首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
As well as H5 highly pathogenic avian influenza viruses (HPAIV), H7 HPAIV strains have caused serious damages in poultry industries worldwide. Cases of bird-to-human transmission of H7 HPAIV have also been reported [11]. On the outbreak of avian influenza, rapid diagnosis is critical not only for the control of HPAI but also for human health. In the present study, a rapid diagnosis kit based on immunochromatography for the detection of H7 hemagglutinin (HA) antigen of influenza A virus was developed using 2 monoclonal antibodies that recognize different epitopes on the H7 HAs. The kit detected each of the tested 15 H7 influenza virus strains and did not react with influenza A viruses of the other subtypes than H7 or other avian viral and bacterial pathogens. The kit detected H7 HA antigen in the swabs and tissue homogenates of the chickens experimentally infected with HPAIV strain A/chicken/Netherlands/2586/03 (H7N7). The results indicate that the present kit is specific and sensitive enough for the diagnosis of HPAI caused by H7 viruses, thus, recommended for the field application as a pen-site test kit.  相似文献   

2.
Large highly pathogenic avian influenza (HPAI) outbreaks caused by clade 2.3.4.4e H5N6 viruses occurred in Japan during the 2016–2017 winter. To date, several reports regarding these outbreaks have been published, however a comprehensive study including geographical and time course validations has not been performed. Herein, 58 Japanese HPAI virus (HPAIV) isolates from the 2016–2017 season were added for phylogenetic analyses and the antigenic relationships among the causal viruses were elucidated. The locations where HPAIVs were found in the early phase of the outbreaks were clustered into three regions. Genotypes C1, C5, and C6–8 HPAIVs were found in specific areas. Two strains had phylogenetically distinct hemagglutinin (HA) and non-structural (NS) genes from other previously identified strains, respectively. The estimated latest divergence date between the viral genotypes suggests that genetic reassortment occurred in bird populations before their winter migration to Japan. Antigenic differences in 2016–2017 HPAIVs were not observed, suggesting that antibody pressure in the birds did not contribute to the selection of HPAIV genotypes. In the late phase, the majority of HPAI cases in wild birds occurred south of the lake freezing line. At the end of the outbreak, HPAI re-occurred in East coast region, which may be due to the spring migration route of Anas bird species. These trends were similar to those observed in the 2010–2011 outbreaks, suggesting there is a typical pattern of seeding and dissemination of HPAIV in Japan.  相似文献   

3.
Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.  相似文献   

4.
Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype have spread since 2003 in poultry and wild birds in Asia, Europe and Africa. In Korea, the highly pathogenic H5N1 avian influenza outbreaks took place in 2003/2004, 2006/2007 and 2008. As the 2006/2007 isolates differ phylogenetically from the 2003/2004 isolates, we assessed the clinical responses of chickens, ducks and quails to intranasal inoculation of the 2006/2007 index case virus, A/chicken/Korea/IS/06. All the chickens and quails died on 3 days and 3-6 days post-inoculation (DPI), respectively, whilst the ducks only showed signs of mild depression. The uninoculated chickens and quails placed soon after with the inoculated flock died on 5.3 and 7.5 DPI, respectively. Both oropharyngeal and cloacal swabs were taken for all three species during various time intervals after inoculation. It was found that oropharyngeal swabs showed higher viral titers than in cloacal swabs applicable to all three avian species. The chickens and quails shed the virus until they died (up to 3 to 6 days after inoculation, respectively) whilst the ducks shed the virus on 2-4 DPI. The postmortem tissues collected from the chickens and quails on day 3 and days 4-5 and from clinically normal ducks that were euthanized on day 4 contained the virus. However, the ducks had significantly lower viral titers than the chickens or quails. Thus, the three avian species varied significantly in their clinical signs, mortality, tissue virus titers, and duration of virus shedding. Our observations suggest that duck and quail farms should be monitored particularly closely for the presence of HPAIV so that further virus transmission to other avian or mammalian hosts can be prevented.  相似文献   

