首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在不同的pH值和进水总氨氮(TAN)浓度下进行批次实验,对疫病动物尸骸废水高温厌氧消化中的氨抑制作用进行了研究。结果表明,分别固定pH值为7.0,7.4,7.8,8.2时,每个pH值下设置4个初始TAN浓度为100,800,1400,2400 mg·L~(-1),COD去除率分别下降了11.1%,26.7%,50.4%,74.4%,游离氨(FAN)浓度则分别从4,9,20,38 mg·L~(-1)上升到90,214,474,916 mg·L~(-1),FAN浓度的升高是反应器COD去除率下降的主要原因。产酸作用与产甲烷作用受氨抑制程度均随着TAN的升高而增加,且pH值越高,增加的趋势越明显,pH值为8.2时,FAN对两者的IC_(50)分别为843和453 mg·L~(-1),产甲烷作用比产酸作用对FAN更敏感,这导致VFA在反应器中积累。总VFA分别由26,48,129,214 mg·L~(-1)升至150,304,528,656 mg·L~(-1),其中乙酸分别由22,28,76,90mg·L~(-1)升至90,154,356,426 mg·L~(-1),VFA的积累类型表现为乙酸型,FAN抑制了乙酸营养型产甲烷菌的活性。  相似文献   

2.
为研究铵氮对处理餐厨垃圾的厌氧污泥产甲烷活性的影响,文章设计了甲烷转化率和日均甲烷产量与进水铵氮(NH~+_4-N)浓度负荷的对应关系两种判断方法,用于确定铵氮(NH~+_4-N)对厌氧污泥产甲烷活性的毒性负荷。结果表明:中温条件下(30℃~35℃),以模拟餐厨垃圾组分的混合短链脂肪酸为厌氧序批间隙式反应器(Anaerobic sequencing batch reactor,以下简称ASBR)的进水基质,测定铵氮(NH~+_4-N)对厌氧污泥产甲烷活性的毒性负荷,发现厌氧污泥对铵氮(NH~+_4-N)有一定的耐受能力;在进水铵氮(NH~+_4-N)浓度≤1 g·L~(-1)时,对厌氧污泥的产甲烷活性无显著影响,但当进水铵氮(NH~+_4-N)浓度在1.5~7.5 g·L~(-1)d~(-1)之间时,厌氧污泥产甲烷活性毒性负荷两种判定方式,即厌氧污泥中的甲烷日均产量和甲烷转化率均与铵氮浓度呈现明显负相关关系,由此可得,使厌氧污泥活性下降10%和50%的铵氮(NH~+_4-N)浓度分别为1.61 g·L~(-1),1.88 g·L~(-1)和6.82 g·L~(-1),6.69 g·L~(-1)。实验说明适当的铵氮(NH~+_4-N)可以提升ASBR中厌氧污泥的产甲烷活性,但过高的铵氮(NH~+_4-N)浓度则会抑制产甲烷活性。  相似文献   

3.
为研究盐分对处理餐厨垃圾的厌氧污泥产甲烷活性的影响,文章设计了甲烷转化率和日均甲烷产量与进水Na Cl浓度负荷的对应关系的两种判断方法,用于确定盐分对厌氧污泥产甲烷活性的毒性负荷。结果表明:中温条件下(30℃~35℃),以模拟餐厨垃圾组分的混合短链脂肪酸为ASBR的进水基质,测定盐分对厌氧污泥产甲烷活性的毒性负荷,发现厌氧污泥对盐分有一定的耐受能力;在进水Na Cl浓度≤16 g·L~(-1)时,对厌氧污泥的产甲烷活性无显著影响,但当进水中的Na Cl浓度在24~64 g·L~(-1)d~(-1)之间时,厌氧污泥甲烷活性毒性负荷两种判定方式,即厌氧污泥中的甲烷日均产量和甲烷转化率均与Na Cl浓度呈现明显负相关,由此可得,使厌氧污泥活性下降10%和50%的Na Cl浓度分别为22.07 g·L~(-1),21.73 g·L~(-1)和51.22 g·L~(-1),50.74 g·L~(-1)。说明适当的盐分可以提升ASBR中厌氧污泥的产甲烷活性,但过高的盐分浓度则会抑制产甲烷活性。  相似文献   

