首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altered platelet function has been reported in calves experimentally infected with type II bovine viral diarrhea virus (BVDV). The purpose of the present study was to further evaluate the ability of BVDV isolates to alter platelet function and to examine for the presence of a virus-platelet interaction during BVDV infection. Colostrum-deprived Holstein calves were obtained immediately after birth, housed in isolation, and assigned to 1 of 4 groups (1 control and 3 treatment groups). Control calves (n = 4) were sham inoculated, while calves in the infected groups (n = 4 for each group) were inoculated by intranasal instillation with 10(7) TCID50 of either BVDV 890 (type II), BVDV 7937 (type II), or BVDV TGAN (type I). Whole blood was collected prior to inoculation (day 0) and on days 4, 6, 8, 10, and 12 after inoculation for platelet function testing by optical aggregometry by using adenosine diphosphate and platelet activating factor. The maximum percentage aggregation and the slope of the aggregation curve decreased over time in BVDV-infected calves; however, statistically significant differences (Freidman repeated measures ANOVA on ranks, P < 0.05) were only observed in calves infected with the type II BVDV isolates. Bovine viral diarrhea virus was not isolated from control calves, but was isolated from all calves infected with both type II BVDV isolates from days 4 through 12 after inoculation. In calves infected with type I BVDV, virus was isolated from 1 of 4 calves on days 4 and 12 after inoculation and from all calves on days 6 and 8 after inoculation. Altered platelet function was observed in calves infected with both type II BVDV isolates, but was not observed in calves infected with type I BVDV. Altered platelet function may be important as a difference in virulence between type I and type II BVDV infection.  相似文献   

2.
Some isolates of type II bovine viral diarrhea virus (BVDV) are capable of causing severe clinical disease in cattle. Bovine viral diarrhea virus infection has been reported in pigs, but the ability of these more virulent isolates of type II BVDV to induce severe clinical disease in pigs is unknown. It was our objective to compare clinical, virologic, and pathologic findings between type I and type II BVDV infection in pigs. Noninfected control and BVDV-infected 2-month-old pigs were used. A noncytopathic type I and a noncytopathic type II BVDV isolate were chosen for evaluation in feeder age swine based upon preliminary in vitro and in vivo experiments. A dose titration study was performed using 4 groups of 4 pigs for each viral isolate. The groups were inoculated intranasally with either sham (control), 10(3), 10(5), or 10(7) TCID50 of virus. The pigs were examined daily and clinical findings were recorded. Antemortem and postmortem samples were collected for virus isolation. Neither the type I nor type II BVDV isolates resulted in clinical signs of disease in pigs. Bovine viral diarrhea virus was isolated from antemortem and postmortem samples from groups of pigs receiving the 10(5) and the 10(7) TCID50 dose of the type I BVDV isolate. In contrast, BVDV was only isolated from postmortem samples in the group of pigs receiving the 10(7) TCID50 dose of the type II BVDV isolate. Type I BVDV was able to establish infection in pigs at lower doses by intranasal instillation than type II BVDV. Infection of pigs with a type II isolate of BVDV known to cause severe disease in calves did not result in clinically apparent disease in pigs.  相似文献   

3.
4.
Seven of nine colostrum-deprived calves, free from infection with bovine virus diarrhoea virus (BVDV), were vaccinated with Rispoval RS-BVD on two occasions, 21 days apart, while the other two were kept as BVDV infection controls. The virus neutralizing (VN) serum antibodies induced by vaccination were tested for their ability to neutralize 18 European BVDV isolates, including laboratory reference strains and recent field isolates, both cytopathic and non-cytopathic biotypes as well as genotypes I and II. The strains were isolated in Belgium, France, Germany and the United Kingdom. While there were large variations in the vaccine-induced VN titres of the individual calves against all the strains, e.g. the titres against Osloss NCP, the European reference strain ranged from 1.7 to 6.7 (1:log2), serum from each animal was capable of neutralizing between nine and all 18 of the strains tested. Nevertheless, from the results of this study, it can be concluded that in colostrum-deprived BVDV seronegative calves, Rispoval RS-BVD can stimulate the production of VN antibodies capable of neutralizing a wide range of antigenically diverse European isolates of BVDV, including genotypes I and II.  相似文献   

