首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Rhizobium strains of the cowpea group did not lose viability readily when added to soil, but Bdellovibrio acting on these rhizobia were found in 32 of 90 soils examined. Bdellovibrio did not initiate replication in liquid media at low host densities, but it did multiply once the Rhizohium numbers increased through growth to about 108 ml?1. From about 104 to 6 × 105 ml?1Rhizohium cells survived attack by the parasites in liquid media. In nutrient-free buffer, no significant increase in vibrio abundance was evident if the rhizobial frequency was low. whereas Rhizobium populations containing 6 × 108 cells ml?1 were lysed rapidly. Bdellovibrio did not multiply when introduced into sterile soil with small numbers of the host, but it replicated when the rhizobia were abundant because of the latter's use of soil organic matter for growth or because of the deliberate addition of 108Rhizohium g?1. Nevertheless, the host persisted in such vibrio-rich soil samples. The abundance of indigenous bdellovibrios increased appreciably in nonsterile soil if the rhizobia were introduced in large but not small numbers. It is suggested that a major reason for the lack of elimination of the host population in soil by its parasites is the need for a critical host cell frequency, large Rhizobium numbers being required for Btiellovibrio to initiate replication and low numbers of surviving hosts no longer being able to support the parasite.  相似文献   

2.
The usage of sewage sludge on agricultural lands is an effective and inexpensive practice that provides nutrients for crops. A successful legume crop also depends on the survival of Rhizobium in the soil environment. The number of R. japonicum (USDA 110) in treatment groups containing various soil-to-sludge ratios (control, 13:1, 9:1 and 5:1) during incubation for 1, 21 and 42 days was investigated. The control group contained soil without sludge. Mecklenburg clay and Enon sandy loam soils (both are fine, mixed, thermic, ultic Hapludalfs) were used. All treatments were adjusted to pH 6.7 and brought to 75% of field capacity with 1 ml inoculum (9 × 108 cells ml? 1) and distilled water. Samples were incubated at 25 C and monitored periodically for the number of surviving R. japonicum (USDA 110) organism by the plant infcction-MPN method. Strains were identified by gel-immunodiffusion. Recovery of rhizobia from both soils was < 1% in all treatment groups after 42 days. However, for control, 13:1, 9:1 and 5:1 groups, the percentage recovery was higher in Enon sandy loams (7.9, 2.3, 2.3 and 2.3%, respectively) at 21 days. Recovery of rhizobia in the 5:1 group from both soils was 7.9% after 1 day, whereas control values were 92%. A decline in rhizobial populations in higher sludge soils may be due to the heavy metals present and available during mineralization of sludge in soils. However, the number of R. japonicum that survived to 21 days was 1.7 × 105g?1 and 1.7 x 106g?1 for Mecklenburg clay and Enon sandy loam soils with highest sludge, respectively.  相似文献   

3.
The competitiveness of a mesquite Rhizobium (AZ-M1) and its ability to survive in desert soils was compared to a selected commercial strain (31A5). In a greenhouse study, the native isolate out-competed strain 31A5 in nodule occupancy, when applied as a mixed inoculant to seed germinated and grown in sand culture, and irrigated with N-free nutrients. A high incidence of nodule double occupancy was found when double strain inoculants were used. The survival rate of the two strains was tested in three desert soils in a controlled laboratory study. The desert strain AZ-M1 grew and survived in all the soils for 1 month. The commercial strain 31A5, did not grow, and the population decreased in 14 days from 108 cells g?1 dry soil to below 104 cells g?1. Both strains survived to a lesser extent in a saline-sodic soil. A significant morphological change from a rod to a coccus was observed 2 days after strain 31A5 had been introduced into the desert soils.  相似文献   

4.
Chickpea Rhizobium populations in soil samples from research stations and farmers' fields in different geographic regions of India ranged from <10 to > 104 rhizobia g−1 soil. Fields on research stations with a known history of chickpea cropping had more rhizobia (calc. 103 to 105 rhizobia g1&#x0304; soil) than the majority of farmers' fields (calc. < 10 to 103 rhizobia g−1 soil). In the absence of chickpea in the cropping pattern, soils generally had < 102 rhizobia g1&#x0304; and crops in such fields nodulated poorly. However, poor nodulation was also observed when populations of rhizobia were high, indicating that other factors were also important for nodulation. There was no obvious consistent correlation of Rhizobium population with pH, electrical conductivity and nitrate-nitrogen status of the soil.Rhizobium populations declined with soil depth and were highest (about 104 rhizobia g−1 soil) in the top 30 cm of the profile and lowest, but still present (calc. 103–103 rhizobia g'1 soil), at 90–120 cm—a depth where no nodules are found. Populations fluctuated most in the top 5 cm, being reduced during periods of high soil temperature in summer and recovering after rains. Rhizobium populations were at a maximum after chickpea but survived well under pigeonpea, groundnut and maize. When rice followed an inoculated chickpea crop, there was about a 100-fold decrease in the Rhizobium population.  相似文献   