4.
在厌氧消化产沼气过程中乙酸、丙酸和丁酸等挥发性有机酸是重要的中间代谢产物,其中丙酸最为重要。通常厌氧消化系统有机负荷的提高等因素会导致系统丙酸的累积,从而引起系统酸化,抑制厌氧消化系统中微生物的生长、影响系统稳定性。因此,丙酸的降解被认为是厌氧消化过程的限速步骤。然而由于丙酸降解为乙酸,CO2和H2反应所需自由能较高,反应不能自发进行。研究表明丙酸的降解可以通过丙酸氧化菌和氢营养型产甲烷菌等互营合作而完成。文章将从厌氧消化过程中丙酸累积及调控角度出发,分析了影响丙酸累积的几大原因,并总结了近年来针对丙酸累积提出的调控办法和丙酸互营氧化菌群的研究进展,以期为厌氧消化技术的推广应用提供基础。  相似文献   

5.
为了克服产氢发酵和产甲烷发酵都存在的能源转换效率低这一瓶颈,实验将产氢发酵和产甲烷发酵进行联合,以牛粪为原料,进行产氢产甲烷联合发酵产能效率的研究,以期提升整体厌氧生物处理的产能效率;在产氢发酵阶段,通过调节pH值至5.0,抑制产甲烷菌、中断产甲烷过程的手段来实现产氢发酵,使其在产生氢气的同时生成小分子有机酸及醇类等有机物,当产氢发酵结束后,将产氢余液提供给产氢产乙酸菌和产甲烷菌进行产甲烷发酵,使小分子有机酸及醇类等物质继续代谢生成甲烷;结果显示牛粪产氢产甲烷联合发酵的能源转换效率为28.15%,明显高于牛粪产氢发酵的(9.76%)以及牛粪单独产甲烷发酵的(25.8%);结果表明本实验所建立的产氢产甲烷联合发酵模式能显著提升传统厌氧生物处理的能源转换效率。  相似文献   

6.
乙酸是厌氧消化产甲烷过程的重要中间代谢产物,可以通过乙酸营养型产甲烷菌分解乙酸和互营乙酸氧化菌氧化乙酸这两种途径产甲烷。一些同型产乙酸菌通过逆向acetyl-CoA途径可以进行互营乙酸氧化,甲酰四氢叶酸合成酶(formyltetrahydrofolate synthetase,FTHFS)是该途径关键酶,其编码基因甲酰四氢叶酸合成酶基因(fhs)可以用来研究环境中互营乙酸氧化菌群分布,但目前相关研究比较有限。为了了解乙酸氧化菌群的多样性和分布情况,研究采集了分别来自供给原料不同、运行温度不同的湿式和干式的厌氧反应器的消化污泥,按样品的来源特征构建3个fhs基因克隆文库并进行了解析。结果表明:3个文库的克隆分布差异大且没有共有克隆,大部分克隆与已知微生物或未培养克隆具有较低的相似性,表明厌氧消化系统中存在较高多样性的未知互营乙酸氧化菌群,运行温度对互营乙酸氧化菌群多样性具有一定影响。  相似文献   

7.
为了解决有机磷农药对环境造成的持久性污染,文章研究了利用厌氧消化法来降解有机磷农药。厌氧消化的原料采用废弃大白菜,有机磷农药采用乐果。利用乐果对乙酰胆碱酯酶具有抑制作用得原理,采用分光光度法测定乐果在废弃白菜厌氧消化系统(湿发酵)中的浓度变化。实验结果表明乐果农药在厌氧消化系统中具有降解趋势,初始乐果滴入量越少厌氧消化罐中的乐果降解周期越短,在实验所设置的厌氧消化系统负荷之下,160 mg·L~(-1)的乐果是此系统能够消解的极限。实验结果同时表明,乐果的浓度达到90 mg·L~(-1)以上时,逐渐开始出现对厌氧消化系统产沼气的抑制作用,系统的产沼气能力降低,乐果浓度在150 mg·L~(-1)以上时已对产气造成了严重抑制。  相似文献   