5.
OBJECTIVE: To determine the effect of maternally derived antibodies on induction of protective immune responses against bovine viral diarrhea virus (BVDV) type II in young calves vaccinated with a modified-live bovine viral diarrhea virus (BVDV) type I vaccine. DESIGN: Blinded controlled challenge study. ANIMALS: 24 neonatal Holstein and Holstein-cross calves that were deprived of maternal colostrum and fed pooled colostrum that contained a high concentration of (n = 6) or no (18) antibodies to BVDV. PROCEDURE: At 10 to 14 days of age, 6 seropositive and 6 seronegative calves were given a combination vaccine containing modified-live BVDV type I. All calves were kept in isolation for 4.5 months. Six calves of the remaining 12 untreated calves were vaccinated with the same combination vaccine at approximately 4 months of age. Three weeks later, all calves were challenged intranasally with a virulent BVDV type II. RESULTS: Seronegative unvaccinated calves and seropositive calves that were vaccinated at 2 weeks of age developed severe disease, and 4 calves in each of these groups required euthanasia. Seronegative calves that were vaccinated at 2 weeks or 4 months of age developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that a single dose of a modified-live BVDV type-I vaccine given at 10 to 14 days of age can protect susceptible young calves from virulent BVDV type II infection for at least 4 months, but high concentrations of BVDV-specific maternally derived antibodies can block the induction of the response.  相似文献   

6.
Seven of nine colostrum‐deprived calves, free from infection with bovine virus diarrhoea virus (BVDV), were vaccinated with Rispoval? RS‐BVD on two occasions, 21 days apart, while the other two were kept as BVDV infection controls. The virus neutralizing (VN) serum antibodies induced by vaccination were tested for their ability to neutralize 18 European BVDV isolates, including laboratory reference strains and recent field isolates, both cytopathic and non‐cytopathic biotypes as well as genotypes I and II. The strains were isolated in Belgium, France, Germany and the United Kingdom. While there were large variations in the vaccine‐induced VN titres of the individual calves against all the strains, e.g. the titres against Osloss NCP, the European reference strain ranged from 1.7 to 6.7 (1 : log2), serum from each animal was capable of neutralizing between nine and all 18 of the strains tested. Nevertheless, from the results of this study, it can be concluded that in colostrum‐deprived BVDV seronegative calves, Rispoval? RS‐BVD can stimulate the production of VN antibodies capable of neutralizing a wide range of antigenically diverse European isolates of BVDV, including genotypes I and II.  相似文献   

7.
The infection of cattle with the bovine viral diarrhea virus (BVDV) in Germany is gaining attention and guidelines for the "protection of cattle farms against BVDV infections" were passed in 1997. New investigations about the damages induced by BVDV infections as well as the new occurrence of so-called BVDV genotypes (BVDV I and II) made the problems to become aware. The newly described BVDV genotype considerably differs both genetically and antigenetically from the up to now known BVD-viruses (BVDV I). The subdivision in BVDV genotypes I and II is based on genomic differences, which are determined by sequence analyses of different parts of the viral genome. Here, we describe the classification of BVDV in genotypes using a monoclonal antibody and indirect immunofluorescence with flow cytometry (FACS) based analysis. The suitability of the mab WB160 (Central Veterinary Laboratory, Weybridge; UK) for the classification of both BVDV-genotypes was first checked using genetically defined BVDV isolates. While all BVDV I isolates (n = 20) reacted with high fluorescence signals, the mab WB160 could not detect any of the defined BVDV II isolates (n = 20). Subsequently, 505 BVDV field strains isolated between 1993-1997 were screened for both genotypes using the mab WB160 and FACS analysis. 33 (6.5%) of the BVDV isolates were classified as BVDV II.  相似文献   

