首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management practices that simultaneously improve soil properties and yield are crucial to sustain high crop production and minimize detrimental impact on the environment. The objective of this study was to determine the influence of tillage and crop residue management on crop yield, N uptake and C removal in crop, soil organic C and N, inorganic N and aggregation, and nitrous oxide (N2O) emissions on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada. The 4-year (1998–2001) field experiment was conducted with two tillage systems: no tillage (NT), and conventional tillage (CT); two levels of straw: straw retained (S), and straw removed (NS); and four rates of fertilizer N: 0, 40, 80, and 120 kg N ha−1, except no N to pea phase of the rotation. The plots were seeded to barley (Hordeum vulgare L.) in 1998, pea (Pisum sativum L.) in 1999, wheat (Triticum aestivum L.) in 2000 and canola (Brassica napus L.) in 2001. Tillage and straw treatments generally had no effect on crop yield during the first three years. But in 2001, NT produced 55, 32, and 20% greater canola seed, straw and chaff than CT, respectively, whereas straw retention increased seed and straw yield by 33 and 19% compared to straw removal. Seed, straw and chaff yield of canola increased with N rate up to 40 kg N ha−1, and root mass (0–15 cm depth) with N rate to 80 kg N ha−1. Amount of N uptake and C removed in wheat and canola generally increased with N rate, but tillage and straw management had no consistent effect. After four crop seasons, total organic C (TOC) and N (TN), light fraction organic matter (LFOM), C (LFC), and N (LFN) were generally greater with S than NS treatments. Tillage did not affect TOC and TN in soil, but LFOM, LFC, and LFN were greater or tended to be greater under NT than CT. There was no effect of tillage, straw and N fertilization on NH4-N in soil, but CT and S tended to have higher NO3-N concentration in 0–15 cm soil than NT and NS, respectively. Concentration of NO3-N increased substantially with N rate ≥80 kg ha−1. The NT + S treatment had the lowest proportion (34%) of wind-erodible (<0.83 mm diameter) aggregates and greatest proportion (37%) of larger (>12.7 mm) dry aggregates, compared to highest (50%) and lowest (18%) proportion of corresponding aggregates in CT + NS, indicating less potential for soil erosion when tillage was omitted and crop residues were retained. Amount of N lost as N2O was higher from N-fertilized than from zero-N plots, and it was substantially higher from N-applied CT plots than from N-applied NT plots. Retaining crop residues along with no-tillage improved soil properties and may also be better for the environment.  相似文献   

2.
Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat + vetch/maize + cowpea (OV/MC)] and N fertilization [0 kg N ha−1 year−1 (0 N) and 180 kg N ha−1 year−1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0–5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0–20 cm layer varied from 0.09 to 0.34 Mg ha−1 year−1 in CT and from 0.19 to 0.65 Mg ha−1 year−1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization.  相似文献   

3.
Soil N mineralization was quantified in two long-term experiments in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated for 33 years (Site 1) and 12 years (Site 2). Both sites had the same soil type but differed in crop rotation. N mineralization kinetics were assessed in situ in bare soil in both systems for 254 days (Site 1) and 555 days (Site 2) by taking frequent measurements of water and nitrate contents from soil layers and using the LIXIM calculation model. The N mineralization potential was also determined in soil samples incubated under controlled laboratory conditions. Small or non-significant differences in water and nitrate contents between NT and CT were apparent within the soil profiles on both sites. Net mineralization did not differ significantly between sites or tillage treatments. The amount of N mineralized from August 2003 to April 2004 was 67 ± 10 kg N ha−1 on Site 1 and 74 ± 5 kg N ha−1 on Site 2, and 161 ± 6 kg N ha−1 from August 2003 to February 2005 on Site 2. The kinetics of N mineralization versus normalized time (equivalent time at constant temperature of 15 °C and water content at field capacity) were linear during the shorter period (254 days corresponding to 120 normalized days). The slope (N mineralization rate) did not differ significantly between treatments and sites, and the average rate was 0.57 ± 0.05 kg N ha−1 nd−1. The kinetics were non-linear on Site 2 over the longer period (555 days corresponding to 350 normalized days). They could be fitted to an exponential model with a slope at the origin of 0.62 kg N ha−1 nd−1. The N mineralization kinetics obtained in laboratory incubations for 120–150 normalized days were also almost linear with no significant differences between treatments. Assuming that mineralization took place in the ploughed layer (in CT) or over the same soil mass (in NT) they were in good agreement with the kinetics determined in situ on both sites. The calculated water drainage below the sampled profile was slightly greater in NT due to lower evaporation. The calculated leached N was slightly higher in NT than CT on Site 1, but did not differ between treatments on Site 2. It is concluded that N mineralization and leaching in NT and CT were similar, despite large differences in N distribution within the soil profile and a slight difference in organic N stock.  相似文献   

