchange of crop stands grown in controlled environments is limited, but is vital for assessing the use of crops for human life-support in closed habitats envisioned for space. Two studies were conducted to measure gas exchange of wheat stands (Triticum aestivum L. cv. Yecora Rojo) grown from planting to maturity in a large (20 m2 canopy area), closed growth chamber. Daily rates of dark-period respiration and net photosynthesis of the stand were calculated from rates of CO2 build-up during dark cycles and subsequent CO2 drawdown in the light (i.e., a closed-system approach). Lighting was provided as a 20-h photoperiod by high-pressure sodium lamps, with canopy-level photosynthetic photon flux density (PPFD) ranging from 500 to 800 micromoles m-2 s-1 as canopy height increased. Net photosynthesis rates peaked near 27 micromoles CO2 m-2 s-1 at 25 d after planting, which corresponded closely with stand closure, and then declined slowly with age. Similarly, dark-period respiration rates peaked near 14 micromoles CO2 m-2 s-1 at 25 d and then gradually declined with age. Responses to short-term changes in irradiance after canopy closure indicated the stand light compensation point for photosynthesis to be near 200 micromoles m-2 s-1 PPFD. Tests in which CO2 concentration was raised to approximately 2000 micromoles mol-1 and then allowed to draw down to a compensation point showed that net photosynthesis was nearly saturated at > 1000 micromoles mol-1; below approximately 500 micromoles mol-1, net photosynthesis rates dropped sharply with decreasing CO2. The CO2 compensation point for photosynthesis occurred near 50 micromoles mol-1. Short-term (24 h) temperature tests showed net photosynthesis at 20 degrees C > or = 16 degrees C > 24 degrees C, while dark-period respiration at 24 degrees C > 20 degrees C > 16 degrees C. Rates of stand evapotranspiration peaked near Day 25 and remained relatively constant until about Day 75, after which rates declined slowly. Results from these tests will be used to model the use of plants for CO2 removal, O2 production, and water evaporation for controlled ecological life support systems proposed for extraterrestrial environments.  相似文献   

3.
The growth and tuberization of Norland potatoes were studied under five different temperatures and two photoperiods. Treatment levels included 12, 16, 20, 24, and 28 C with either a 24-h (continuous light) or a 12-h photoperiod at 400 μmol m-2 s-1 PPF. Plants were grown in 6-liter containers and harvested at 56-days-age. Stem length increased with increasing temperature under both photoperiods. The highest tuber yield occurred at 16 C under the 24-h photoperiod (755 g/plant) and at 20 C under the 12-h photoperiod (460 g/plant). Little or no tuber formation occurred at 28 C under either photoperiod or at 24 C under continuous light. As with tuber yield, the highest total plant dry weights also occurred at 16 C under the 24-h photoperiod and at 20 C under the 12-h photoperiod. Harvest index (tuber dry weight to total dry weight ratio) decreased with increasing temperatures and with continuous light. Results indicate that good growth and tuberization can occur under continuous light, and that increasing the photoperiod from 12 to 24 h effectively decreased the optimal temperature for tuber formation from near 20 C to 16 C. Alternatively, the results imply that at cooler temperatures, the potato becomes less obligate for dark period stimulation of tuberization.  相似文献   

4.
High-pressure sodium (HPS) lamps are popular for plant lighting because of their high energy conversion efficiencies. Yet their spectrum has very little blue light (BL), which may cause undesirable morphological responses. To study this, McCall' soybean [Glycine max (L.) Merr.] plants were grown for 28 d in growth chambers using HPS lamps, with or without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux (PPF) levels (including blue fluorescent) were kept near 300 or 500 micromoles m-2 s-1. Blue fluorescent levels ranged from 7 to 20 micromoles m-2 s-1, providing from 6 to 18 micromoles m-2 s-1 of supplemental BL (400-500 nm). Stem and internode lengths were longest under 300 micromoles m-2 s-1 HPS lighting and became progressively shorter with increasing supplemental BL until a total of approximately 30 micromoles m-2 s-1 of BL (from HPS and BL supplement) was present in the spectrum. Beyond this, extra BL had no effect. Two other lamps rich in BL, metal halide (Optimarc) and fluorescent (Vita-Lite), also produced plants with short stems, as did HPS lighting maintained at 500 micromoles m-2 s-1. Results suggest that use of high-pressure sodium or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by adding a small amount of supplemental blue light.  相似文献   