5.
1.3-β-Glucanase (laminarinase) activity in soil was measured using laminarin as the substrate. Activity was optimal in sodium acid-maleate buffer at pH 5.4 and followed Michaelis-Menten kinetics. Three methods of analysing kinetic data gave Km values of 0.23, 0.21 and 0.20 mg.ml?1. Vmax values were 0.41, 0.39 and 0.39 μmole glucose, g?1. h?1. The activation energy of the reaction was 49 kJ. mole?1. A proportion of the activity was highly resistant to storage at various temperatures: at 50 C 1,3-β-glucanase had a half-life of 28 days.  相似文献   

6.
The effects of copper pollution on the soil fungal flora was investigated. Soils treated with 100, 200, 400, 800 or 1600 μg Cu g?1 were used for experiments to study changes in fungal populations, especially the development and dominance of copper-tolerant fungi. Fungi were sampled 1, 3 and 5 months after copper treatment.All the correlation coefficients between the copper contents and the number of fungal colonies plated were positive. The higher the copper concentration in soil, the more 1000 μ Cu ml?1 tolerant fungi were isolated. The relative number of 1000 μg Cu mr?1 tolerant fungi from the soil treated with 1600 μg Cu g?1 was about 30% of those of the control 14 days after treatment. Within the limits of this experiment, the increase in fungal populations was directly correlated with the increase of dominant Cu-tolerant fungi.From control soils, containing low quantities of copper, 1000 μg Cu ml?1 tolerant fungi were also isolated; whereas, from soils containing high amounts of copper, some Cu-sensitive fungi were isolated. Most of the 1000 μg Cu ml?1 tolerant fungi were Penicillium spp. It was concluded that the genus Penicillium may be dominant in soils polluted with copper.  相似文献   

7.
Isolates of Rhizobium phaseoli resistant to spergon (2,3,5,6-tetrachloro-l,4-benzoquinone), Rhizobium meliloti resistant to thiram (tetramethylthiuram disulfide) and of a cowpea Rhizobium resistant to phygon (2,3-dichloro-l,4-naphthoquinone) were obtained by culturing the bacteria in media with increasing concentrations of these fungicides. The cultures grew in media with 200 μg thiram ml?1, 150 μg spergon ml?1 or 400 μg phygon ml?1. Spergon-tolerant R. phaseoli was sensitive to thiram, and thiram-tolerant R. meliloti was sensitive to spergon. The dry weights of beans, alfalfa and cowpeas and the amount of N2 fixed were the same for plants inoculated with the fungicide-resistant or the sensitive parent rhizobia. However, when the three parent Rhizobium strains were applied to seeds treated with the three fungicides, the plants that developed were stunted, chlorotic, grew poorly and fixed little or no N2. By contrast, beans, alfalfa or cowpea plants derived from seeds coated with spergon, thiram or phygon and inoculated with the resistant rhizobia grew as well and fixed as much N2 as legumes derived from seeds not treated with the pesticides. These findings provide the basis for a simple method for simultaneously allowing for N2 fixation and seed protection of legumes.  相似文献   

8.
The earthworms Allolobophora catiginosa and Lumbricus rubellus were used to study the toxicity of 2,3,7,8-TCDD (dioxin) for earthworms. The earthworms were exposed to soil containing concentrations ranging from 0.05 to 5.0 μgg?1. No worms were killed or showed any other observable toxicological effects when exposed to concentrations up to 5 μg g?1 for 85 days in soil. The lethal threshold concentration for TCDD to earthworms falls between 5 and 10 μg g?1 in this study. In soils containing 0.05 μg g?1 earthworms accumulated TCDD up to 5 times the original soil concentration within 7 days. Worms were also exposed to TCDD on filter paper to study the behaviour of earthworms and the uptake of TCDD after surface contact. The earthworms did not avoid TCDD in their environment, indicating an indifference to it. No active penetration of TCDD into the body occurred where earthworms were exposed to surface concentrations. No indication was found of possible biological breakdown of TCDD on passing through the earthworm gut, although the search for metabolites was limited to the mono-, bi- and trichlorinated dioxins. There was a steady decrease (a T12-value of 80–400 days) in the amount of TCDD recovered from worm-worked soil compared to soil without worms.  相似文献   

