首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A long line of inquiry on the notion of ecological convergence has compared ecosystem structure and function between areas that are evolutionarily unrelated but under the same climate regime. Much of this literature has focused on quantifying the degree to which animal morphology or plant physiognomy is alike between disjunct areas. An important property of ecosystems is their behavior following disturbance. Yet, this aspect of ecosystems has not been investigated in a comparative study of convergence. If different ecosystems are under similar environmental controls, then one would predict that the rates and patterns of response to disturbance would also be similar. The objective of this study is to compare landscape dynamics following disturbance using spatiotemporal models to quantify vegetation change in Mediterranean ecosystems found in California and Israel. We model the process of tree and shrub regeneration at the landscape scale in two similar study sites in Israel (Mount Meron) and California (Hasting Nature Reserve). During the periods studied (1964-1992 for Israel and 1971-1995 for California), average annual change in tree cover was 5 times larger in Israel than in California. Based on multiple regression models, differences were found in the relative importance of specific variables predicting vegetation change. In Hastings (California), initial tree cover accounted for most of the explained variability in 1995 tree cover (partial R2 = 0.71), while in Meron (Israel), grazing type and intensity, topography indices, and initial vegetation each accounted for about a third of the explained variability. These findings support the notion that traits such as regeneration pattern and rate, both at the individual level and at the landscape level, were largely affected by the human land use history of the region.  相似文献   

2.
Coastal land use and land cover changes, emphasizing the alterations of coastal lagoons, were assessed in northwest Mexico using satellite imagery processing. Supervised classifications of a Landsat series (1973–1997) and the coefficients Kappa (K) and Tau (τ), were used to assess the area and verify the accuracy of the classification of six informational classes (urban area, aquatic systems, mangrove, agriculture, natural vegetation, and aquaculture). Pixel-by-pixel change detection among dates was evaluated using the Kappa Index of Agreement (KIA). Besides the overall estimation of the aquatic systems class, variations in the three lagoons present in the study area were analyzed individually. Measures of agreement between the classification and reference data indicate that the accuracy for the classification ranked from moderate to high (K = 0.76 ± 0.07; τ = 0.77 ± 0.06). From 1973 to 1997 urban area has doubled, growing to the north and the northeast, extending mainly over natural vegetation and agricultural land. La Escopama and El Sabalo, two of the lagoons studied, reduced their size to less than half that estimated in 1973, but the main estuarine system in the study area, Estero de Urias - El Infiernillo, has maintained its area without noticeable changes. However, the surrounding landscape in Estero de Urias - Infiernillo is changing from natural vegetation and agriculture to urban land use. Consequently, to limit as much as possible changes in the area to natural causes, some management measures must be considered to design urban development plans and to recover and preserve the natural areas, on a broad scale rather than a local spatial scale. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Field experiments were conducted at two locations (Clayton and Jackson Springs, NC) to determine the influence of vegetation-free strip width (VFSW) and irrigation on newly planted peach growth and yield in a low-density orchard with a volunteer weedy ground cover. The experiments included VFSW of 0, 0.6, 1.2, 2.4, 3, or 3.6 m under irrigated or nonirrigated conditions. Seasonal variation in the orchard floor vegetation was observed as different weed species reported in summer and winter. However, this difference was not apparent with respect to VFSF and irrigation. At Jackson Springs, NC, the predicted irrigated VFSW which would produce the same trunk cross-sectional area (TCSA) as the grower standard (3-m nonirrigated) was 1.5, 1.3, and 0.8 m for one-, two-, and three-year-old trees, respectively. The predicted irrigated VFSW which would produce the same yield as the grower standard was 1.16 m. At Clayton, TCSA and fruit yield were not different by irrigation, but did increase linearly with VFSW. At both locations, leaf nitrogen (N) concentration was lower in irrigated trees than nonirrigated trees. Leaf N, leaf area, and SPAD were positively related to VFSW at Jackson Springs. In contrast, leaf N concentration was not different by VFSW at Clayton. However, leaf area and SPAD were positively related to VFSW at Clayton. These results suggest that a 1.5 m VFSW combined with proper irrigation and fertilization will produce tree growth and yield in newly planted orchard with volunteer weedy vegetation similar to the current grower standard in the southeastern USA.  相似文献   