8.
文章采用中温批式厌氧发酵工艺,研究清洗及未清洗海带在不同接种率下,盐度对厌氧发酵特性的影响。研究结果表明:相同底物浓度发酵时,未清洗海带的产气性能要优于清洗海带,无机盐对产气率提高约13%~25%。未清洗海带组在盐度为12.96 g·L~(-1)时的产气性能最佳,产气率和产甲烷率分别为464.4±0.39和288.28±0.24 m L CH_4·g~(-1) VS_(added),比相同条件下清洗海带的产甲烷率提高29.56%,此时发酵液中主要金属离子浓度K~+4780 mg·L~(-1),Mg~(2+)250 mg·L~(-1),Ca~(2+)130 mg·L~(-1)和Na~+1600 mg·L~(-1),表明适宜浓度的无机盐有利于厌氧发酵的产气性能。  相似文献   

9.
沼液回流对棉花秸秆产甲烷效率及微生物群的影响   总被引:1,自引:0,他引:1  
试验在中温条件下采用连续搅拌反应器(CSTR)研究了沼液长期回流对棉花秸秆厌氧发酵的影响,对固定进水负荷下的发酵罐运行参数的动态变化进行了持续监测。结果发现:在水力停留时间为15 d,进水有机负荷为4 g TS·L~(-1)d~(-1)的条件下,与未回流组相比,回流组在第153天时产气受到抑制,产气下降了23.1%;pH值在7.1上下波动而未回流组为6.8;氨态氮浓度为108 mg·L~(-1),未回流组在71 mg·L~(-1)左右;粘度由54 mPa·s增至139m Pa·s;VFAs含量高于未回流组,其中乙酸和乳酸积累较为明显。结果表明:一方面,沼液回流提高了反应器有机负荷率及缓冲能力,大大节约淡水资源,同时对产沼气体系产生搅拌作用,节约资源和能源。另一方面,回流组沼液粘度的增加、乙酸和乳酸的积累是其产甲烷率降低的原因,其纤维素分解菌种类较少,但主要产甲烷菌-甲烷鬃毛菌随着乙酸的积累而增长,对稳定沼液回流条件下的厌氧发酵体系起到了重要作用。  相似文献   

10.
试验采用牛粪消化液为接种物,在中温(36℃)条件下,对猪粪进行了干式厌氧消化中试试验。结果表明,随着进料量由300 kg·d~(-1)提高到450 kg·d~(-1),系统表现出了较好的稳定性,沼气产量为30~35m3·d~(-1),甲烷含量在57%~62%范围内,含水率下降到81%~82%,VS下降到71%~72%,VS去除率在40%左右,p H值在7.98~8.20范围内,碱度由15000 mg·L~(-1)升高到23000 mg·L~(-1)。随着试验的进行,系统氨氮浓度不断增加,为了防止氨氮抑制情况的发生,从第42天开始对出料进行固液分离,只回流沼渣,最后氨氮浓度稳定在5000 mg·L~(-1)左右,游离氨浓度在750 mg·L~(-1)左右,厌氧消化系统没有出现明显的抑制现象。但就产气情况来看,随着进料量的提高,产气量并没有上升,系统现阶段处于抑制平衡状态。  相似文献   

11.
文章为提高低温条件下猪粪厌氧消化产气量,应用响应面法对其厌氧消化工艺的生物强化参数进行试验优化。通过Design-Express 8.0.6.1软件的Box-Behnken中心组合试验设计,以原料产气量为响应值,研究Fe~(2+),Ni~(2+)和Co~(2+)三元素离子浓度对猪粪产气量的影响,建立相关数学模型,并对模型进行降维优化分析,最后进行试验验证。结果表明,低温条件下,Fe~(2+)和Ni~(2+)元素浓度对于猪粪产气量的影响表现为极显著。最优工艺条件是Fe~(2+)浓度为5.0 mg·L~(-1),Ni~(2+)浓度为22.5μg·L~(-1),Co~(2+)浓度为25.0μg·L~(-1)时,厌氧消化沼气的产量为572.64 mL。与预测值584.67 mL的相对误差为2.1%,所建模型能较好地优化厌氧消化工艺的生物强化参数。  相似文献   