9.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

10.
Bacteria, Pseudomonas paucimobilis, were inoculated at two concentrations (6.56 × 104 g?1 and 6.56 × 106g?1) into sterilized soil amended with 700 μg glucose-C g?1. Two levels of NH+4-N (11.0μg g?1 and 81.0 μg g?1) were used. The subsequent development was followed for three days by measurement of several biological, chemical and physiological parameters.The amount of bacterial biomass-C (μg g?1 soil) became twice as great in high as in low N treatments, and significantly decreased between 39.5 and 63.5 h for the high inoculum, high N level treatment due to decreasing cell size. By the end of the experiment the cumulative respired carbon was twice as great and more inorganic P was immobilized for high compared to low N treatments and all available NH+4-N was taken up by the final sample time. Soil ATP concentrations were twice as large in high N treatments but the turnover times were twice as long compared to low N systems. The yield coefficient (Y), calculated from respiration and biomass-C values, equalled 0.61 while substrate was plentiful. Nitrogen limitation did not alter the efficiencey with which glucose was transformed into biomass, but rather controlled the total amount of glucose used and biomass produced.  相似文献   

11.
Elucidating the biodiversity of CO2-assimilating bacterial communities under different land uses is critical for establishing an integrated view of the carbon sequestration in agricultural systems. We therefore determined the abundance and diversity of CO2 assimilating bacteria using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene (which encodes ribulose-1,5-biphosphate carboxylase/oxygenase). These analyses used agricultural soils collected from a long-term experiment (Pantang Agroecosystem) in subtropical China. Soils under three typical land uses, i.e., rice–rice (RR), upland crop (UC), and paddy rice–upland crop rotation (PU), were selected. The abundance of bacterial cbbL (0.04 to 1.25?×?108 copies g?1 soil) and 16S rDNA genes (0.05–3.00?×?1010 copies g?1 soil) were determined in these soils. They generally followed the trend RR?>?PU?>?UC. The cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Mycobacterium sp., Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and Alcaligenes eutrophus. Additionally, the cbbL-containing bacterial community composition in RR soil differed from that in upland crop and paddy rice–upland crop rotations soils. Soil organic matter was the most highly statistically significant factor which positively influenced the size of the cbbL-containing population. The RR management produced the greatest abundance and diversity of cbbL-containing bacteria. These results offer new insights into the importance of microbial autotrophic CO2 fixation in soil C cycling.  相似文献   

12.
The effect of 50, 100, 150, and 400 μg sodium pentachlorophenate (Na-PCP) per gram soil was studied in nonsterile soil incubated under aerobic and anaerobic conditions, and in sterilized soil inoculated withAzotobacter sp. isolated from the soil. N2 fixation was determined by acetylene reduction. Pentachlorophenate at a concentration of 50 μg g?1 had an inhibitory effect in nonsterile soil incubated aerobically while strong inhibition of dinitrogen fixation in nonsterile soil occurred in the presence of 100 μg g?1 and above. The EC50 values for the inhibition of nitrogenase activity in nonsterile soil incubated aerobically and anaerobically and in sterilized soil inoculated withAzotobacter sp. suspensions were 49.8±1.4 μg Na-PCP g?1, 186.8±2.8 μg Na-PCP g?1, and 660.8±29.3 μg Na-PCP g?1, respectively.  相似文献   