4.
Conservation farming practices are often considered effective measures to increase soil organic C (SOC) sequestration and/or to reduce CO2 emissions resulting from farm machinery operation. The long-term CO2 mitigation potentials of no-till (NT) versus conventional till (CT), stubble retention (SR) versus stubble burning (SB) and N fertilisation (NF) versus no N application (N0) as well as their interactions were examined on a Vertosol (Vertisol) in semi-arid subtropical Queensland, Australia by taking into account their impacts on SOC content, crop residue C storage, on-farm fossil fuel consumption and CO2 emissions associated with N fertiliser application. The experimental site had been cropped with wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) with a summer fallow for 33 years.

Where NT, SR or NF was applied alone, no significant effect on SOC was found in the 0–10, 10–20 and 0–20 cm depths. Nonetheless, the treatment effects in the 0–10 cm depth were interactive and maximum SOC sequestration was achieved under the NT + SR + NF treatment. Carbon storage in crop residues decreased substantially during the fallow period, to a range between 0.4 Mg CO2-e ha−1 under the CT + SB + NF treatment and 2.4 Mg CO2-e ha−1 under the NT + SR + N0 treatment (CO2-e stands for CO2 equivalent). The cumulative fossil fuel CO2 emission over 33 years was estimated to be 2.2 Mg CO2-e ha−1 less under NT than under CT systems. Cumulative CO2 emissions from N fertiliser application amounted to 3.0 Mg CO2 ha−1. The farm-level C accounting indicated that a net C sequestration of 4.5 Mg CO2-e was achieved under the NT + SR + NF treatment, whilst net CO2 emissions ranging from 0.5 to 6.0 Mg CO2-e ha−1 over 33 years occurred under other treatments.  相似文献   


5.
A 3-year field study was conducted to evaluate the effect of three tillage practices (conventional, zero and reduced/strip) with two nitrogen levels (120 and 150 kg N ha−1) applied in primary strips and three crop residue management practices (removal, burning and incorporation) in secondary strips in wheat after rice. Reduced tillage resulted in significantly higher overall mean wheat yield (5.10 Mg ha−1) compared to conventional (4.60 Mg ha−1) and zero tillage (4.75 Mg ha−1). Residue incorporation resulted in highest mean yield (5.86 Mg ha−1) during third year. Maximum mean yield (6.1 Mg ha−1) was obtained in reduced tillage followed by conventional tillage (5.8 Mg ha−1) under residue incorporation in third year. The weed dry weight recorded at 30 days after sowing was highest (0.3 Mg ha−1) under zero tillage and lowest under conventional tillage (0.16 Mg ha−1). Among crop residue management practices, the highest dry weight of weeds (0.22 Mg ha−1) was recorded under residue incorporation. The highest infiltration rate (1.50 cm h−1) was recorded in residue incorporation followed by residue burning (1.44 cm h−1) whereas; the lowest (0.75 cm h−1) in zero tillage. Soil bulk density was the highest (1.69 Mg m−3) under zero tillage and the lowest in residue incorporation (1.59 Mg m−3). There were no changes in soil available P and K after each crop sequence in relation to tillage practices during first 2 years. Higher organic carbon (5.1–5.4 g kg−1) was measured under zero tillage compared to other treatments. Residue incorporation increased soil organic carbon and available P while higher available K was monitored in burning treatment during the third year. These results suggest that reduced tillage and in situ incorporation of crop residues at 5 Mg ha−1 along with 150 kg N ha−1 were optimum to achieve higher yield of wheat after rice in sandy loam soils of Indo-Gangetic plains of India.  相似文献   