5.
Similar to mammals, several viral-sensing pattern recognition receptors (PRR) have been identified in birds including Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR). Avian TLR are slightly different from their mammalian counterparts, including the pseudogene TLR8, the absence of TLR9, and the presence of TLR1La, TLR1Lb, TLR15, and TLR21. Avian TLR3 and TLR7 are involved in RNA virus recognition, especially highly pathogenic avian influenza virus (HPAIV), while TLR15 and TLR21 are potential sensors that recognize both RNA viruses and bacteria. However, the agonist of TLR15 is still unknown. Interestingly, chickens, unlike ducks, geese and finches, lack RIG-I, however they do express melanoma differentiation-associated gene 5 (MDA5) which functionally compensates for the absence of RIG-I. Duck RIG-I is the cytosolic recognition element for HPAIV recognition, while chicken cells sense HPAIV through MDA5. However, the contributions of MDA5 and RIG-I to IFN-β induction upon HPAIV infection is different, and this may contribute to the chicken’s susceptibility to highly pathogenic influenza. It is noteworthy that the interactions between avian DNA viruses and PRR have not yet been reported. Furthermore, the role for avian Nod-like receptors (NLR) in viral immunity is largely unknown. In this review, recent advances in the field of viral recognition by different types of PRR in birds are summarized. In particular, the tissue and cellular distribution of avian PRR, the recognition and activation of PRR by viruses, and the subsequent expression of innate antiviral genes such as type I IFN and proinflammatory cytokines are discussed.  相似文献   

6.
Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 104 median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0084-9) contains supplementary material, which is available to authorized users.  相似文献   

7.
High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV.  相似文献   

8.
Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with phosphate-buffered saline (PBS) (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3–5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.  相似文献   

9.
禽流感油乳剂灭活疫苗的研制   总被引:18,自引:1,他引:17  
以禽流感病毒(AIV)H5N4株,H7N3株为抗原,分别研制了H5N4、H7N3油乳剂灭活疫苗,并对其物理性状、安全性、免疫效力、保存期及抗体消长规律进行了检测。结果表明,3种抗原含量不同的H5N4疫苗在免疫后3周-9个月对AIV-H5N4攻击均获8/8保护,H7N3疫苗在免疫后3周与3个月时对AIV-H5N4攻击则分别保护6/8与3/7,疫苗4℃保存15个月,其免疫效力没有下降。  相似文献   

10.
ABSTRACT: An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.  相似文献   

11.
To analyze the contribution of neuraminidase (NA) toward protection against avian influenza virus (AIV) infection, three different recombinant Newcastle disease viruses (NDVs) expressing hemagglutinin (HA) or NA, or both, of highly pathogenic avian influenza virus (HPAIV) were generated. The lentogenic NDV Clone 30 was used as backbone for the insertion of HA of HPAIV strain A/chicken/Vietnam/P41/05 (H5N1) and NA of HPAIV strain A/duck/Vietnam/TG24-01/05 (H5N1). The HA was inserted between the genes encoding NDV phosphoprotein (P) and matrixprotein (M), and the NA was inserted between the fusion (F) and hemagglutinin-neuraminidase protein (HN) genes, resulting in NDVH5VmPMN1FHN. Two additional recombinants were constructed carrying the HA gene between the NDV P and M genes (NDVH5VmPM) or the NA between F and HN (NDVN1FHN). All recombinants replicated well and stably expressed the HA gene, the NA gene, or both. Chickens immunized with NDVH5VmPMN1FHN or NDVH5VmPM were protected against two different HPAIV H5N1 and also against HPAIV H5N2. In contrast, immunization of chickens with NDVN1FHN induced NDV- and AIV N1-specific antibodies but did not protect the animals against a lethal dose of HPAIV H5N1. Furthermore, expression of AIV N1, in addition to AIV H5 by NDV, did not increase protection against HPAIV H5N1.  相似文献   