13.
The ability of terrestrial ecosystems to store carbon (C) under rising atmospheric CO2 will depend on how severely nitrogen (N) will limit plant growth. We tested whether increased C availability in the soil at elevated CO2 could affect N limitation by inducing N release from soil organic matter (SOM). We established microcosms composed of Holcus lanatus plants, field soil (containing “old” SOM) and 15?N-labeled plant litter (representing “new” SOM), simulated different levels of root C release by adding a single pulse of 0, 18, 44, or 175?μg glucose C?g?1 dry soil and recorded the effects on soil microbial biomass, microbial-feeding protozoa and nematodes and plant performance 1, 3, 9, and 32?days after C addition. The effects on H. lanatus growth and N uptake depended on the amount of added C and the time elapsed since addition. Shoot N concentration and N content were higher in pots amended with 44?μg?C g?1 soil than in other pots 1?day after C addition. Later, 9 and 32?days after C addition, the highest glucose addition reduced the dry mass, N concentration, and N content of H. lanatus shoots in comparison to other treatment levels. Microbial biomass was generally higher in soils subjected to 44?μg glucose C?g?1 soil than in control soils, and, at the last harvest, the numbers of protozoa were significantly higher in all soils with glucose amendments than in control soils. No effects on microbial-feeding nematodes were found, and plant N uptake from “old” and “new” SOM was equally affected by C addition. Our results seem to suggest that, while a low pulse of labile C can increase plant N uptake temporarily on an hour scale, higher amounts of C will intensify plant N limitation at timescales of days and weeks. Generalization of such dose and time dependent results requires great caution, but if verified in other plant–soil systems as well, they would suggest that plant N availability under elevated C availability may depend on the balance between positive and negative effects operating at different timescales and triggered by additional C pulses of varying size.  相似文献   

14.
Fluorescence in situ hybridization (FISH) technique and qPCR analyses, targeting atz genes, were applied to detect the presence of simazine-degrading bacteria in an agricultural soil with a history of herbicide application. atzB-targeted bacteria detected by FISH represented 5% of total soil bacteria with potential capability to metabolize the herbicide. The soil natural attenuation capacity was confirmed in soil microcosms by measuring simazine degradation. Moreover, four bacterial strains were isolated from the soil and identified as Acinetobacter lwoffii, Pseudomonas putida, Rhizobium sp. and Pseudomonas sp. The isolates were able to grow using different s-triazine compounds and related metabolites as the sole carbon source. Growth parameters in presence of simazine were calculated using the Gompertz model. Rhizobium sp. showed the highest simazine degradation (71.2%) and mineralization (38.7%) rates, whereas the lowest values were found to A. lwoffii??50.4% of degradation and 22.4% of mineralization. Results from qPCR analyses of atzA, atzB and atzC genes revealed their presence in Rhizobium sp. and A. lwoffii, being atzB and atzC the most abundant functional genes. Rhizobium sp. showed a higher amount of the three biomarkers compared to A. lwoffii: the atzA, atzB and atzC gene copy number per microlitre were, respectively, 101, 102 and 103-fold higher in the former. Therefore the proposed molecular approaches based on the use of atz genes as biomarkers can be considered as useful tools to evaluate the presence and potential capability of degrading-s-triazines soil microorganisms.  相似文献   

15.
A chromated-copper-arsenate (CCA) wood preservative was tested for toxic effects on the growth of a bacterial culture (Flavobactenum sp. ATCC 53874) capable of biodegrading pentachlorophenol, another wood preservation chemical. Both a commercially available CCA preparation and a laboratory-prepared CCA solution were tested. Each had an inhibitory effect on the growth of Flavobacterium at diluted CCA levels as low as 1.0×10?4 to 1.0×10?5% wt vol?1. The commercial formulation was generally more toxic. EC50 values calculated after 96 hr of incubation were 1.2 ×10?4% wt vol?1 for the commercial material (containing 0.15/0.097/0.14 μg mL?1 of Cr/Cu/As, respectively) and 3.8×10?4% for the laboratory solution (containing 0.51/0.31/0.49 μg mL?1 of Cr/Cu/As, respectively). CCA toxicity increased during the first 7 to 8 days and then slowly decreased for the balance of the 21 day incubation period. Biodegradation of pentachlorophenol residues in contaminated soil will be negatively affected by the presence of CCA as a co-contaminant.  相似文献   

16.
The survival of Pseudomonas solanacearum biovars 2 and 3 in three soils, a Nambour clay loam, a Beerwah sandy loam and a Redland Bay clay, was compared at pressure potentials of ?0.003, ?0.05 and ?0.15 kPa. The soils were inoculated with mutants of P. solanacearum biovars 2 and 3, resistant to 2000 μg streptomycin sulphate ml?1 and their survival measured every 6 weeks for 86 weeks in the clay loam and clay and for 52 weeks in the sandy loam. Soil populations declined with the initial drying necessary to bring the soil moisture to the specific pressure potentials; the initial counts for biovar 2 varied between 0.20 and 2.00 × 109 cfu g?1 soil and for biovar 3 between 0.17 and 1.29 × 109 cfu g?1 soil.The population decline in soil maintained at a constant pressure potential was expressed as the rate of population decline. Biovar 2 declined more rapidly than biovar 3. The rate of population decline of each biovar at ?0.003 and ?0.05 kPa was greater in clay loam than in sandy loam and at all pressure potentials it was greater in clay loam and sandy loam than in clay. There was also a tendency for the rate of population decline of both biovars to decrease in the drier soil treatments.  相似文献   

