首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
城市功能区、植被类型和利用年限对土壤压实的影响   总被引:7,自引:2,他引:5  
杨金玲  张甘霖 《土壤》2007,39(2):263-269
土地利用会对土壤压实产生影响。本文通过对南京市不同功能区、植被类型和利用年限的土壤进行调查研究,了解这些利用情况对土壤压实的影响程度。结果表明:城郊菜地土壤没有被压实,而城区土壤存在不同程度的压实退化现象;城区内部只有公园土壤与道路绿化带土壤之间的通气孔隙度指标差异显著,其他功能区土壤之间压实指标差异不显著。所以,就压实状况而言,城区内并不存在所谓的功能区之间的差异。植被类型和利用年限对城市土壤的压实都有显著的影响。蔬菜地土壤与自然土壤体积质量和孔隙度相近,为无压实土壤,城区除了树下灌木土壤无压实外,其他植被类型下的土壤均有不同程度的压实退化现象,草坪和裸地土壤压实最为严重。从利用年限看,利用时间少于5年的新土压实程度远远大于利用时间在20年以上老土的压实程度。土壤压实严重与城市建设时的机械压实和草坪建成后的人为践踏密切相关,利用较久的老土壤压实较轻,主要是在无进一步人为践踏情况下,植被生长后根系和土壤生物活动有一定的修复作用。乔木和灌木搭配的修复效果最好。  相似文献   

2.
Infiltration capacity is an important variable for understanding and predicting a range of soil processes. This study investigated for different slope positions the effects of forest conversion to cultivation and grazing on soil infiltration capacity. Infiltration capacity was measured in the field in each land use type using a double‐ring infiltrometer. A total of 108 soil samples (3 slope positions × 3 land use types × 4 soil profiles × 3 soil depths) were collected to determine the variables that affect infiltration capacity viz. particle size distribution, organic carbon content, dry bulk density and soil moisture content. The results showed that in the cultivated and grazed land compared with forest, infiltration capacity and soil moisture content were 70 and 45% smaller respectively, and dry bulk density was 13–20% larger. Changes in soil structure caused by surface soil compaction because of tillage and animal trampling coupled with a smaller soil organic carbon content, are likely to be the principal factors causing the decline in infiltration capacity and soil moisture content after conversion of forest to cultivation and grazing.  相似文献   

3.
通过对南京市不同土地利用下的土壤容重、孔隙度和土壤水分特征曲线的测定,研究了压实对土壤水分特征参数的影响。结果表明城市土壤存在严重的压实退化现象,土壤容重和孔隙度能够很好地反映土壤的压实程度。随着压实程度的增加,土壤的田间持水量增加,萎蔫点含水量增加,而土壤的最大有效水含量却明显减少。所以,压实土壤对水分的调节能力下降,使其上生长的植物更不容易获得水分供应。  相似文献   

4.
Soil compaction: identification directly in the field   总被引:1,自引:0,他引:1  
The compaction of soil alters its structure, increases its bulk density and decreases its porosity. These changes can be detected by careful and systematic visual and tactile examination directly in the field. These changes also reduce the permeability of soil to water and air and may alter the pattern of root growth. Further signs of compaction may be induced such as the creation of waterlogged zones or of dry zones caused by shallow rooting denying access to deeper reserves of water. Furthermore, there may be a reduction in nutrient uptake from dry soil. Under wet conditions anoxic pockets may form with associated biochemical changes, some of which are visible. Changes in mineral nitrogen may take place through denitrification and a reduction in nitrification. The criteria used to identify compaction in the field include patterns of crop growth, pale leaf colours, waterlogging on the surface or in subsurface layers above compaction, an increase in soil strength, changes to soil structure, soil colour and the distribution of roots and of soil moisture. Manifestation of soil compaction in crops is also dependent on the weather and is influenced by crop type and variety, and stage of growth. Many soil‐borne diseases are made worse by stress to the crop which might be induced by compaction caused by drier or wetter conditions in the root zone. Where, when and how to identify compaction in the field are discussed and the techniques used are described. Specific examples of the identification of compaction are given, covering a wide range of situations.  相似文献   

5.
Introduction of mechanized agriculture induces profound changes in soil characteristics. Soil compaction originating from mechanical land clearing, mechanized cultivation, and continuous cropping is aggravated by crusting and hard-setting phenomena of soils, and widespread occurrence of naturally compacted upland soils and subsoil gravel horizons. Natural and anthropogenically induced soil compaction has detrimental effects on growth and yields of a wide range of crops. Furthermore, compaction can persist for a long time if no adequate measures are taken to minimize or alleviate it.