5.
Twenty-four potato (Solanum tuberosum L.) cultivars from different regions of the world were evaluated in terms of their responses to continuous light (24 h photoperiod) and to high temperature (30 C) in two separate experiments under controlled environments. In each experiment, a first evaluation of the cultivars was made at day 35 after transplanting, at which time 12 cultivars exhibiting best growth and tuber initiation were selected. A final evaluation of the 12 cultivars was made after an additional 21 days of growth, at which time plant height, total dry weight, tuber dry weight, and tuber number were determined. In the continuous light evaluation, the 12 selected cultivars were Alaska 114, Atlantic, Bintje, Denali, Desiree, Haig, New York 81, Ottar, Rutt, Snogg, Snowchip, and Troll. In the high temperature evaluation, the 12 selected cultivars were Alpha, Atlantic, Bake King, Denali, Desiree, Haig, Kennebec, Norland, Russet Burbank, Rutt, Superior, and Troll. Among the cultivars selected under continuous irradiation, Desiree, Ottar, Haig, Rutt, Denali and Alaska showed the best potential for high productivity whereas New York 81 and Bintje showed the least production capability. Among the cultivars selected under high temperature, Rutt, Haig, Troll and Bake King had best performance whereas Atlantic, Alpha, Kennebec and Russet Burbank exhibited the least production potential. Thus, Haig and Rutt were the two cultivars that performed well under continuous irradiation and high temperature conditions, and could have maximum potential for adaptation to varying stress environments. These two cultivars may have the best potential for use in future space farming in which continuous light and/or high temperature conditions may exist. However, cultivar responses under combined conditions of continuous light and high temperature remains for further validation.  相似文献   

6.
The productive potential of potatoes (Solanum tuberosum L. cvs. Norland, Superior, Norchip, and Kennebec) was assessed for life support systems being proposed for space stations and/or lunar colonies. Plants were grown in walk-in growth rooms for 15 weeks at 20 C under 12-, 16- and 20-h photoperiods of 400 μmol mt-2st-1 photosynthetic photon flux (PPF). Norland yielded the greatest tuber fresh weight, producing 2.3, 2.4, and 2.9 kg/plant under 12-, 16-, and 20-h photoperiods, respectively. The respective yields for the other cultivars under 12-, 16-, and 20-h were: Superior, 1.9, 1.5, and 1.8 kg/plant; Norchip, 1.8, 1.4, and 2.0 kg/plant; and Kennebec, 2.3, 0.2, and 0.8 kg/plant. Shoot and total plant biomass increased with lengthening photoperiods except for Kennebec, which showed increased shoot growth but no change in total growth with the longer photoperiods. Kennebec shoot growth under the 20-h photoperiod, and to some extent under 16-h, was noticeably stunted with shortened internodes. In addition, leaves of these plants showed mild chlorosis with rusty “flecking” of the surfaces. The harvest index (ratio of tuber yield/total biomass) was highest for all cultivars under the 12-h photoperiod, with a maximum of 0.69 for Norland. Similarly, the tuber yield per input of irradiant energy also was highest under 12-h for all cultivars. The tuber yield expressed on an area basis for the highest yielding treatment (Norland under 20-h) equaled 2.2 kg dry matter mt-2. Over 15 weeks this equates to a productivity of 20.7 g tuber dry matter mt-2 dayt-1. Assuming 3.73 kcal per g tuber dry matter and a daily human dietary requirement of 2800 kcal, then 36 m2 of potatoes could supply the daily energy requirement for one human. Potential for increasing productivity is discussed.  相似文献   