17.
The side effects of fluazifop-butyl on soil fungal populations and oxygen uptake were studied by incubating soil samples with a range of fluazifop-butyl concentrations (0, 0.6, 3 and 6 μg g?1) over 8 weeks. Cellulose decomposition in soil was also studied in laboratory experiments with the herbicide which was either incorporated in soil or sprayed onto calico squares which were buried in soil. The mycelial dry weight of six fungal species under the effect of the herbicide was also examined. Fluazifop-butyl had no significant effect on total fungal propagule populations at 0.6 μg g?1. At 3 and 6 μg g?1, it caused temporary reduction in fungal populations observed after 1 and 2-wk of incubation. The herbicide had no significant effect on OZ uptake. The decay of calico buried in herbicide-treated soil was generally stimulated, while the decomposition of herbicide-treated calico, buried in untreated soil, was temporary delayed. The mycelial dry weight yields of Aspergillus favus (at 2 and 12 μg mL?1 of fluazifop-butyl) and Cunninghamella echinulata (at 12 μg mL?1) were significantly increased. At 24 μg mL?1 the mycelial dry weight of A. flavus and Alternaria alternata was significantly reduced.  相似文献   

18.
Summary Soil solarization greatly reduced the native chickpea Rhizobium population. With inoculation, it was possible to increase the population of the Rhizobium in solarized plots. In the 1st year, 47% nodulation was obtained with chickpea inoculant strain IC 59 when introduced with a cereal crop 2 weeks after the soil solarization and having a native Rhizobium count of <10 g-1 soil, and only 13% when introduced 16 weeks after solarization at the time the chickpeas were sown, with 2.0×102 native rhizobia g-1 soil. In the non-solarized plots inoculated with 5.6×103 native rhizobia g-1 soil, only 6% nodulation was obtained with the inoculant. In the succeeding year, non-inoculated chickpea was grown on the same plots without any solarization or Rhizobium inoculation. The treatment that showed good establishment of the inoculant strain in year 1 formed 68% inoculant nodules. Other treatments indicated a further reduction in inoculant success, from 1%–13% to 1%–9%. Soil solarization thus allowed an inoculant strain to successfully displace the high native population in the field and can serve as a research tool to compare strains in the field, irrespective of competitive ability. In year 1, Rhizobium inoculation of chickpea gave increased nodulation and increased plant growth 20 and 51 days after sowing, and increased dry matter, grain yield, and grain protein yield at maturity. These beneficial effects of inoculation on plant growth and yield were not measured in the 2nd year.Submitted as Journal Article No. JA 945 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India  相似文献   

19.
Barley (Hordeum vulgare L.) was grown on a sandy soil given different doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite) in a pot experiment conducted in a greenhouse. The element compounds were added to the soil in amounts equivalent to the following levels of the metals: Cd 5, 10, 50 μq ?1; Cu and Pb 50, 100, 500 μg g?1; Zn 150, 300, 1500 μg g?1. Sequential extraction was used for partition these metals into five operationally-defined fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The residue was the most abundant fraction in the untreated soil for all the metals studied (43 to 61% of the total contents). The concentration of exchangeable Cd (0.2 μg g?1), Cu (0.01 μg g?1), Pb (0.1 μg g?1), and Zn (1.4 μg g?1) were relatively low in the untreated soil but increased markedly in the treated soils for Cd (up to 31 μg g?1) and Zn (up to 83 μg g?1), whereas only small changes were observed for Cu and Pb. The pot experiment showed a significant increase in the Cd and Zn contents of barley grown on the treated soils, but only small changes in Cu and Pb concentrations.  相似文献   

20.
Vascular plant tissues of various species growing on flood plain soils along the South River at Waynesboro, VA. have previously been shown to contain Hg. These soils characteristically contain 10–20μg Hg g?1. In the field, root/rhizome Hg content inAsclepias syriaca andSolidago sp. ranged from undetectable amounts at low Hg control sites to 1.96μg Hg gdw?1 at contaminated sites, with the association being inversely related to subterranean organ size. Within each size class, tissue Hg was directly related to soil Hg concentration. The relationship of subterranean organ size and enhanced Hg association was further substantiated by high levels of Hg in the fibrous root systems of grasses grown under greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号