In humid and subhumid regions of Africa, the no-tillage system with crop residue mulch is an important method of controlling soil compaction, followed in significance, by biological and mechanical loosening where motorized land clearing is the causative agent. Biological methods involve cover crops and alley cropping or agroforestry. Where new land areas need to be opened up, land clearing should be done by the slash-and-burn method, so that most of the nutrients in the vegetation are returned to the soil. Where mechanical land clearing is inevitable, forest removal should be done by the use of shear blade, whereby most of the roots and stumps are left in the ground intact, and the forest litter is not removed.

In semi-arid and arid regions of Africa, alleviation of soil compaction can be done by two methods. One method is to use the controlled traffic tillage system. Controlled traffic results in both a loose-rooting zone and a firmed traffic lane, thereby providing good plant growth and trafficability for timely field operations. The second method is to use mechanical loosening techniques, i.e. ploughing by animal traction or tractor power, chiseling, deep ripping, subsoiling, and tied-ride system. The effect of mechanical loosening, however, tends to be of short duration if the ensuing field traffic is not controlled.  相似文献   


6.
Abstract. Modern land use problems in the Netherlands are now focused on striking a balance between agricultural production, environmental protection, and nature and landscape conservation by means of new laws on soil protection. Quantitative expressions for crucial land qualities for different land management scenarios are needed to obtain adequate input for the decision making process emphasizing not only actual, but particularly potential conditions. Computer simulation techniques are being applied in this context. Three case studies are reviewed, covering: (i) adsorption of excess phosphate from animal manure; (ii) effects of lowering of water deficits for crops, and (iii) effects of soil tillage and compaction on crucial land qualities for agricultural production. Lack of representative basic data for simulation models inhibits their widespread practical application. Derivation of such basic data from existing soil-survey databases is therefore being discussed in terms of using various types of transfer functions, which allow more effective use of available data. In addition, geographical information systems are needed to allow rapid output for areas of land as represented on soil maps.  相似文献   

7.
黄土丘陵半干旱区人工林迹地土壤水分恢复研究   总被引:9,自引:3,他引:9  
为了研究黄土丘陵半干旱区人工林迹地土壤水分恢复情况,该文以正在生长的人工林土壤水分含量为人工林迹地土壤水分恢复的起点,并分别以持续农地和持续放牧荒坡的土壤含水量为林后农地和草地土壤水分恢复的上限,对位于黄土丘陵半干旱区绥德县境内的人工林迹地土壤水分恢复情况进行了研究。结果表明,人工林死后的放牧荒坡在20a的时间里,其土壤水分没有补偿;人工林死后的保护草地土壤水分有微弱恢复迹象,但年恢复速度在0.5~3.7 mm之间,以这样的速度恢复到持续放牧荒坡的土壤含水量,至少需要150a以上;林后农地土壤含水量有恢复趋势,年平均恢复速度为15 mm左右,其土壤含水量要恢复到持续农地当前的水平,大约需要40a的时间。研究结果揭示了黄土丘陵半干旱区人工林对土壤水分影响的长期性,并为制定可持续的土地利用规划提供借鉴资料。  相似文献   

8.
Abstract. The influence of trampling on the soils of the St James Walkway was studied during 1985 by comparing 'on'- and off-track sites. Trampling increased the average soil bulk density by 0.3 g/cm3 at 0–5 cm depth and by 0.1 g/cm3 at 10–15 cm depth. Trampling increased the average soil shear strength by 11 kPa at 0–5 cm depth and by 6 kPa at 5–10 cm depth. All mineral soils were compacted to some extent by trampling. The podzolized high country yellow-brown earths (Dystrochrepts) were the most affected because their organic topsoil was truncated. Their exposed subsoil was however more resistant to further damage than their topsoil. Organic soils (Medihemists) were not compacted but their very low shear strength and high moisture content make them unsuitable for tracks. Untrampled soil bulk density and soil stone content were negatively correlated with the change in bulk density by trampling, and could be used to predict the risk of soil compaction by trampling.  相似文献   