4.
The matrix of altered habitats that surrounds remnants in human dominated landscapes has been considered homogeneous and inhospitable. Recent studies, however, have shown the crucial role of the matrix in maintaining diversity in fragmented landscapes, acting as a mosaic of units with varying permeability to different species. Inclusion of matrix quality parameters is especially urgent in managing fragmented landscapes in the tropics where agriculture frontiers are still expanding. Using standardized surveys in 23 sites in an Atlantic forest landscape, we evaluated matrix use by small mammals, the most diverse ecological group of mammals in the Neotropics, and tested the hypothesis that endemic species are the most affected by the conversion of original forest into anthropogenic habitats. By comparing species distribution among forest remnants and the predominant adjacent habitats (native vegetation in initial stages of regeneration, eucalyptus plantations, areas of agriculture and rural areas with buildings), we found a strong dissimilarity in small mammal assemblages between native vegetation (including initial stages) and anthropogenic habitats, with only two species being able to use all habitats. Endemic small mammals tended to occupy native vegetation, whereas invading species from other countries or open biomes tended to occupy areas of non-native vegetation. Our results highlight that future destruction of native vegetation will favor invading or generalist species which could dominate highly disturbed landscapes, and that some matrix habitats, such as regenerating native vegetation, should be managed to increase connectivity among populations of endemic species.  相似文献   

5.
Historical influence of man on the riparian dynamics of a fluvial landscape   总被引:7,自引:0,他引:7  
Man's influence, over the last three centuries, has gradually influenced the dynamics of forest cover along the valley of the Garonne, a seventh order river in Southern France. The vegetation cover of the floodplain depends on topographical levels which govern the frequency and duration of submergence during flooding. Along the valley, forest patches vary from a continuous ribbon of riparian wood along the river to a mosaic of groves towards the upland terraces. In the floodplain, the forest dynamics are influenced by floods, appear to be reversible, and are subject to dominant allogenic processes. On the contrary, forest dynamics on the terraces, which are not influenced by floods, are irreversible and subjected to dominant autogenic processes. Since the end of the 17th century, the structure of riparian woods has been modified by navigation and agriculture leading to a fragmentation of forest cover in the floodplain. Modern agriculture and urbanization have accentuated these tendencies by modifying the hydrologic regime of the river. These historical changes result in a fragmentation of forest cover and a substitution of species in the riparian zone, the forest dynamics being still reversible in the floodplain.  相似文献   

6.
Stream and wetland-landscape patterns in watersheds that drain active-cranberry bogs, abandoned-cranberry bogs, and forest land with no history of cranberry agriculture were compared at three different levels of detail. Stream-pattern variables included drainage density, sinuosity, and the number, density, and length of ditches. Landscape-pattern measures included wetland-patch structure (the size, shape, and number of wetland patches) and cover-type composition. The results of the stream-pattern analysis indicated that the effect of past and present cranberry agriculture on stream-drainage patterns was limited primarily to the occurrence of ditches. A greater number, density, median length, and total length of ditches were observed in cranberry and abandoned-bog basins compared to forest basins. Drainage density and sinuosity of the remaining non-ditched stream segments did not differ between basin types. Excluding areas of active-cranberry bogs where the native vegetation was removed, there was no significant difference in the relative number, size, shape, and composition of the remaining vegetation-cover types between the three basin types. The exact type and extent of vegetation removed to establish bogs in the active and abandoned basins are not known, but based on soil type and vegetation class associations, it was estimated that the largest losses were of pitch pine lowlands and cedar swamps.  相似文献   