7.
Twenty-four potato (Solanum tuberosum L.) cultivars from different regions of the world were evaluated in terms of their responses to continuous light (24 h photoperiod) and to high temperature (30 C) in two separate experiments under controlled environments. In each experiment, a first evaluation of the cultivars was made at day 35 after transplanting, at which time 12 cultivars exhibiting best growth and tuber initiation were selected. A final evaluation of the 12 cultivars was made after an additional 21 days of growth, at which time plant height, total dry weight, tuber dry weight, and tuber number were determined. In the continuous light evaluation, the 12 selected cultivars were Alaska 114, Atlantic, Bintje, Denali, Desiree, Haig, New York 81, Ottar, Rutt, Snogg, Snowchip, and Troll. In the high temperature evaluation, the 12 selected cultivars were Alpha, Atlantic, Bake King, Denali, Desiree, Haig, Kennebec, Norland, Russet Burbank, Rutt, Superior, and Troll. Among the cultivars selected under continuous irradiation, Desiree, Ottar, Haig, Rutt, Denali and Alaska showed the best potential for high productivity whereas New York 81 and Bintje showed the least production capability. Among the cultivars selected under high temperature, Rutt, Haig, Troll and Bake King had best performance whereas Atlantic, Alpha, Kennebec and Russet Burbank exhibited the least production potential. Thus, Haig and Rutt were the two cultivars that performed well under continuous irradiation and high temperature conditions, and could have maximum potential for adaptation to varying stress environments. These two cultivars may have the best potential for use in future space farming in which continuous light and/or high temperature conditions may exist. However, cultivar responses under combined conditions of continuous light and high temperature remains for further validation.  相似文献   

8.
1,4-DMN is a relatively new sprout inhibitor for use on maincrop and seed potatoes. Despite its registration as a “dormancy enhancer” for seed, relatively little is known about its effects on plant establishment and productivity. The main objective of this study was to evaluate the effects of 1,4-DMN on the productivity of seed potatoes. ‘Umatilla Russet’ (UR), ‘Ranger Russet’ (RR), and ‘Russet Burbank’ (RB) seed tubers were stored at 4, 7, and 9 C over three seasons to create 80-, 554- and 642-degree-day seed, and 1,4-DMN was applied to maintain dormancy several times during each season. 1,4-DMN residue levels at the end of storage were lower in seed aged at higher temperatures. Multiple applications of 1,4-DMN at higher-than-label rates were necessary to effectively inhibit sprouting of seed of all cultivars stored above 4 C. In field trials, depending on cultivar and year, 1,4-DMN either delayed plant emergence slightly or had no effect. 1,4-DMN increased stem numbers from RB and UR seed, but not from RR seed. 1,4-DMN reduced total tuber yields by 3.2 to 5.6 t ha?1 (5% to 9%), and U.S. No. 1 tuber yields by 4.8 to 7.8 t ha?1 (8% to 15%) in all cultivars, regardless of seed tuber age. 1,4-DMN also reduced the average tuber weight for all three cultivars and shifted the size distribution from larger (> 284 g) to smaller tubers. 1,4-DMN reduced the respective yields of > 397-g, 340-to 397-g, and 284-to 340-g tubers by 43%, 19%, and 18% for RR seed, 31%, 14%, and 11% for RB seed, and 40%, 47%, and 27% for UR seed. Conversely, depending on cultivar, yields of smaller tubers (≤170 g) were 11% to 38% higher from 1,4-DMN-treated seed. The shift in tuber size distribution for RR was accompanied by a 1,4-DMN-induced increase in tuber number per plant and per hectare. However, no such effects on tuber set occurred in RB and UR. Moreover, in most cases, the 1,4-DMN effects on yield and tuber size distribution were independent of seed age. Since the 1,4-DMN-induced shifts in tuber size distribution were greater than the reductions in total and U.S. No. 1 yields, 1,4-DMN may be a suitable treatment to reduce average tuber size and increase yield and uniformity of specific size classes of tubers to more closely match market requirements.  相似文献   