6.
Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15–36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0–30 cm depth were studied for the period of 1939–1999 at the North Appalachian Experimental Watersheds (<3 ha, Dystric Cambisol, Haplic Luvisol, and Haplic Alisol) near Coshocton, OH, USA. Six management treatments were: (1) no tillage continuous corn with NPK (NC); (2) no tillage continuous corn with NPK and manure (NTC-M); (3) no tillage corn–soybean rotation (NTR); (4) chisel tillage corn–soybean rotation (CTR); (5) moldboard tillage with corn–wheat–meadow–meadow rotation with improved practices (MTR-I); (6) moldboard tillage with corn–wheat–meadow–meadow rotation with prevalent practices (MTR-P). The SOC pool ranged from 24.5 Mg ha−1 in the 32-years moldboard tillage corn (Zea mays L.)–wheat (Triticum aestivum L.)–meadow–meadow rotation with straight row farming and annual application of fertilizer (N:P:K=5:9:17) of 56–112 kg ha−1 and cattle (Bos taurus) manure of 9 Mg ha−1 as the prevalent system (MTR-P) to 65.5 Mg ha−1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170–225 kg N ha−1 and appropriate amounts of P and K, and 6–11 Mg ha−1 of cattle manure as the improved system (NTC-M). The difference in SOC pool among management systems ranged from 2.4 to 41 Mg ha−1 and was greater than 25 Mg ha−1 between NTC-M and the other five management systems. The difference in the SOC pool of NTC-M and that of no tillage continuous corn (NTC) were 16–21 Mg ha−1 higher at the lower slope position than at the middle and upper slope positions. The effect of slope positions on SOC pools of the other management systems was significantly less (<5 Mg ha−1). The effects of manure application, tillage, crop rotation, fertilizer rate, and soil and water conservation farming on SOC pool were accumulative. The NTC-M treatment with application of NPK fertilizer, lime, and cattle manure is an effective cropland management system for SOC sequestration.  相似文献   

7.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


8.
Wheat (Triticum aestivum L.) yield and quality is influenced by management of the previous crop but is highly dependent on current year management. The objective of this study was to evaluate the response of winter wheat seeded in two tillage systems [conventional tillage (CT) and no-till (NT)] to four N rates applied to a previous cotton (Gossypium hirsutum L.) crop (0, 67, 134, and 202 kg ha−1). The experiment with wheat was conducted on a Dothan sandy loam (fine, loamy siliceous, thermic Plinthic Kandiudults) at the University of Florida North Florida Research and Education Center near Quincy, FL from 1995 to 1997. For most plant characteristics, there was a tillage x N x year interaction. Greater plant emergence (79.4 vs. 65.3%) and grain N (23.5 vs. 21.5 g kg−1), and lower grain moisture (139 vs. 142 g kg−1) were obtained under NT than CT, respectively, in one out of two years. Nitrogen applied to a previous cotton crop increased wheat grain yields, plant height and seed number under NT in 1995–1996 and CT in 1996–1997, head density under NT in both years, harvest index under CT in 1996–1997, and grain N concentration in 1995–1996 and 1996–1997 due to residual plant and soil N. With every 1 kg N applied to a previous cotton crop, wheat grain yields increased by 5.38 kg ha−1 under NT, whereas grain yield under CT was not influenced by N application to cotton in 1995–1996. In 1996–1997, grain yields increased by 4.96 and 4.23 kg ha−1 for wheat grown in NT and CT, respectively. Generally, wheat seeded in NT following cotton did not decrease stand or yields compared to CT and wheat grain yields and grain N content increased with N fertilization of the previous crop. However, we would have to apply about 134 kg N ha−1 to a previous cotton crop to maximize wheat production under NT and CT.  相似文献   

9.
No-till (NT) system for grain cropping is increasingly being practised in Australia. While benefits of NT, accompanied by stubble retention, are almost universal for soil erosion control, effects on soil organic matter and other soil properties are inconsistent, especially in a semi-arid, subtropical environment. We examined the effects of tillage, stubble and fertilizer management on the distribution of organic matter and nutrients in the topsoil (0–30 cm) of a Luvisol in a semi-arid, subtropical environment in southern Queensland, Australia. Measurements were made at the end of 9 years of NT, reduced till (RT) and conventional till (CT) practices, in combination with stubble retention and fertilizer N (as urea) application strategies for wheat (Triticum aestivum L.) cropping.