7.
SUMMARY

Cultural practices were studied in peach tree orchards irrigated with microsprinklers, herbicide strips being maintained along the tree rows. Differences in fruit cropping between treatments varied in the same way as tree vigour, the most vigorous trees having the highest production capacities. Concerning soil management, ground cover vegetation (permanent or temporary) improved fruit production compared with soil cultivation. According to leaf analysis, ground cover vegetation appeared to ameliorate the conditions of trees nutrition. This effect was probably mainly due to increasing soil resistance to compaction; applying organic matter was not effective in improving the performance of trees grown with soil cultivation compared with those grown with ground cover vegetation. Increasing fruit tree density also contributed to increased fruit production. Nevertheless, more than 600 trees per hectare did not allow further increase in fruit yield for the experimental cultivar. Lastly, nitrogen fertilization seemed particularly important for improving the fruiting of peach trees.  相似文献   

8.
In coastal southern California, natural riparian corridors occur in a landscape mosaic comprised of human land uses (mainly urban and suburban development) interspersed among undeveloped areas, primarily native shrublands. We asked, does the composition of the landscape surrounding a riparian survey point influence plant species distribution, community composition, or habitat structure? We expected, for example, that invasive non-native species might be more abundant as the amount of surrounding urbanization increased. We surveyed 137 points in riparian vegetation in Orange County, California, along an urbanization gradient. Using logistic regression we analyzed 79 individual plant species’ distributions, finding 20 negatively associated and 12 positively associated with the amount of development within a 1-km radius around the survey points, even after accounting for the effects of elevation. However, after summarizing plant community composition with Detrended Correspondence Analysis we observed that, overall, community composition was not statistically correlated with the amount of development surrounding a survey point once the association between development and elevation was taken into account. Non-native species were not particularly associated with increasing development, but instead were distributed throughout vegetation and urbanization gradients. However, the extent of the tree and herb layers (structural attributes) was associated with development, with the tree layer increasing and the herb layer decreasing as urbanization increased. Thus, although the degree of surrounding urbanization appears to influence the distribution of a number of individual plant species, overall composition of the community in our study system seemed relatively unaffected. Instead, we suggest that community composition reflected larger-scale environmental conditions, such as stream order and other variables associated with elevation, and/or regional-scale disturbances, such as historic grazing or enhanced atmospheric deposition of nitrogen.  相似文献   

9.
Changes in the spatiotemporal pattern of vegetation alter the structure and function of landscapes, consequently affecting biodiversity and ecological processes. Distinguishing human-induced vegetation changes from those driven by environmental variations is critically important for ecological understanding and management of landscapes. The main objectives of this study were to detect human-induced vegetation changes and evaluate the impacts of land use policies in the Xilingol grassland region of Inner Mongolia, using the NDVI-based residual trend (RESTREND) method. Our results show that human activity (livestock grazing) was the primary driver for the observed vegetation changes during the period of 1981?C2006. Specifically, vegetation became increasingly degraded from the early 1980s when the land use policy??the Household Production Responsibility System??led to soaring stocking rates for about two decades. Since 2000, new institutional arrangements for grassland restoration and conservation helped curb and even reverse the increasing trend in stocking rates, resulting in large-scale vegetation improvements in the region. These results suggest that most of the degraded grasslands in the Xilingol region can recover through ecologically sound land use policies or institutional arrangements that keep stocking rates under control. Our study has also demonstrated that the RESTREND method is a useful tool to help identify human-induced vegetation changes in arid and semiarid landscapes where plant cover and production are highly coupled with precipitation. To effectively use the method, however, one needs to carefully deal with the problems of heterogeneity and scale in space and time, both of which may lead to erroneous results and misleading interpretations.  相似文献   