8.
9.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

10.
11.
Fetal infection with bovine virus diarrhea virus (BVDV) causes severe economic loss and virus spread in cattle. This study investigated the ability of modified live BVDV I and II components of a commercially available modified live virus (MLV) vaccine (Breed-Back FP 10, Boehringer Ingelheim Vetmedica Inc.) to prevent fetal infection and abortion, and therefore the birth of persistently infected animals. Heifers immunized with vaccine 4-8 weeks before insemination showed no adverse effects. All vaccinated animals had seroconverted to BVDV 4 weeks after immunization. Pregnant heifers were divided into two vaccination and two control groups and challenged with type I or II BVDV on days 60-90 of gestation. Seroconversion, clinical signs, immunosuppression, viremia, mortality, abortion rate, and fetal infection were studied. Post-challenge, 6/11 (type I challenged) and 8/11 (type II challenged) vaccinated heifers were free from clinical signs of BVD. Post-challenge clinical signs noted in the vaccinated groups were mild to moderate, while all unvaccinated controls had clinical signs ranging from moderate to severe. Viremia was not detected post-challenge in any of the vaccinated heifers. However, 100% of the controls were BVDV viremic on at least 1 day post-challenge. One of 22 vaccinated heifers had transient leukopenia, whereas 2/8 and 6/7 unvaccinated heifers in control groups I and II, respectively, had transient leukopenia. Type II BVDV infection led to abortion or death in 86% of unvaccinated heifers. The corresponding vaccinated group showed no deaths or abortions. All control group fetuses were infected with BVDV. The test vaccine gave 91% (type I BVDV challenged) and 100% (type II BVDV challenged) protection from fetal infection. This vaccine is safe and effective against fetal infection, abortion (type II BVDV) and the birth of persistently infected animals.  相似文献   

12.
Seven of nine colostrum deprived calves, free from bovine viral diarrhoea virus (BVDV), were vaccinated with a commercially available vaccine containing two inactivated strains of BVDV, an inactivated strain of bovine herpesvirus-1 and modified-live strains of bovine respiratory syncytial virus and para-influenza-3 virus. The two other calves were kept as controls. The virus neutralising (VN) antibodies induced by vaccination were tested against 22 antigenically diverse BVDV isolates, including reference strains and field isolates, both cytopathic and non-cytopathic, as well as genotypes I and II. The strains were isolated in Belgium, France, Germany, the United Kingdom and the USA. While there were variations in the VN titres of the individual calves against all the strains, serum from the seven animals neutralised 20 or more of the strains tested. From the results, it can be concluded that the vaccine can stimulate the production of VN antibodies capable of neutralising a wide range of European and American isolates of BVDV, including genotypes I and II.  相似文献   

13.
OBJECTIVE: To compare degree of viremia and disease manifestations in calves with type-I and -II bovine viral diarrhea virus (BVDV) infection. ANIMALS: 16 calves. PROCEDURE: Colostrum-deprived calves obtained immediately after birth were assigned to 1 control and 3 treatment groups (4 calves/group). Calves in treatment groups were inoculated (day 0) by intranasal instillation of 10(7) median tissue culture infective dose BVDV 890 (type II), BVDV 7937 (type II), or BVDV TGAN (type I). Blood cell counts and virus isolation from serum and leukocytes were performed daily, whereas degree of viremia was determined immediately before and 4, 6, 8, and 12 days after inoculation. Calves were euthanatized on day 12, and pathologic, virologic, and immunohistochemical examinations were performed. RESULTS: Type-II BVDV 890 induced the highest degree of viremia, and type-I BVDV TGAN induced the lowest. Virus was isolated more frequently and for a longer duration in calves inoculated with BVDV 890. A parallel relationship between degree of viremia and rectal temperature and an inverse relationship between degree of viremia and blood cell counts was observed. Pathologic and immunohistochemical examinations revealed more pronounced lesions and more extensive distribution of viral antigen in calves inoculated with type-II BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: Degree of viremia induced during BVDV infection is associated with severity of clinical disease. Isolates of BVDV that induce a high degree of viremia may be more capable of inducing clinical signs of disease. Strategies (eg, vaccination) that reduce viremia may control clinical signs of acute infection with BVDV.  相似文献   