In the top 30 cm depth, the mean amount of organic C increased slightly after 9 years, although it was similar under all tillage practices, while the amount of total N declined under CT and RT practices, but not under NT. In the 0–10 cm depth, the amounts of organic C and total N were significantly greater under NT than under RT or CT. No-till had 1.94 Mg ha−1 (18%) more organic C and 0.20 Mg ha−1 (21%) more total N than CT. In the 0–30 cm depth, soil under NT practice had 290 kg N ha−1 more than that under the CT practice, most of it in the top 10 cm depth. Microbial biomass N was similar for all treatments. Under NT, there was a concentration gradient in organic C, total N and microbial biomass N, with concentrations decreasing from 0–2.5 to 5–10 cm depths.

Soil pH was not affected by tillage or stubble treatments in the 0–10 cm depth, but decreased significantly from 7.5 to 7.2 with N fertilizer application. Exchangeable Mg and Na concentration, cation exchange capacity and exchangeable Na percentage in the 0–10 cm depth were greater under CT than under RT and NT, while exchangeable K and bicarbonate-extractable P concentrations were greater under NT than under CT.

Therefore, NT and RT practices resulted in significant changes in soil organic C and N and exchangeable cations in the topsoil of a Luvisol, when compared with CT. The greater organic matter accumulation close to the soil surface and solute movement in these soils under NT practice would be beneficial to soil chemical and physical status and crop production in the long-term, whereas the concentration of nutrients such as P and K in surface layers may reduce their availability to crops.  相似文献   


10.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

11.
Reduced tillage management is being adopted at an accelerated rate on the Canadian prairies. This may influence soil quality and productivity. A study conducted on a clay soil (Udic Haplustert) in southwestern Saskatchewan, Canada, to determine the effects of fallow frequency [fallow-wheat (F-W) vs. continuous wheat (Cont W)] and tillage [no-tillage (NT) vs. conventional (CT) or minimum tillage (MT)] on yields of spring wheat (Triticum aestivum L.), was sampled after 3, 7 and 11 years to assess changes in selected soil quality attributes. Tillage had no effect on amount of crop residues returned to the land, but the tilled systems had significantly (P<0.05) lower total organic C and N in the 0–7.5 cm soil depth, though not in the 7.5–15 cm depth. Further, these differences were observed after only 3 years and persisted for the entire 11 years of the study. For example, in the 0–7.5 cm depth, organic C in F-W (MT) after 3 years was 10 480 kg ha−1 and in F-W (NT) 13 380 kg ha−1, while in Cont W (CT) and Cont W (NT) corresponding values were 11 310 and 13 400 kg ha−1, respectively. After 11 years, values for F-W (MT) and F-W (NT) were 11 440 and 14 960 kg ha−1, respectively, and for Cont W (CT) and Cont W (NT), 12 970 and 16 140 kg ha−1, respectively. In contrast to total organic matter, two of the more labile soil quality attributes [i.e., C mineralization (Cmin) and N mineralization (Nmin)] did not respond to fallow frequency until after 7 years and only in the 0–7.5 cm depth. Microbial biomass (MB) and the ratio of Cmin to MB [specific respiratory activity (SRA)], two attributes also regarded as labile, were not influenced by the treatments even after 11 years. After 11 years, only Cmin and Nmin among the labile soil quality attributes responded to the treatments. Surprisingly, the labile attributes were no more sensitive to the treatments than was total organic C or N. More research is required to determine why responses in this soil differed from those reported elsewhere.  相似文献   