9.
A potentially significant cause of damage to grassland soils is compaction of unsaturated soil and poaching of saturated or nearly saturated soil by animal hooves. Damage is caused when an applied stress is in excess of the bearing strength of the soil and results in a loss of soil structure, macroporosity and air or water conductivity. Severely damaged soils can cause reduced grassland productivity and make grazing management very difficult for the farmer. The actual amount of soil damage that can occur during grazing is dependent on the grass cover which acts as a protecting layer, the soil water content and the characteristics of the grazing animal (weight and hoof size). Assuming that the farmer is knowledgeable about the characteristics of the grazing animal and grass cover, it would be very useful for short‐term operational farm planning to be able to predict when soil water contents were likely to be in a critical range with respect to potential hoof damage. In this study soil moisture deficits (SMDs) which can be derived from meteorological forecasts are evaluated for predicting when soil water conditions are likely to lead to hoof damage. Two contrasting Irish grassland soils were analysed using a Hounsfield servo‐mechanical vertical testing machine to simulate static (285.4 N) and dynamic (571 N) hoof loads on the soil over a range of estimated SMDs (0, 5, 10 and 20 mm). The deficits were analysed with respect to the soil volumetric water content, compression (displacement) and change in dry bulk density. The SMDs imposed in the laboratory were similar to those under field conditions and thus the methods used in this study are applicable elsewhere. The change in dry bulk density following loading (0.2–0.7 g/cm3) was linearly related to SMD (R2 ranged from 0.90 to 0.99), leading to the conclusion that a forecast of SMD can be used to predict when grassland soils are likely to be at risk of damage from grazing.  相似文献   

10.
Understanding the effects of disturbance by human trampling on ecosystem processes is essential for the management of recreational areas. Discussions on recreational impacts are based either on data from trampling experiments or on field survey data from sites subjected to long-term recreational use, but rarely on a combination of both. We examined whether results from a short-term trampling experiment reflect the impact of long-term trampling around frequently used fire places. We compared short- and long-term effects of human trampling on above-ground forest vegetation and soil physical, chemical and microbial characteristics. We found both similarities and differences in short- and long-term trampling effects. Both short- and long-term trampling reduced plant cover, plant height and species density, though long-term effects were more pronounced than short-term effects. In both approaches, leaf litter biomass decreased, whereas soil density increased with trampling intensity. Other soil characteristics including soil moisture, total soil organic matter content and total organic nitrogen content were not or only marginally affected by short- and long-term trampling. Furthermore, soil microbial biomass and the activity of dehydrogenase did not change in both approaches. In contrast, the activity of β-glucosidase was only reduced by short-term trampling, whereas activity of phosphomonoesterase was reduced only by long-term trampling. Soil compaction was one factor reducing microbial activities at low and medium trampling intensities in our experiment and in the highly compacted area around the fire rings. We conclude that it could be problematic to use the results of short-term trampling experiments to predict general long-term trampling effects. Our results imply also that the restoration of degraded sites might be hampered by the low nutrient turnover resulting from the reduced litter layer and changes in enzyme activities, mitigating a successful re-establishment and growth of plants.  相似文献   