14.
OBJECTIVE: To determine the comparative virulence of 5 isolates of bovine viral diarrhea virus (BVDV) type II by inoculating 6- to 9-month-old beef calves with isolates originating from the tissues of cattle affected with naturally occurring, transient, acute, nonfatal infections or naturally occurring, peracute, fatal infections. ANIMALS: 22 calves that were 6 to 9 months old. PROCEDURE: The study used BVDV isolates 17011, 713, and 5521 that originated from fetuses aborted from cows with transient, nonfatal, acute BVDV infections and isolates 23025 and 17583 that originated from the tissues of cattle with peracute, fatal BVDV infections. Calves were allotted to 6 groups (1, mock-infected control calves [n = 2]; 2, inoculated with BVDV 17011 [4]; 3, inoculated with BVDV 713 [4]; 4, inoculated with BVDV 5521 [4]; 5, inoculated with BVDV 23025 [4]; and 6, inoculated with BVDV 17583 [41]. Rectal temperatures and clinical signs of disease were recorded daily. Total and differential WBC and platelet counts were performed. Histologic examination and immunohistochemical analysis were conducted to detect lesions and distribution of viral antigens, respectively. RESULTS: Calves inoculated with BVDV 23025 or 17583 developed more severe clinical signs of disease (fever and diarrhea), more severe lymphopenia, and more severe lesions (alimentary epithelial necrosis, lymphoid depletion, and BVDV antigen deposition in lymphatic tissues), compared with calves inoculated with BVDV 713, 5521, or 17011. CONCLUSIONS AND CLINICAL RELEVANCE: Relative severity of experimentally induced infections corresponded to severity of clinical signs of naturally occurring infections with respective BVDV isolates.  相似文献   

15.
The monoclonal antibody (MAb) D89 against bovine viral diarrhea virus (BVDV) was used in conjunction with fluorescein-conjugated anti-mouse immunoglobulin in an indirect fluorescent antibody (IFA) procedure on frozen tissue sections and cell culture. During the 2-year study, BVDV was isolated from specimens submitted in 460 cases. The D89 Mab detected all but 2 BVDV isolates, both cytopathic. In 316 of the cases in which BVD virus was detected by IFA, specimens were inoculated on bovine turbinate cells and examined for BVDV antigens at 3-5, 10, and 20 days postinoculation. The BVDV was detected in 238/316 cases (75%) after 3-5 days incubation. The remainder were not detected until 10 or 20 days postinoculation. Virus isolation was enhanced in the early test if plates were centrifuged at the time of inoculation. Results suggest that D89 monoclonal antibody is a suitable diagnostic reagent for the detection of BVDV isolated from diagnostic specimens. The D89 MAb can be used for the detection of BVDV in both cell culture and tissues. Combination of D89 with another BVDV MAb (C17) did not improve the ability to detect BVDV in tissues compared to using D89 only, and the combined Mab's resulted in an increase in nonspecific fluorescence when used on tissues. Although pooling of different BVDV monoclonal antibodies may be necessary to detect all strains of BVDV in cell culture, pooling should be used with caution on tissues. Early detection of BVDV in cell culture by this IFA procedure permits faster confirmation of BVDV diagnosis when compared to the usual routine testing for noncytopathic BVDV at termination of first passage in cell culture.  相似文献   

16.
The infectivity and pathogenicity of selected bovine viral diarrhea virus (BVDV) isolates were determined in gnotobiotic, colostrum-deprived neonatal lambs. Five-day-old cesarean-derived gnotobiotic lambs were exposed to 1 of 10 BVDV isolates via aerosol suspension. These isolates were from tissues or secretions of calves or lambs affected with respiratory tract disease, weak neonatal calves, aborted bovine fetuses, or reference Singer or Draper BVDV. The pathogenicity of each isolate, relative to the others, was evaluated in lambs by measurement of the neutralizing antibody response, virus isolation from nasal secretions or tissues, and postmortem lesions. The BVDV isolates varied in their infectivity and pathogenicity. Singer, the cytopathic reference strain, was the most lymphotrophic isolate and stimulated the greatest neutralizing antibody response. Encephalitis was the most consistent lesion observed and was used as the final determinant of relative pathogenicity of the viruses. The most neuropathogenic isolates were the 2 viruses originating from lambs affected with respiratory tract disease, the 2 weak neonatal calf isolates, and 1 isolate from an aborted bovine fetus. The least pathogenic isolates were the 2 reference isolates, Draper and Singer; the 2 mucosal disease isolates; and 1 isolate originating from an aborted bovine fetus.  相似文献   