9.
The plant growth regulator, daminozide, was applied to the foliage of Ranger Russet, Shepody and Nooksack potato (Solarium tuberosum L.) plants at 0, 0.62, 1.25, 2.5 and 5 g product·liter?1 to determine its effectiveness in increasing eye number and reducing average tuber weight. Total tuber yields were not affected. Daminozide treatment increased tuber eye number of each cultivar and did not alter the distribution of eyes between the stem and bud ends. After 5 g daminozide·liter?1 treatment, average eye number of the stem end and bud ends of Nooksack increased up to 1.0 eye, by 27% for Shepody and by 31% for Ranger Russet. The largest increases in eye number occurred in Ranger Russet. However, increasing daminozide concentration caused increased tuber elongation in Ranger Russet. Average tuber weight decreased significantly in response to daminozide treatment only in Shepody. As a seed tuber production aid, daminozide can be used to increase eye number, and in some cultivars, to reduce average tuber weight.  相似文献   

10.
Potatoes are among several crops under consideration for use in controlled ecological life support systems (CELSS) being proposed for space colonies. Efficient crop production for such life support systems will require nearoptimal growing conditions with harvests taken when production per unit area per unit time is maximum. To determine this maximum for potato, cv. Norland plants were grown in walk-in growth rooms under 12-h and 24-h photoperiods at 16 C and harvested at 42,63, 84,105,126 and 148 days from planting. At 42 days, plants were encaged in wire fence cylinders with a cross-sectional area of 0.2 m2. The dry weights (dwt) of tubers and of the entire plants increased under both photoperiods until the final harvest date (148 days), reaching 572 g tuber dwt and 704 g total dwt under 12-h, and 791 g tuber dwt and 972 g total dwt under 24-h. At a spacing of 0.2 m2 per plant, the 148-day tuber production from plants under continuous light would equate to nearly 40t ha-1 dry matter (200t fresh weight), approximately twice that of exceptionally high field yields. Tuber productivity (g m-2 day-1) under the 24-h photoperiod reached a maximum of 29.4 g dwt m-2 day-1 at 126 days, but continued to rise throughout the experiment under the 12-h photoperiod, reaching 19.5 g dwt m-2 day-1 at 148 days. With a productivity of 29.4 g tuber dwt m-2 day-1, approximately 25 m2 would continuously provide the daily dietary energy requirements for one human.  相似文献   

11.
Field studies were conducted in 1991 and 1992 to evaluate the effects of cultivar, row spacing, and within-row spacing on potato yield and quality under weedy and weed-free conditions. Cultivars tested were Russet Burbank, an indeterminate, large-vined cultivar, and Frontier Russet, a determinate, small-vined cultivar. The two cultivars were grown under weedy and weedfree conditions with either 76 or 91 cm row spacings in factorial combination with either 15, 25, or 35 cm within-row spacings. The major competitive weeds were redroot pigweed, common lambsquarter and hairy nightshade. The weedy plots consistently produced less vine and tuber biomass and less total and U.S. No. 1 tuber yield than the weed-free plots. The time of weed emergence strongly affected potato competitiveness with weeds. In 1991, weeds emerged after potatoes, giving the crop some competitive advantage. In 1992, weeds emerged before the potatoes, resulting in heavy competition and large decreases in vine and tuber production for both cultivars. Reductions in U.S. No. 1 tuber yield were proportionally greater than the reductions in total yield. Weedy plots in 1991 and 1992 produced 25% and 68% less total yield and 43% and 92% less U.S. No. 1 yield, respectively, than weed-free plots. Russet Burbank was more competitive with weeds than Frontier Russet. Frontier Russet suffered substantial losses in productivity due to the presence of weeds, even under moderate weed pressure in 1991. Decreasing the row width from 91 to 76 cm did not provide a competitive advantage for potatoes as measured by vine or tuber biomass, or tuber yield. Decreasing within-row spacing under weedy conditions provided some competitive advantage and resulted in higher vine and tuber biomass and greater total tuber yield. The closer within-row spacing resulted in a substantial decrease in U.S. No. 1 yield with Russet Burbank but a slight increase with Frontier Russet. There were several significant interactions involving cultivar, weed level, and within-row spacing. These were due, in part, to each cultivar’s unique response to inter-and intraspecies competition. Cultivar had a greater influence on competitiveness than any plant spatial arrangement.  相似文献   