12.
Six different vegetable crop residues were incorporated in the field and N mineralization from the residues and from an unamended plot was followed over 4 months by periodically monitoring mineral N contents of the soil. The crop residues were also fractionated according to a modified Stevenson chemical fractionation. Nitrogen mineralization parameters of the first order kinetic model N(t)=NA(1−ekt) were derived from the chemical fractionation data. The first order model was used in combination with a model describing the temperature dependence of N mineralization and a simple leaching model to predict N mineralization rates and nitrate redistribution after crop residue incorporation under field conditions. Comparison of predicted and measured mineral N contents in the upper soil layer (0–30 cm) before the start of leaching showed that the model was able to predict N mineralization from both soil organic matter and crop residues under field conditions. From the onset of leaching, mineral N contents were slightly overestimated in the upper layer and underestimated in the lower soil layers. Although the Burns leaching model underestimated the leaching rate, the general pattern of nitrate movement was simulated satisfactorily. Statistical analysis using the variance ratio test yielded small but significant F values, indicating that the model can still be improved. The modelling efficiency was rather high and the coefficient of residual mass very close to zero. Linear regression between measured and simulated nitrate contents over the whole profile (0–120 cm) for all samplings yielded Y=9.6+0.876X (r=0.94***) with all deviations smaller than 25 kg N ha−1. Total N mineralization ranged from 48 kg N ha−1 for the control plot to 136 kg N ha−1 for the plots with cauliflower residues and cumulative leaching losses from 26–66 kg N ha−1, with most of the mineral N left in the 60–120 cm layer. These results show that N losses by leaching in winter can be high when vegetable crop residues are incorporated, even when there is little mineral N in the soil at the time of incorporation.  相似文献   

13.
Land configuration in combination with nutrient management has the potential to improve the productivity of Alfisols and Vertisols in the semi-arid tropics. A four year (1989–1990 and 1992–1993) field experiment was conducted at Coimbatore, India on Alfisols (Chromic Cambisol) to compare the effect of land configuration and nutrient management practices on yield of rainfed sorghum (Sorghum bicolor (L.) Moench). The land configuration treatments were flat bed (FB, the traditional practice), open ridging (OR, ridges, 45 cm apart and 30 cm high) and tied ridging (TR, same as OR plus ridges were tied randomly). The manure and fertilisers were farm yard manure (FYM, livestock excreta plus litter at 5 Mg ha−1) and coir dust (CD, by-product after the extraction of coir from the coconut (Cocos nucifera L.) husk at 12.5 Mg ha−1) in combination with nitrogen (N) and phosphorus (P) fertiliser levels. Tied ridges stored 14% more soil water and produced 14% and 11% more grain and straw yields of sorghum, respectively, than did flat bed. However, crop yield in TR was comparable with OR. Application of CD at 12.5 Mg ha−1 combined with 40 kg N ha−1 and 9 kg P ha−1 was beneficial for more soil water storage and increased yield of sorghum by 7% over FYM at 5 Mg ha−1 + 40 kg N ha−1 and 9 kg P ha−1. In Vertisols (Vertic Cambisols), experiments were conducted for two years (1991–1992 and 1992–1993) to evaluate land configuration practices. The treatments were broad bed furrow (BBF, 120 cm wide bed with 30 cm wide and 15 cm deep furrows on both sides), compartmental bunding (CB, bunds of 15 cm height formed in all the four sides to form a check basin of 6 m × 5 m size), ridging (RD, ridges were formed for each and every row of the crop manually at four weeks after sowing) and FB under sorghum + pigeonpea (Cajanus cajan (L.) Millsp) and pearl millet (Pennisetum glacum (L.) Stuntz) + cowpea (Vigna unguiculata (L.) Walp) intercropping separately. Compartmental bunding stored 22% more soil moisture and increased the yield of sorghum + pigeonpea intercropping than did FB in a low rainfall year. In a high rainfall year, BBF produced 34% and 33% more grain yield of sorghum and pearl millet base crops, respectively, over FB. However, BBF and CB were comparable. Pigeonpea intercrop under sorghum followed the same trend as its base crop, whereas, yield of cowpea differed compared to the pearl millet base crop. Tied ridging and application of manures (CD or FYM) in combination with inorganic N and P fertiliser can increase the soil water storage and yield of crops compared to traditional flat bed cultivation in rainfed Alfisol and related soils of semi-arid tropics. Similarly BBF and CB land configuration practices could be adopted on Vertisols for better water conservation to increase the soil fertility and productivity of intercropping systems.  相似文献   