12.
文章系统地研究了F/M对餐厨垃圾厌氧消化中酸化特性的影响,分别以F/M(Food/Mud)0.5,1.0,2.0,2.5,3.0,4.0(VS/VS)为条件,观察96 h时间内酸化出料pH值、碱度、乙醇和挥发性脂肪酸(VFAs)、产气状态等特性。结果表明:当F/M≤1时,丙酸+乙酸含量达到56%~80%,以丙酸型发酵为主,并伴有甲烷产生,碱度仅为3000~4000 mg·L~(-1),系统稳定性较差,不利于后续甲烷化进程;当1F/M≤2.5时,丁酸+乙酸含量为77%~85%,且单位负荷产酸率大于250 mg VFAs·g-1VS,高于其他实验组,为丁酸型发酵,碱度达到5650 mg·L~(-1),该发酵类型稳定,可为后续甲烷化过程提供更多可利用的VFAs;当F/M2.5时,乙醇+乙酸含量为80%~92%,为乙醇型发酵,发酵96 h的pH值仅为5(F/M=3)和4.3(F/M=4),系统酸化现象严重,稳定性差,会使后续甲烷化进程受到阻碍。因此,F/M的范围可决定发酵类型,在合理范围内控制F/M可为后续甲烷化进程提供目标性产物。  相似文献   

13.
文章以小麦秸秆为原料,研究了不同接种量对产气肠杆菌同步糖化发酵产氢的影响,以期寻求最佳的接种量条件。试验以累积产氢量、产氢速率等指标来分析产气肠杆菌利用小麦秸秆进行同步糖化发酵产氢的潜力及其可行性。结果表明:在以反应液体积为200 mL,底物为5 g小麦秸秆,酶负荷为150 mg·g~(-1)秸秆、初始pH值为6.5,温度为35℃的条件下,接种量为30%时产氢效果最好,此时的累积产气量达到737 mL,累积产氢量达到293mL,最大产氢速率为35.42 mL·h~(-1)L~(-1)。该实验研究为秸秆类生物质同步糖化厌氧暗发酵产氢的进一步研究奠定了基础并提供了科学参考。  相似文献   

14.
利用河底污泥进行连续厌氧生物产氢的试验研究   总被引:2,自引:0,他引:2  
利用河底污泥,以葡萄糖为基质,在pH值为5.0~5.2,温度为35 ℃,水力停留时间为6~8 h的条件下,实现了连续厌氧生物产氢.结果表明:当容积负荷为36 kgCOD·m-3d-1时,产气中主要含有氢气和二氧化碳,其中H2约为52.3%,反应器的容积产氢率最高达6.7 L ·L-1d-1,基质产氢率为1.3~1.4 mol·mol葡萄糖-1;液相中主要末端产物为乙醇、乙酸、丁酸,三者摩尔比约为1∶1∶0.6,另有少量丙酸.  相似文献   

15.
文章以城市有机垃圾为原料,采用一次投料批式中温(37℃)厌氧发酵工艺,分析了厌氧干发酵过程中主要菌群,包括厌氧产酸菌、厌氧氨化菌、产甲烷菌和厌氧纤维素降解菌的数量变化及代谢产物的特性。结果表明:厌氧菌中产酸菌和氨化菌最先增殖,产酸菌先于氨化菌达到最大值并占据优势地位。产甲烷菌在启动阶段初期基本没有增殖,第25 d左右达到最大值3.25×10~9个·m L^(-1),随后产甲烷菌在整个盛产期数量维持在这一数量级上。厌氧纤维素降解菌菌数呈现缓慢增长的趋势,直到投料的第45 d才增加到10~6个·m L^(-1)。了解发酵过程中菌群间的作用及代谢产物的特性,协调各微生物的稳定生长,是保证沼气发酵正常运行的必要条件,本试验为城市有机垃圾的无害化处理和资源化利用奠定基础。  相似文献   

16.
厌氧消化过程微生物四种群生态系统数学模型   总被引:4,自引:0,他引:4  
对于含有硫(硝)酸盐的复杂有机废水,硫(硝)酸盐还原菌对厌氧消化代谢途径有重要影响。本文将硫(硝)酸盐还原菌与产氢产乙酸菌之间视为互惠共济关系,与产甲烷菌之间视为竞争抑制关系,采用Volterra模型表达各微生物种群的动态平衡关系。最后,基于全混合式反应器套氧消化过程基质动态平衡方程,获得了用4维二阶非线性微分方程表达的非捕食双链交联微生物四种群关系的生态数学模型。  相似文献   