12.
Potato (Solanum tuberosum L.) cultivars are mostly planted using similar seed piece planting depths and hill shapes even though cultivars have unique tuber and stolon characteristics. A hill-shape study was conducted at Aberdeen, Idaho to determine the effects of hill shape on yield and field-green tuber yields and quality along with stolon length and tuber spatial orientation for two potato cultivars, 'Defender' and 'Summit Russet.' Plots were planted in late April to early May. Prior to emergence four hill shapes were formed: 1) plant-and-drag, 2) broad, 3) normal, and 4) peaked. Defender had higher total yield with the broad hill, but there were no differences among the remaining three hill shapes. For Defender, U.S. No. 1 yield was lower with the plant-and-drag hill shape, and the normal and peaked hills produced lower field-green tuber yield. Hill shape had no effect on total, U.S. No. 1, or field-green tuber yields of Summit Russet. The peaked hill resulted in a deeper uppermost tuber for Defender, while the uppermost tuber was deeper in the normal and peaked hills for Summit Russet. The broad hill resulted in a larger average tuber size for Defender, but hill shape had no effect on tuber size for Summit Russet. Total number of tubers per plant, stolon length and tuber spatial orientation were not affected by hill shape for either cultivar. Hill shape and height are important considerations in maximizing yield of saleable tubers, so needs to be customized according to cultivar-dependent stolon length and tuber orientation characteristics.  相似文献   

13.
Tuber content of α-solanine, α-chaconine, and total glycoalkaloids (TGA) was determined for the potato cultivars, Norland, Russet Burbank, and Denali grown under different environmental conditions in growth chambers. The lowest TGA concentrations (0.30 to 0.35 mg g1 dry tissue) were found in the cv. Norland with 400 μnol m-2 s-1 photosynthetic photon flux (PPF), 12 h day length, 16 C temperature, and 350 μmol mol-1 carbon dioxide. The ratio of α-chaconine to α-solanine was close to 60:40 under all growing conditions, except that it was 50:50 under the low temperature of 12 C. Cultivars responded similarly to environmental conditions although TGA was about 20% greater in cv. Russet Burbank and about 30% greater in Denali compared to Norland. The largest changes in TGA occurred with changes in temperature. In comparison to 16 C, TGA were 40% greater at 12 C, 80% greater at 20 C, and 125% greater at 24 C (0.70 mgg -1 dry weight). The TGA concentratation increased from 10 to 25% with an increase in light from 400 to 800 μmol m-2 s-1 PPF for all three cultivars. TGA increased 20% with extension of the day length from 12 to 24 hr and also increased 20% when carbon dioxide was increased from 350 to 1000 umol mol-1. TGA concentrations were not influenced by changes in relative humidity from 50 to 80%. TGA concentrations decreased only slightly in harvests made from 9 to 21 weeks after planting. Variations in TGA among the different growing conditions and cultivars were below 20 mg/100 g fresh weight (= 1.0 mg g-1 dry weight) recognized as the upper concentration for food safety. However the results suggest that TGA should be considered when potatoes are grown at temperatures above 20 C.  相似文献   