17.
This study is performed to gain knowledge about the quantitative distribution of bovine virus diarrhoea virus (BVDV) in tissues and white blood cells (WBC) at different intervals after acute infection. Ten specific pathogen-free calves were intranasally inoculated with 105 50% tissue culture infective dose of the non-cytopathic BVDV strain 4800. Twelve hours after inoculation tonsil biopsies were taken and WBC were collected daily for virus isolation and titration. Each day one calf was killed and virus isolations and titrations were performed from a range of tissues. The results indicate that BVDV first replicates in nasal mucosa and to high titers in the tonsil. The virus then appeared to spread to the regional lymph nodes and then disseminates throughout the body. The virus titers were highest in tonsil, thymus and ileum and were low in the WBC. Also after in vitro infection virus titers in WBC were very low, whereas, they were high in epithelial cells. Although the WBC might not be as important as other cells for replication of BVDV, they may play a role in the spread of the virus throughout the body.  相似文献   

18.
This study demonstrated that the modified-live bovine viral diarrhea virus (BVDV) type 1 and 2 fractions of a multivalent vaccine protected pregnant heifers and their fetuses against virulent BVDV types 1 and 2 challenge exposures at 370 days after vaccination. All BVDV vaccinated heifers inoculated with either BVDV type 1 or 2 at approximately 62 to 94 days of gestation delivered fetuses or calves that were negative for BVDV by ear-notch immunohistochemistry and virus isolation and serum neutralization on a prenursing serum sample. In comparison, eight of nine and 10 of 10 fetuses or calves from non-BVDV-vaccinated heifers were considered persistently infected following exposure to BVDV type 1 and type 2, respectively.  相似文献   

19.
Thrombocytopenia has been associated with type II bovine viral diarrhea virus (BVDV) infection in immunocompetent cattle, but the mechanism is unknown. The purpose of the present study was to develop and characterize a model of type II BVDV-induced thrombocytopenia. Colostrum-deprived Holstein calves were obtained immediately after birth, given a BVDV-negative and BVDV antibody-negative plasma transfusion, housed in an isolation facility, and randomly assigned to either control (n = 4) or infected (n = 5) groups. Infected calves were inoculated by intranasal instillation on day 3 of age with 10(7) TCID50 of the prototype type II isolate, BVDV 890, whereas control calves were sham inoculated. Blood counts and virus isolations from serum, white blood cells, and platelets were performed daily until day 12 after infection, at which time all experimental calves were euthanatized, and pathologic, virologic, and immunohistochemical examinations were performed. On physical examination, the control calves remained normal, but the infected calves developed pyrexia and diarrhea characteristic of type II BVDV infection. The platelet count decreased in all infected calves, and a statistically significant difference in the platelet count between control and infected calves was observed on days 7-12 after infection. In addition, the mean platelet volume and white blood cell counts also decreased. Examination of the bone marrow from the infected calves revealed immunohistochemical staining for BVDV antigen in megakaryocytes and evidence of concurrent megakaryocyte necrosis and hyperplasia.  相似文献   

20.
OBJECTIVE: To compare the efficacy of modified-live virus (MLV) vaccines containing either type 1 bovine viral diarrhea virus (BVDV) or types 1 and 2 BVDV in protecting heifers and their offspring against infection associated with heterologous noncytopathic type 2 BVDV challenge during gestation. DESIGN: Randomized controlled study. ANIMALS: 160 heifers and their offspring. PROCEDURES: After inoculation with a placebo vaccine, 1 or 2 doses of an MLV vaccine containing type 1 BVDV, or 1 dose of an MLV vaccine containing both types 1 and 2 BVDV, heifers were bred naturally and challenge exposed with a type 2 BVDV field isolate between 62 and 104 days of gestation. Pregnancies were monitored; after parturition, virus isolation and immunohistochemical analyses of ear-notch specimens were used to determine whether calves were persistently infected. Blood samples were collected at intervals from heifers for serologic evaluation and virus isolation. RESULTS: Persistent infection was detected in 18 of 19 calves from heifers in the control group and in 6 of 18 calves and 7 of 19 calves from heifers that received 1 or 2 doses of the type 1 BVDV vaccine, respectively. None of the 18 calves from heifers that received the type 1-type 2 BVDV vaccine were persistently infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the incidence of persistent BVDV infection among offspring from dams inoculated with 1 dose of the MLV vaccine containing types 1 and 2 BVDV was decreased, compared with 1 or 2 doses of the MLV vaccine containing only type 1 BVDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号