17.
文章以木薯酒精废水为原料,使发酵系统中的pH值维持在5.5左右,在35℃±1℃的中温条件下进行批量式发酵实验,研究了30%,40%,50%的接种量对木薯酒精废水厌氧发酵产氢的影响。结果表明,氢气发酵试验的运行时间为106 h,实验数据经过修改Modified Gompertz模型处理,获得的厌氧消化动力学参数(最大累积产气量、最大产气速率和滞留时间),并计算出TS,VS评价指标。计算得出30%接种量实验组产氢最佳,累计产氢量为522 mL,最大产氢速率为14.44 mL·h~(-1),TS产氢率为139.20 mL·g~(-1),VS产氢率为242.80 mL·g~(-1),其产氢发酵类型为丁酸型发酵,在对物料的降解程度方面表现出更好的优越性。  相似文献   

18.
不同温度和有机负荷下猪场粪污沼气发酵产气性能   总被引:1,自引:0,他引:1  
文章通过猪场粪污半连续沼气发酵试验,研究不同温度(10℃,15℃,20℃,25℃,30℃,35℃)和不同有机负荷条件下的产气性能,评估污染物去除效果,出水p H值,NH_3-N和挥发酸等指标变化特征。结果表明:最大容积产气率取决于温度,在10℃,15℃,20℃,25℃,30℃,和35℃温度下的最大容积产气率分别是0.071 L·L~(-1)d~(-1),0.271 L·L~(-1)d~(-1),1.173 L·L~(-1)d~(-1),1.948 L·L~(-1)d~(-1),2.196 L·L~(-1)d~(-1),2.871 L·L~(-1)d~(-1);此时COD去除负荷分别为0.760 g COD·L~(-1)d~(-1),0.943 g COD·L~(-1)d~(-1),3.053 g COD·L~(-1)d~(-1),4.010 g COD·L~(-1)d~(-1)和4.693 g COD·L~(-1)d~(-1),COD去除率分别为71.8%,82.6%,80.3%,87.9%,88.1%和88.8%。在10℃~35℃温度下,挥发酸浓度均随着有机负荷的增加而增加。在20℃~35℃的高有机负荷阶段,已产生挥发酸积累的现象,但均在1000 mg·L~(-1)以下,未达到抑制浓度;在10℃,当有机负荷1 g TS·L~(-1)d~(-1),挥发酸浓度1000 mg·L~(-1),容积产气率开始下降。  相似文献   

19.
文章以法国梧桐落叶为原料,在35℃±2℃的中温条件下进行批式厌氧消化试验,发酵原料VS(挥发性固体)浓度设为2%,运行时间为50 d。结果表明,发酵过程中p H值先下降后上升,最后稳定在7.25左右,VFA呈先上升后下降的趋势,最终低于500 mg·L~(-1)。氨氮含量最高达700.4 mg·L~(-1),未出现氨氮抑制,SCOD整体呈现下降趋势,发酵结束时在1000 mg·L~(-1)以下。法国梧桐落叶TS(总固体)产气率为313.65 m L·g~(-1),VS产气率为356.76m L·g~(-1),TS和VS降解率分别为28.36%和33.41%,累积产甲烷量为8628.50 m L,单位原料甲烷产率为148.92m L·mg~(-1)。以修正后的Gompertz方程对厌氧消化过程进行动力学拟合,方程相关系数为R~2=0.9965,修正后的Gompertz方程能够真实地表征法国梧桐落叶厌氧消化过程。  相似文献   

20.
随着我国畜牧业快速发展,畜禽粪便量激增,已经成为许多城市及农村的新兴污染。文章采用牛粪消化液为接种物,在中温(36℃)条件下,对猪粪进行了干式厌氧消化中试试验,旨在探索其最佳的进料量、系统稳定性和潜在的氨抑制问题。研究结果表明,当进料量为600 kg·d~(-1)时,沼气产量,甲烷含量,VS降解率,物料产气率,甲烷产率分别为45~55 m~3·d~(-1),62%,50%,117~143 mL·g~(-1)VSd~(-1),72~88 mL·g~(-1)VSd~(-1)。从综合产气率和VS降解率两方面评价,当进料量为600 kg·d~(-1),该干式厌氧消化中试系统运行稳定、处理效率高,并可获得较好的产气效果。在该条件下,氨氮与游离氨浓度与系统产气性能没有直接线性关系,且在浓度分别高达5000 mg·L~(-1)和1100 mg·L~(-1)时系统没有明显的抑制作用,因为系统内的微生物尤其是产甲烷菌在高浓度氨氮的环境下受到一定程度的驯化,对高浓度氨氮有了更强的抵抗力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号