10.
This study considers variations in a regional fire regime that are related to vegetation structure. Using a Geographic Information System, the vegetation of San Diego County, Southern coastal California USA is divided into six generalized classes based on dominant plant form and include: herbaceous, sage scrub, chaparral, hardwood forest, conifer forest and desert. Mapped fire occurrences for the 20th century are then overlain to produce records of stand age, fire frequency and transitional stability for each of the vegetation classes. A ‘Manhattan’ similarity index is used to compare and group transition matrices for the six classes of vegetation. This analysis groups herbaceous, hardwood and conifer forests in one group, sage scrub and chaparral in a second, and desert in a third. In general, sage scrub and chaparral have burned more frequently than other vegetation types during the course of the 20th century. Temporal trends suggest that the rate of burning in shrub-dominated vegetation is either stable (chaparral) or increasing (sage scrub), while the rate of burning in both hardwood and conifer forest is declining. This is consistent with a pattern of increased fire ignitions along the relatively low elevation urban-wildland interface, and an increase in the efficiency of fire suppression in high elevation forests. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Street-side vegetation greenery contributes substantial health benefits for pedestrians. Multi-year street view images are expected to enable the monitoring of dynamic street-side vegetation greenery changes and the development of targeted urban landscape plans. However, the potential of multi-year street view images used for the assessment of street-side vegetation greenery has not been evaluated yet. Besides, complicated urban landscapes may make it difficult to accurately quantify vegetation greenery. This study developed a framework to assess the spatio-temporal variation of street-side vegetation greenery using the Baidu Street View images and a new Vegetation Greenery Index (VGI). The proposed analytical framework was applied to Tai’an city, a highly populated city where urbanization has been rapid in China. The level of vegetation greenery estimated using the proposed framework was compared with ground truths randomly collected at sampling sites along the road networks in 2014 and 2019 to assess the applicability. Results demonstrated that the proposed VGI method could accurately quantify street-side vegetation greenery. The comparison of multi-year VGI layers could identify locations where vegetation greenery substantially changed and quantify the overall change in urban greenery. Vegetation greenery estimates were well agreed with the ground truths. Spatio-temporal variations in the urban vegetation greenery were attributed to trees that were newly planted or removed, the natural growth of the existing vegetation, and new building construction. The proposed framework is expected to be a useful tool to evaluate urban vegetation greenery and help urban landscape planning.  相似文献   

12.
In studies of vegetation dynamics, data points describing the changes are often sparse, because changes were not recognized in early stages or investigations were part of different projects. The snapshots at hand often leave the nature of the dynamics unrevealed and only give a rough estimation of the directions of changes. Extrapolation of the dynamics with traditional cellular automaton modeling is also complicated in such cases, because rules often cannot be deduced from field data for each interaction. We developed a Bayesian MCMC method, using a discrete time stochastic cellular automaton model to reconstruct vegetation dynamics between vegetation maps available and provide estimation of vegetation pattern in years not surveyed. Spread capability of each vegetation type was characterized by a lateral spread parameter and another for establishment from species pool. The method was applied to a series of three vegetation maps depicting vegetation change at a grassland site following abandonment of grazing in north-eastern Hungary. The Markov chain explored the missing data space (missing maps) as well as the parameter space. Transitions by lateral expansion had a greater importance than the appearance of new vegetation types without spatial constraints at our site. We estimated the trajectory of change for each vegetation type, which bore a considerable non-linear element in most cases. To our best knowledge, this is the first work that tries to estimate vegetation transition parameters in a stochastic cellular automaton based on field measurements and provides a tool to reconstruct past dynamics from observed pattern.  相似文献   