14.
Tuber initiation and development in irrigated and non-irrigated potatoes   总被引:1,自引:0,他引:1  
Tuber initiation and development are processes basic to potato production and are particularly critical in areas with short growing seasons. It is important to know how and to what extent management decisions affect these processes in order to maximize the yield of marketable tubers. A two-year field study, conducted in southcentral Alaska, examined top growth, tuber initiation, and tuber development in eight potato cultivars grown with and without irrigation. Plants of the cultivars Allagash Russet, Bake-King, Green Mountain, Kennebec, Lemhi Russet, Russet Burbank, Shepody, and Superior were harvested weekly throughout the growing season, and top dry weight, numbers of tubers, and individual tuber fresh weights were recorded. Top dry weight was reduced by moisture stress shortly after emergence in 1993, and about one month following emergence in 1994, when early-season soil moisture was greater. The weight of tubers was similarly affected within approximately 5 wk of emergence in 1993 and 6 weeks in 1994. Tuber weight at harvest was increased two-to three-fold by irrigation in all cultivars. The number of tubers each plant set was affected by irrigation in most, but not all, cultivars. Some varieties (Lemhi Russet in 1994, Allagash Russet both years) set more tubers than were maintained through the growing season. Tuber remnants found during sample collection indicated that tuber reabsorption had occurred. Irrigated Green Mountain had more than one tuber initiation period during the season, whereas other varieties such as Shepody maintained a relatively constant number of tubers following initial tuber set. Tuber size distribution at the end of the growing season showed that larger tubers were favored by irrigation.  相似文献   

15.
Payette Russet is a full season, russet-skinned potato cultivar notable for its cold-sweetening resistance and associated low acrylamide formation, making it ideally suited for processing into French fries and other potato products. Low asparagine and reducing sugar concentrations in Payette Russet tubers contribute to an 81 % reduction in acrylamide content in French fries relative to cultivars Ranger Russet and Russet Burbank following eight months storage at 9 °C. In three years of evaluations in the Western Regional Potato Variety Trials, average yield of Payette Russet was intermediate between Ranger Russet and Russet Burbank, but Payette Russet had the highest U.S. No. 1 yield when averaged across all eight trial locations. Acceptably low tuber glucose concentrations (<0.10 % glucose FWB) were maintained in Payette Russet following up to nine months storage at temperatures as low as 5.6 °C with consistently acceptable French fry color scores obtained (USDA value ≤2.0). Reducing sugars are also maintained uniformly throughout Payette Russet tubers, resulting in a low incidence of sugar ends and reduced mottling in French fries relative to standard processing cultivars. Long tuber dormancy also benefits long-term storage for processing. With its russet skin, Payette Russet could also be used for fresh-pack, and its assemblage of disease resistances makes it especially suitable for organic production, or for use by growers and companies seeking greater sustainability in their production. Payette Russet is resistant to foliar and tuber late blight, common scab, and has extreme resistance to PVY conferred by the presence of the Rysto resistance gene. Payette Russet also has a moderate level of resistance to Verticillium wilt, early blight, and corky ringspot. It is susceptible to Fusarium dry rot (F. sambucinum), therefore production and storage management guidelines are provided to minimize tuber infection. Payette Russet displays a low incidence of second growth and growth cracks, especially relative to Russet Burbank, and is intermediate between Ranger Russet and Russet Burbank for incidence of hollow heart/brown center. Blackspot bruise expression for Payette Russet is similar to Russet Burbank and reduced relative to Ranger Russet. Payette Russet was more susceptible to shatter bruise, internal brown spot, and tuber weight loss in storage relative to the industry standard cultivars. Payette Russet was released in 2015 by the USDA-ARS and the Agricultural Experiment Stations of Idaho, Oregon, and Washington, and is a product of the Northwest (Tri-State) Potato Variety Development Program.  相似文献   