12.
This investigation assessed the susceptibility of experimentally infected pigeons to the highly pathogenic avian influenza virus (HPAIV) H5N1 that caused recent outbreaks of avian influenza in birds and humans in several countries of Asia. For this purpose 14 pigeons were infected ocularly and nasally with 10(8) EID50 and clinical signs were recorded and compared with five chickens infected simultaneously as positive controls. The chickens demonstrated anorexia, depression, and 100% mortality within 2 days postinoculation. Three of the pigeons died after a history of depression and severe neurological signs consisting of paresis to paralysis, mild enteric hemorrhage, resulting in a mortality of 21%. Gross lesions in these pigeons were mild and inconsistent. Occasionally subcutaneous hyperemia and hemorrhage and cerebral malacia were observed. Microscopic lesions and detection of viral antigen were confined to the central nervous system of these pigeons. In the cerebrum and to a minor extent in the brain stem a lymphohistiocytic meningoencephalitis with disseminated neuronal and glial cell necrosis, perivascular cuffing, glial nodules, and in one bird focally extensive liquefactive necrosis could be observed. The remaining nine pigeons showed neither clinical signs nor gross or histological lesions associated with avian influenza, although seroconversion against H5 indicated that they had been infected. These results confirm that pigeons are susceptible to HPAIV A/chicken/Indonesia/2003 (H5N1) and that the disease is associated with the neurotropism of this virus. Although sentinel chickens and most pigeons did not develop disease, further experiments have to elucidate whether or not Columbiformes are involved in transmission and spread of highly pathogenic avian influenza.  相似文献   

13.
Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.  相似文献   

14.
H5N2 viruses were isolated from cloacal swab samples of apparently healthy chickens in Taiwan in 2003 and 2008 during surveillance of avian influenza. Each of the viruses was eradicated by stamping out. The official diagnosis report indicated that the Intravenous Pathogenicity Indexes (IVPIs) of the isolates were 0.00 and 0.89, respectively, indicating that these were low pathogenic strains, although the hemagglutinin of the strain isolated in 2008 (Taiwan08) had multibasic amino acid residues at the cleavage site (PQRKKR/G). In the present study, these H5N2 viruses were assessed for their intravenous and intranasal pathogenicity for chickens. It was examined whether Taiwan08 acquires pathogenicity through consecutive passages in chickens. Intravenous pathogenicity of Taiwan08 depended upon the age of the chickens used for the IVPI test; all of the eight-week-old chickens intravenously inoculated with Taiwan08 showed clinical signs but survived for ten days post inoculation (IVPI=0.68), whereas all the six-week-old chickens died (IVPI=1.86). Taiwan08-P8, which were passaged in chickens for eight times, killed all the eight-week-old chickens (IVPI=2.36). The four-week-old chickens died after intranasal inoculation of Taiwan08-P8, indicating that Taiwan08 must have become highly pathogenic during circulation in chicken flocks. These results emphasize the importance of a stamping out policy for avian influenza even if the IVPI of the causal virus is low.  相似文献   

15.
16.
17.
Avian influenza A H5N1 infections in cats   总被引:1,自引:0,他引:1  
Although cats had been considered resistant to disease from influenza virus infection, domestic cats and large felids are now known to be naturally und experimentally susceptible to infection with highly pathogenic avian influenza virus H5N1 (HPAIV H5N1). The virus causes systemic infection, lung and liver being the mainly affected organs. Infected cats show fever, depression, dyspnoea, and neurological signs, but subclinical infections have also occurred. Mostly, cats have been infected by direct contact with affected birds, especially by eating raw poultry; transmission from cat to cat may also occur. Little is known about the role of cats in the epidemiology of the virus. So far, no reassortment between avian and mammalian influenza viruses has occurred in cats, but experts fear that cats might give the virus an opportunity to adapt to mammals. This publication gives a review on avian influenza in cats with a focus on practical aspects for veterinarians.  相似文献   

18.
Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (106.9 EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (105.3–5.5 EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-015-0237-5) contains supplementary material, which is available to authorized users.  相似文献   

19.
In 2014, two genetically distinct H5N8 highly pathogenic avian influenza (HPAI) viruses were isolated from poultry and wild birds in Korea. The intravenous pathogenicity indices for the two representative viruses were both 3.0. Mortality of chickens intranasally inoculated with the two H5N8 viruses was 100% with a mean death times of 2.5 and 4.5 days. Mortality rates of the contact groups for the two H5N8 viruses were 33.3% and 66.6%. Our study showed that transmissibility of the novel H5N8 viruses was different from that of previously identified H5N1 HPAI viruses, possibly due to genetic changes.  相似文献   

20.
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号