13.
Since the industrial revolution, industry, traffic and the manufacture and application of nitrogenous fertilizers have increased carbon dioxide emissions and accelerated the nitrogen (N) cycle. The combined effects of a warming climate, CO2 fertilization, land-use change and increased N availability may be responsible for primary productivity increases in many parts of the world. Enhanced productivity may lead to shifts in albedo and transpiration, which feed back to the water cycle through heat fluxes and precipitation. Plants may also respond to elevated CO2 by closing their stomata or by structurally adapting their stomatal density and size, which potentially diminishes transpiration. Intensification of agriculture has also led to an increase in both nitrogenous (N) and phosphorus (P) fertilization. The combined effect of atmospheric N deposition and P fertilization has distorted the balance between N and P availability in many ecosystems. The active role of plants in accessing nutrients from the soil may trigger switches in nutrient availability, triggering shifts in plant productivity and species composition in these ecosystems and therefore also in the carbon (C) cycle. In response to global change, the above plant responses may influence each other positively or negatively and may impact on the elemental cycles of C, N and P and the water cycle. We are only beginning to understand how these four cycles interact, the role of plant processes and vegetation in these interactions, and the net outcome for plant competition, vegetation distribution, landscape development and directions of global change. In this paper we have integrated a number of recent research findings into known relationships that together elucidate interactions between these cycles through vegetation, and could potentially have unexpected effects on landscapes and larger-scale systems (continental, global). These interactions include processes operating at very distinct temporal and spatial scales, in which terrestrial ecosystems and their spatial organization in the landscape are key. We argue that to better understand the effects of changes in land cover and land use on biogeochemical and biogeophysical fluxes, it is necessary to account for feedbacks via vegetation and how these interfere with elemental cycles. Finally, we suggest directions for further research to fill the current knowledge gaps.  相似文献   

14.
Ecological theory predicting the impact of fire on ecological communities is typically focused on post-disturbance recovery processes or on disturbance-diversity dynamics. Yet the established relationship between vegetation structure and animal diversity could provide a foundation to predict the short-term effects of fire on biodiversity, but has rarely been explored. We tested the hypothesis that fire effects on bird assemblages would be moderated by increasing vegetation structure. We examined bird assemblages in burnt and unburnt sites at 1 and 6 years after a wildfire, and compared richness and composition responses among and within three structurally distinct vegetation types in the same landscape: heath, woodland and forest. We found that short-term changes in bird assemblage composition were largest in simple heath vegetation and smallest in complex forest vegetation. The short-term change in species richness was larger in forest than in heath. We also found that among-site assemblage variability was greater shortly after fire in heath and woodland vegetation compared with forest vegetation. Our results indicate that complexity in vegetation structure, particularly overstorey cover, can act as an important moderator of fire effects on bird assemblages. Mechanisms for this response include a greater loss of structure in vegetation characterised by a single low stratum, and a proportionally greater change in bird species composition despite a smaller absolute change in species richness. We discuss our results in the context of a new conceptual model that predicts contrasting richness and composition responses of bird assemblages following disturbance along a gradient of increasing vegetation structure. This model brings a different perspective to current theories of disturbance, and has implications for understanding and managing the effects of fire on biodiversity in heterogeneous landscapes.  相似文献   

15.
Understanding the impacts of landscape change on species behaviour is a major challenge in landscape ecology. A focus on the functional traits of species may improve this understanding if species with similar traits (functional guilds) are impacted by landscape change in similar ways, but this idea has not been widely tested on bat communities in urban landscapes. We examined changes in bat species richness and the activity level of species in different functional guilds within 72 residential neighbourhoods across 18 towns and cities spanning over 250,000 square km in south-eastern Australia. Species richness increased close to native vegetation, declined with increasing urbanization, and had a hump-shaped relationship with neighbourhood vegetation cover. Also, the activity level of all bat species combined peaked at mid-range values of neighbourhood vegetation cover. The activity of species in the open-adapted guild was not strongly related to any urban characteristic, but our results concur with previous findings that the activity of most open-adapted species does not appear to be negatively impacted by urbanization. Conversely, clutter-adapted species appear more sensitive to urbanization and their activity level was negatively related to urban intensity and increased closer to native vegetation, consistent with previous studies. The functional-trait approach may improve the capacity to make generalisations across different landscape contexts for clutter-adapted and open-adapted guilds, but is currently hampered for other bat species owing to variation in the behaviour of different species assigned to the same functional guild, and a lack of ecological knowledge regarding the impacts of different types of landscape change on particular species.  相似文献   