16.
Because quantitative field estimates of potato (Solarium tuberosum L.) yield losses attributable to ozone (O3) air pollution damage in California need to be assessed, the antioxidant compound N-[-2-(2-oxo-l-imidazolidiny l)ethyl]-N′-phenylurea (EDU or DPX-4891) was evaluated for suitability in estimating these yield losses and in differentiating O3-susceptible from O3-resistant cultivars. Differential susceptibility of two cultivars, ‘Centennial Russet’ (O3sensitive) and ‘White Rose’ (O3-resistant), to O3 was confirmed in greenhouse experiments. Five weekly 5-hour treatments with 25 parts per hundred million O3 reduced tuber yield of Centennial Russet by 32% but did not reduce the yield of White Rose. In the absence of O3 under greenhouse conditions, EDU had no observable effect on shoot dry weight, tuber number, or tuber yield of either cultivar, suggesting that EDU does not materially affect plant growth in the absence of O3 at the treatment levels used and under the conditions herein. In field experiments conducted at the University of California at Riverside (UCR) and in commercial fields of Kern County (KC), untreated Centennial Russet and White Rose plants produced total tuber yields of 174 and 512 q/ha, respectively at UCR and 268 and 498 q/ha, respectively, at KC. At UCR, EDU applied at the highest rate—17.8 kg/ha—increased marketable and total tuber yields of Centennial Russet by 208 and 188 q/ha, respectively, and increased specific gravity by 0.013. White Rose was not affected by EDU. Averaged over four KC experiments, EDU application at 8.9 kg/ha increased Centennial Russet marketable and total tuber yields by 40 (from 214) and 45 (from 268) q/ha, respectively, whereas White Rose was not affected and averaged 398 (marketable) and 491 (total) q/ha.  相似文献   

17.
Nitrogen fertilization, irrigation, and cultivars affect tuber characteristics such as tuber size, specific gravity, and N concentration. Few studies, however, have investigated the interaction of irrigation and N fertilization on the tuber characteristics of potato cultivars, particularly in Atlantic Canada. The objective of this on-farm study, conducted at four sites in each of three years, 1995 to 1997, was to determine the effects of supplemental irrigation and six rates of N fertilization (0-250 kg N ha-1) on the number of tubers per plant, the average fresh tuber weight, tuber N concentration, nitrate (NO3-N) concentration, and specific gravity of the cultivars Shepody and Russet Burbank. Nitrogen fertilization increased the average fresh tuber weight, tuber N and N03-N concentrations, and decreased specific gravity. Effects of increasing N fertilization on tuber characteristics were often more pronounced for Shepody than for Russet Burbank, and for irrigated than for non-irrigated conditions. Shepody had greater average fresh tuber weight and tuber N concentration, lower specific gravity, and fewer tubers per plant than Russet Burbank. Supplemental irrigation increased the average fresh tuber weight and the number of tubers per plant, but it had a limited effect on specific gravity and tuber N and NO3-N concentrations. Tuber NO3-N con centration and specific gravity were strongly related to tuber N concentration, which in turn depended primarily on N fertilization. Incidents of lowest specific gravity and highest NO3-N concentration occurred with a relative yield close to or equal to 1.0. We conclude that the risks of low specific gravity and high tuber NO3-N concentration are greater when fertilization exceeds the N requirements to reach maximum tuber yield.  相似文献   

18.
Trials were conducted in Alberta with Norchip, Norland, and Russet Burbank and in Ontario with Kennebec, Russet Burbank, Norchip, and Superior tubers to determine their response to short-term exposure to air temperatures of 0, ?1, and ?5 C and to long-term exposure to ?1, 0, 1,2, and 3 C. Exposure of seed tubers to ?1 C from 6 hours to 5 days did not affect growth characteristics or tuber yield of any of the five cultivars studied. Long-term (October–May) exposure to ?1 C in one study severely reduced emergence and tuber yield of Norchip (P<0.05). While the marketable yield of Russet Burbank was also reduced (P<0.05) by this treatment, Norland was not affected. Tubers of all cultivars exposed to air temperatures of ?3 or ?5 C for longer than 24 hours were severely injured and were not planted in the field trials at either location. In Alberta exposure of seed tubers of Norchip, Norland, and Russet Burbank to ?5 C for 6 and 12 hours caused a reduction (not significant) in yield. In Ontario, long-term storage at 1, 2, and 3 C and in combination with short-term (2 weeks) exposure to 0 or 10 C had no effect on growth or marketable yield of Norchip, Russet Burbank, Superior, and Kennebec seed tubers.  相似文献   