14.
Soil erosion and depositional processes in relation to land use and soil management need to be quantified to better understand the soil organic carbon (SOC) dynamics. This study was undertaken on a Miamian soil (Oxyaquic Hapludalfs) under on-farm conditions in western Ohio with the objectives of evaluating the effects of degree of erosion on SOC stock under a range of tillage systems. Six farms selected for this study were under: no-till (NT) for 15, 10, 6 and 1.5 years; chisel till every alternate year with annual manure application (MCT); and annual chisel till (ACT). A nearby forest (F) site on the same soil was chosen as control. Using the depth of A horizon as an indicator of the degree of erosion, four erosion phases identified were: uneroded (flat fields under F, NT15, and on the summit of sloping fields under NT10, NT6, NT1.5 and MCT); deposition (NT10, NT6, NT1.5 and ACT); slight (NT10, MCT and ACT); and moderate erosion (NT10 and ACT). Core and bulk soil samples were collected in triplicate from four depths (i.e., 0–10, 10–20, 20–30 and 30–50 cm) for each erosional phase in each field for the determination of bulk density, and SOC concentrations and stocks. SOC concentration in NT fields increased at a rate of 5% year−1 for 0–10 cm and 2.5% year−1 for 10–20 cm layer with increasing duration under NT. High SOC concentration for NT15 is indicative of SOC-sequestration potential upon conversion from plow till to NT. SOC concentration declined by 19.0–14.5 g kg−1 in MCT and 11.3–9.7 g kg−1 in NT10 between uneroded and slight erosion, and 12.0–11.2 g kg−1 between slight and moderate erosion in ACT. Overall SOC stock was greatest in the forest for each of the four depths. Total SOC stock for the 50 cm soil layer varied in the order F (71.99 Mg ha−1) > NT15 (56.10 Mg ha−1) > NT10 (37.89 Mg ha−1) = NT6 (36.58 Mg ha−1) for uneroded phase (P < 0.05). The lack of uneroded phase in ACT indicated high erosion risks of tillage, as also indicated by the high SOC stock for deposition phase from 0 to 50 cm soil layer (ACT (56.56 Mg ha−1) > NT1.5 (42.70 Mg ha−1) > NT10 (30.97 Mg ha−1)). Tillage increased soil erosion and decreased SOC stock for top 10 cm layer for all erosional phases except deposition.  相似文献   

15.
Little is known about the long-term effects of tillage and crop residue management on soil quality and organic matter conservation in subarctic regions. Therefore, we quantified wet aggregate stability, bulk density, pH, total organic C and N, inorganic N, microbial biomass C and N, microbial biomass C:N ratio, microbial quotient, and potential C and N mineralization for a tillage/crop residue management study in central Alaska. Soil from no-till (NT), disked once each spring (DO), and disked twice (DT, spring and fall) treatments was sampled to 20 cm depth in spring and fall of the 16th and 17th years of the study. Crop residues were either retained or removed after harvest each year. Reducing tillage intensity had greater impact on most soil properties than removing crop residues with the most notable effects in the top 10 cm. Bulk density was the only indicator that showed significant differences for the 10–20 cm depth, with values of 0.74 Mg m−3 in the surface 10 cm in NT compared to 0.86 in DT and 1.22 Mg m−3 in NT compared to 1.31 in DT for the 10–20 cm depth. Wet aggregate stability ranged from 10% in DT to 20% in NT. Use of NT or DO conserved soil organic matter more than DT. Compared to measurements made in the 3rd and 4th years of the study, the DT treatment lost almost 20% of the soil organic matter. Retaining crop residues on the soil conserved about 650 g m−2 greater C than removing all residues each year. Soil microbial biomass C and mineralizable C were highest in NT, but the microbial C quotient, which averaged only 0.9%, was not affected by tillage or crop residue treatment. Microbial biomass C:N ratio was 11.3 in DT and 14.4 in the NT, indicating an increasing predominance of fungi with decreasing tillage intensity. Barley grain yield, which averaged 1980 kg ha−1 over the entire 17 years of the study, was highest in DO and not significantly different between NT and DT, but weeds were a serious problem in NT. Reduced tillage can improve important soil quality indicators and conserve organic matter, but long-term NT may not be feasible in the subarctic because of weed problems and build up of surface organic matter.  相似文献   