16.
There are only a few studies of land cover-land use changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Ethiopia. Our objectives were to determine the status of the environmental degradation, analyse and evaluate the relationships among vegetation, geomorphological and socio-economic factors contributing to environmental degradation, and propose opportunities for rehabilitation of these natural resources. Field and other environmental data in northern Ethiopia and those acquired by remote sensing techniques were used to accomplish these objectives. These were integrated with socio-economic data obtained from official sources using a Geographic Information System (GIS).Spatial information such as the percent of land cover-land use types and geomorphological categories, and the percent of each land cover-land use type in the geomorphological categories were calculated using Geographic Information System (GIS). The three most dominant features of the geomorphological categories (93.0%) are scarps and denuded rock slopes, erosion surfaces and badlands, while the three most dominant features in the land cover-land use types (71.3%) are croplands, open woodlands and bushlands. Badlands account for 38.7% of the geomorphological units and 41.8% of the croplands currently occur on badlands. Simple and partial correlation analyses were applied to explore the extent of the interaction between the anthropogenic and the natural system. The anthropogenic system is influenced by elevation, which is positively correlated with human population and livestock densities and area of croplands. The natural system finds its place only on steep slopes as shown by the positive correlation between woodland,slope, high potential erosion, scarps and denudational rock slopes. The study indicates that agriculture in the study area is in a critical environmental situation. A change of paradigm in land-use and development is needed to encourage participation of the landowners and users in the efforts to conserve the vegetation and the soil. This study provides sound options that could be used to rehabilitate the vegetation directly and to alleviate the current pressure on the land and improve human welfare indirectly. Matching the human and livestock densities with the carrying capacity of the land through recruitment of the surplus labour force for a modern economy, resettlement,off-farm employment and intensification of agriculture are t he long and short-term actions that may contribute to the rehabilitation of the degraded areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

18.
Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.  相似文献   

19.
There is increasing interest in developing criteria to evaluate the environmental implications of intensive agricultural land use. This implies discriminating between nature and man-made effects upon structural and functional attributes of agroecosystems. Adequate indicators of these combined effects should be cost efficient yet compatible with the core of ecological theory on biodiversity, spatial organization and ecosystem stability. We developed resistance-resilience metrics of plant growth to evaluate the intensity of agricultural use in a temperate irrigated basin in southern Argentina. The metrics are based on an analysis of the components of a temporal series of vegetation indices computed at a low resolution from available globally remote sensed reflectance imagery. We related the developed metrics to the properties of the soils and plant canopies observed at field scale and high-resolution imagery of the basin. Soil depth, soil erosion status and land fragmentation account for large fractions of the variance of the distribution of functional groups of the plant canopies and are also correlated with smaller scale attributes of land vegetation cover. Resistance-resilience indicators constitute a cost-efficient and adequate approach to evaluate the degree of intensification of land agricultural use.  相似文献   

20.
Proper assessment and early detection of land degradation and desertification is extremely important in arid and semi-arid ecosystems. Recent research has proposed to use the characteristics of spatial vegetation patterns, such as parameters derived from power-law modeling of vegetation patches, for detecting the early signs of desertification. However, contradictory results have been reported regarding the suitability of those proposed indicators. We used an experiment with multiple grazing intensities as an analog of a desertification gradient and evaluated the performance of two predictors of desertification: percent plant cover and a transition from a patch-area distribution characterized by a power law to another portrayed by a truncated power law, in a desert steppe in Inner Mongolia, China. We found that spatial metrics, such as the largest patch index and coefficient of variation of mean patch area had negative linear relationships with grazing intensity, suggesting that vegetation patches became more fragmented and homogeneous under higher grazing pressure. Using a binning-based method to analyze our dataset, we found that the patch-area relationship deviated from a power-law to a truncated power-law model with increasing grazing pressure, while the truncated power law was a better fit than the power law for all plots when binning was not used. These results suggest that the selection of methodology is crucial in using power-law models to detect changes in vegetation patterns. Plant cover was significantly correlated with stocking rate and all spatial metrics evaluated; however, the relationship between cover and vegetation spatial pattern still deserves a thorough examination, especially in other types of ecosystems, before using cover as a universal early sign of desertification. Our results highlight a strong connection between the vegetation spatial pattern and the desertification associated with heavy grazing and suggest that future studies should incorporate information about vegetation spatial pattern in monitoring desertification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号