11.
Reclamation following mining activities often aims to restore stable soils that support productive and diverse native plant communities. The soil re‐spread process increases soil compaction, which may alter soil water, plant composition, rooting depths, and soil organic matter. This may have a direct impact on vegetation establishment and species recruitment. Seasonal wet/dry and freeze/thaw patterns are thought to alleviate soil compaction over time. However, this has not been formally evaluated on reclaimed landscapes at large scales. Our objectives were to (1) determine soil compaction alleviation, (2) rooting depth, and (3) spatial patterns of soil water content over a time‐since‐reclamation gradient. Soil resistance to penetration varied by depth, with shallow compaction remaining unchanged, but deeper compaction increased over time rather than being alleviated. Root biomass and depth did not increase with time and was consistently less than the values in the reference location. Plant communities initially had a strong native component, but quickly became dominated by invasive species following reclamation, and soil water content became increasingly homogeneous over the 40‐year chronosequence. Seasonal weather patterns and soil organic matter additions can reduce soil compaction if water infiltration is not limited. Shallow and strongly fibrous‐rooted grasses present in reclaimed sites added organic matter to shallow soil layers, but did not penetrate the compacted layers and allow water infiltration. Strong linkages between land management strategies, soil properties, and vegetation composition can advance reclamation efforts and promote heterogeneous landscapes. However, current post‐reclamation management strategies are incompletely utilizing natural seasonal weather patterns to reduce soil compaction. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In mountain areas, water erosion plays an important role on soil structure and can strongly affect its functions. Suitable management practices, namely choice of crops, may be able to improve aggregate stability and reduce soil loss by surface runoff. To study the effects of cover crops on aggregation in mountain soils, we investigated a soil planted with wheat (site C) compared with two soils under alfalfa (sites A and B). All investigated soils were Typic Ustorthents. The soil aggregates were isolated by a physical‐functional procedure defined on the basis of aggregate resistance against specific breakdown mechanisms such as slaking and water abrasion. One year after alfalfa plantation, its effect on wet aggregate stability and the amount of organic carbon (OC) and nutrients retained by the isolated aggregates were measured. In the less degraded soils (site B), organic matter decomposition was stimulated, and after 1 year, the total OC (TOC) and TOC/N declined. Consequently, a reduction in aggregate stability and ability to preserve elements occurred, as shown by the decrease of wet aggregate stability indexes and total nutrients (e.g. N, P and K) retained by stable aggregates. In more degraded soil (site A), alfalfa generally positively affected the investigated properties. The effect of alfalfa in the studied crop rotation depends on the degree of land degradation due to water erosion. As regards the investigated breakdown mechanisms, our data showed that the aggregate resistance to water abrasion was related to TOC, while the resistance against fast wetting breakdown is correlated to the microbial biomass. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Regression analysis of some factors influencing soil compaction   总被引:3,自引:0,他引:3  
Experiments were conducted in a laboratory soil bin, at the Regional Research Center of Asian Institute of Technology, to develop compaction models for a silty clay loam soil. The development of the models made use of dimensional analysis techniques. Three independent parameters were investigated: (1) tire variables (section width, diameter, inflation pressure), (2) soil variables (moisture content, initial cone index), and (3) external variables (travel speed, axle load, number of passes). Bulk density and cone index were considered as dependent variables. Results showed that axle load and number of tire passes were the most prominent factors which greatly influence soil compaction. Furthermore, soil moisture content, aspect ratio, and tire inflation pressure also revealed significant effects. The greatest soil compaction occurred during the first three passes of the tire. Soil compaction models were established and were found to provide good predictions. The trend established by the models signifies that general relationships can be established to predict soil compaction related to soil types. Furthermore, the models provided predictions at different soil and machine working conditions. Using the models, assessment of soil compaction can be made to develop a decision support system to establish useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   

14.
In many land use systems all over the world soil deformation is a major problem due to increasing land use intensity. On arable soils machine traffic is continuously intensified with respect to load and wheeling frequency leading to (sub-)soil compaction and deeper soil degradation concerning hydraulic or pneumatic functions. Altered soil functions, in particular reduced hydraulic conductivities and impeded aeration, may decrease crop growth and productivity as well as the filtering and buffering capacity of soils. Prevented gas exchange and longer lasting anoxia in soils due to the reduced pore continuity and pore functioning also affects global change processes. In order to evaluate potential risks for irreversible soil deformation, it is necessary to quantify their mechanical stability. A commonly applied method is the determination of the pre-compression stress, commonly under static loading conditions in oedometer tests. The determination of pre-compression stresses under static loading may not quite resemble the conditions encountered in the field where soils are loaded repeatedly with a sequence of short intermittent loading–unloading–reloading events. Such dynamic loading conditions are encountered, e.g. at multiple wheel passes or in grassland soils due to animal trampling. In this study we present a comparison of a standard (static loading) and a modified (cyclic/dynamic loading) oedometer test using data of a Calcic Chernozem from the Inner Mongolian steppe under various grazing intensities. Static loading lasted for 10 min per loading step, while the dynamic/cyclic loading was carried out by 30 s loading and following 30 s unloading (=1 cycle) for in total 20 cycles. Differences between statically and cyclically determined pre-compression stresses at an identical time of loading show lower values for the statically determined pre-compression stress values compared to those determined cyclically. Among the dynamically determined pre-compression stresses, the values decrease with increasing number of loading steps and loading time, respectively. This is particularly true for the ungrazed sites.Thus, it could also be proofed that increased grazing intensities lead to structure deformation and increased sensitivity to wind- and water erosion followed by severe land degradation of grassland soils, particularly in semi-arid areas. Furthermore, hydraulic effects, e.g. positive pore water pressure due to intense shearing and kneading processes induced by grazing animals can enhance this structural deterioration.Thus, dynamic or cyclic loading results in an intense soil deformation which also causes serious changes in ecological and soil physical properties like hydraulic conductivity or gas flux.  相似文献   