19.
Freshly-cut seed pieces of the potato cultivars Ranger Russet and Shepody were dipped in 0, 0.5, 1 or 2 mg/1 Gibberellic Acid (GA3) prior to planting. GA3 treatments increased stem and tuber numbers per hill of both cultivars and shifted tuber size profile toward the production of more seed-sized (up to 226 g) tubers and fewer large (greater than 340 g) tubers. The effect of GA3 on reducing average tuber size was similar for the two cultivars. Total tuber yields were not affected. A 2 mg GA3/1 seed piece dip decreased the yield of US#1 tubers in Ranger Russet primarily due to a significant increase in yield of tubers less than 226 g. Also, yields of culls were greater after a 1 mg GA3/1 seed piece treatment, suggesting Ranger Russet is sensitive to this concentration of GA3. One and 2 mg GA3/1 seed piece dips to Shepody increased yields of tubers less than 113 g by 93% and reduced the yield of tubers greater than 340 g by 25% to 50%. GA3 at 1 to 2 mg/1 may be useful in the production of seed potatoes with the cultivar Shepody which tends to produce many large tubers.  相似文献   

20.
Tuber shape phenotype is an important determinant of raw product (≥7.6-cm-long French fries) recovery for frozen processing. Tuber length-to-width (L/W) ratios ≥1.8 translate to maximum yield of raw product; however, some cultivars produce tubers with much lower L/W ratios. While gibberellin (GA) can be used to elongate tubers, it also decreases tuber size and can thereby attenuate raw product recovery. We investigated the utility of GA and naphthaleneacetic acid (NAA) combination treatments for modifying tuber set, size, and shape to increase yield of raw product from ‘Payette Russet’ and ‘Alturas’; two late-season frozen-processing cultivars that often produce tubers with undesirably low L/W ratios. Models describing L/W ratio and fry yield by tuber size class were developed to translate total U.S. No. 1 tuber yields (>113 g) into yield of raw product. Increases in the L/W ratios of 113–284-g tubers had a greater effect on recovery of French fries (% fresh wt) than for tubers >284 g. Undersize (<113 g) and oversize (>340 g) tubers yielded 0 and 96% fries, respectively, regardless of L/W ratio. GA applied as a seed treatment effectively hastened emergence and altered tuber shape by increasing the L/W ratios of ‘Alturas’ and ‘Payette Russet’ tubers, enhancing total fry yield for the 113–340-g tubers by 24–46%, depending on concentration and application technique (dip, spray, in-furrow). However, GA also decreased apical dominance and shifted tuber size distribution away from >284-g tubers toward higher yields of <170-g tubers, erasing the gains in fry yield when all size classes (>113 g) were considered. When combined with GA, NAA maintained apical dominance, attenuated the shift in tuber size distribution, had no effect on the GA-induced increase in tuber L/W ratio, and only partly moderated the GA-induced stimulation of plant emergence. Raw product yield from ‘Payette Russet’ increased 12–39% in spray application trials by using NAA to confine the effect of GA to tuber shape and limit the loss of U.S. No. 1 tubers to undersize. Increases in tuber L/W ratio with GA/NAA seed treatments translated to increased yield of fries only when the relative concentrations were adjusted to minimize loss of >284-g tubers and gain in undersize tubers, as dictated by cultivar sensitivity to GA. ‘Alturas’ was less sensitive to GA than ‘Payette Russet’ for shifts in tuber size distribution but not shape, resulting in 17% increase in raw product with GA alone in pre-plant seed spray application studies. GA/NAA combination treatments provide an effective approach to manipulate tuber size distribution and enhance the yield of raw product for frozen processing in cultivars with a rounder tuber shape phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号