16.
The type of conservation-tillage management employed could impact surface-soil properties, which could subsequently affect relationships between soil and water quality, as well as with soil C sequestration and greenhouse gas emissions. We determined soil bulk density, organic C and N fractions, plant-available N, and extractable P on Typic Kanhapludults throughout a 7-year period, in which four long-term (>10 years), no-tillage (NT) water catchments (1.3–2.7 ha each) were divided into two treatments: (1) continuation of NT and (2) paraplowing (PP) in autumn (a form of non-inversion deep ripping) with NT planting. Both summer [cotton (Gossypium hirsutum L.), maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), soybean (Glycine max L. Merr.)] and winter [wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale L.), crimson clover (Trifolium incarnatum L.)] crops were NT planted throughout the study under each management system. Soil bulk density was reduced with PP compared with NT by as much as 0.15 Mg m−3, but the extent of reduction was inversely related to the time lag between PP operation and sampling event. Soil organic C became significantly enriched with time during this study under NT (0.49 Mg C ha−1 year−1), but not under PP, in which poultry litter was applied equivalent to 5.7 Mg ha−1 year−1 to all water catchments. Soil maintained a highly stratified depth distribution of organic C and N fractions and extractable P under both NT and PP. Inability to perform the PP operation in the last year of this study resulted in rapid convergence of soil bulk density between tillage systems, suggesting that PP had <1-year effectiveness on soil loosening. The high energy cost of PP (ca. 30 kW shank−1) and the lack of sustained improvement in surface-soil properties put into question the value of PP for improving upon long-term NT management in sandy loam and sandy clay loam Ultisols of the Southern Piedmont USA, unless large effects on crop yield, water quality, or other ecosystem processes warrant its use.  相似文献   

17.
Carbon sequestration in two Brazilian Cerrado soils under no-till   总被引:2,自引:0,他引:2  
A considerable proportion of the 200 million hectares of the Brazilian Cerrado is suitable for annual crops but little is known about the effects of tillage on the C dynamics of Cerrado soils. We evaluated the role of two representative Cerrado Oxisols (350 and 650 g clay kg−1) as sources or sinks of atmospheric C when managed under three tillage systems (conventional tillage (CT), reduced tillage (RT), and no-till (NT)) in 8- and 5-year long-term experiments. A literature review was also carried out and the mean C sequestration rates in no-till soils of tropical and subtropical regions of Brazil were calculated and compared with values for soils from temperate regions of the world. The original C stocks in 0–20 cm layer of soils under native Cerrado were higher in the clayey (54.0 Mg ha−1) than in the sandy clay loam soil (35.4 Mg ha−1), suggesting a higher physical stability of organic matter associated with variable clay minerals in the clayey Oxisol. The original C stocks of the native Cerrado soils appear not to have decreased after 23 years of conventional tillage in the sandy clay loam Oxisol, except when the soil had been subjected to erosion (15% loss of C), or after 25 years in the clayey Oxisol. Compared to conventionally tilled soil, the C stocks in no-till sandy clay loam Oxisol increased by 2.4 Mg ha−1 (C sequestration rate = 0.30 Mg ha−1 year−1) and in the clayey Oxisol by 3.0 Mg ha−1 (C sequestration rate = 0.60 Mg ha−1 year−1). The mean rate of C sequestration in the no-till Brazilian tropical soils was estimated to be 0.35 Mg ha−1 year−1, similar to the 0.34 Mg ha−1 year−1 reported for soils from temperate regions but lower than the 0.48 Mg ha−1 year−1 estimated for southern Brazilian subtropical soils. Considering the large area (about 70 million hectares) of the Cerrado which is currently used and potentially available for cropland, the adoption of no-till systems could turn the Cerrado soils into a significant sink for atmospheric C and contribute to the mitigation of global climate change.  相似文献   

18.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

19.
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

20.
Changes in some soil chemical, including 15N values, and biochemical properties (microbial C, FDA hydrolysis, glucosidase and urease activities) due to two tillage systems, conventional tillage (CT) and no-tillage (NT), were evaluated in an acid soil from temperate humid zone (NW of Spain) and compared with values obtained for a reference forest soil. The results showed that in the surface layer (0–5 cm depth) tillage tended to increase soil pH and to decrease organic matter levels and microbial biomass and activity values. The data also indicated that 8 years of NT, compared to CT, resulted in greater organic matter content and increased microbial biomass and activity, the changes being more pronounced for the microbial properties. Adoption of NT resulted in an increase of soil C storage of 1.24 Mg C ha−1 year−1 with regard to CT. The suitability of 15N as a potential tracer of land-use in this acid soil was also confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号