15.
Soil compaction prevents turfgrass roots from growing deep into the soil and may limit access to water and nutrients. The objective of this study was to characterize the ability of turfgrass roots to penetrate a compacted subsurface layer. Seven turfgrasses were grown in soil columns. Each column was divided into three sections with the top and bottom packed to a bulk density of 1.6 g cm?3, and the middle (treatment) layer packed to 1.6, 1.7, 1.8, 1.9, or 2.0 g cm?3. Subsurface compaction reduced root mass for two of the species, and inhibited deep root growth in all seven species, with the greatest reduction occurring between 1.7 and 1.8 g cm?3. There appears to be little difference between species in ability to penetrate compacted soils, suggesting that soil preparation and routine management practices, rather than grass selection, is the more viable way to handle soil compaction problems in turf.  相似文献   

16.
城市土壤的压实退化及其环境效应   总被引:17,自引:2,他引:17  
城市土壤普遍存在严重的压实退化现象。由于压实的影响,土壤物理性质发生了显著的改变:结构破坏、容重和硬度增大、孔隙度和渗透性降低。这些重要的变化对土壤生物活动、土壤物理-化学平衡和氧化还原状况、土壤的过滤和缓冲性能都产生影响。由此对环境产生严重的负面效应:地下水的自然回灌减少,地表径流量增加,降雨的径流洪峰加快、加大,地表水体的污染负荷增加。土壤温度、微生物活动、养分转化都不同于自然土壤,植物的生长也受到严重的影响。  相似文献   

17.
Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation.  相似文献   

18.
The information of soil compaction effects on growth and yield of crops for saline and waterlogged soils is scanty. A pot experiment was conducted on a sandy clay loam soil during 2001–2002 to study the interactive effects of soil compaction, salinity and waterlogging on grain yield and yield components of two wheat (Triticum aestivum) genotypes (Aqaab and MH-97). Compaction was achieved at 10% moisture level by dropping 5 kg weight, controlled by a tripod stand for 20 times from 0.6 m height on a wooden block placed inside the soil filled pots. Soil bulk density of non-compact and compact treatments was measured as 1.21 and 1.65 Mg m−3, respectively. The desired salinity level (15 dS m−1) was developed by mixing the required amount of NaCl in soil before filling the pots. Waterlogging was developed by flooding the pots for 21 days both at tillering and booting stages. Compaction aggravated the adverse effect of salinity on grain yield and different yield components of both the wheat genotypes. Average reduction in grain yield was 44% under non-compact saline conditions against 76% under compact saline conditions. Similarly, the reduction was about 20% more for 100 grain weight and shoot length, 30% more for number of spikelets per spike, 37% more for number of tillers per plant, and 32% more for straw weight in compact saline treatment than in non-compact saline treatment. Compaction alone caused a reduction of 36% in grain yield. The effect of waterlogging on grain yield and yield components was mostly not changed significantly due to compaction. Rather waterlogging mitigated the effect of compaction for most of the yield components except for number of spikes per plant. Therefore, as for normal soils, the cultivation of salt-affected soils should employ implements and techniques which minimize compaction of root zone soil. The effect of soil compaction can also be minimized by light irrigations with short intervals and by using a stress tolerant crop genotype.  相似文献   

19.
Porosity and soil water properties of Caribbean volcanic ash soils   总被引:6,自引:0,他引:6  
Abstract. Volcanic ash soils are generally recognized as soils with excellent and stable physical properties. Here we characterized the porosity and water properties of volcanic ash Andosols and Nitisols from Guadeloupe in contrasting banana systems: (1) perennial crop without mechanization, (2) mechanized and regularly replanted crop. Desiccation from 1 kPa to 1550 kPa moisture tension leads to significant shrinkage in the Andosol, representing a 50% reduction of the void space. The clayey Nitisol exhibited limited shrinkage. Soil clods from the mechanized plots had a significantly smaller macroporosity than that from perennial plots. The soil hydraulic conductivity was also drastically reduced in the compacted layers of the mechanized plots. However, Nitisols appeared to be less affected than Andosols. Laboratory compression tests showed that both soils were susceptible to compaction at soil moisture close to field capacity. The shrinkage properties of the Andosol were due to microaggregation of non-crystalline components upon drying. The relative stability of the macroporosity in the Nitisol was probably related to the presence of stable microaggregates made of halloysite and iron oxide. Two major processes promote soil structure degradation in the Andosol under mechanized banana cropping, surface desiccation and soil compaction. They are both induced by repeated tillage after clearing.  相似文献   

20.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models.

The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号