首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The case study is aimed at assessing impacts of on-farm level irrigation development and management on dry season rice production in the main irrigated rice production area of Myanmar. The study was carried out from 2003 to 2009 in the middle reaches of the Ngameoeyeik irrigation area of 28,000 ha. In addition to collecting information on water management and institutional arrangement of the study area, hydrologic and agronomic parameters were monitored during the study period. Results showed the effectiveness of on-farm level infrastructural development for increasing rice productivity owing to increased amount of water delivery, increased flexibility of water distribution, and improved drainage conditions. Besides, encouraging the involvement of farmers in design and implementation of the development led to improved farmer participation in the operation and maintenance of the irrigation system. The outcomes of this study demonstrated the importance of balancing between infrastructural and institutional development in irrigation systems of Southeast Asia. Such infrastructural development should be in close association with institutional development and capacity building, and the interactions between those two aspects should be well understood.  相似文献   

2.
Return flow and repeated use of irrigation water for paddies is the most important issue in the Asian monsoon region, because sometimes this water is applied in greater quantity than that of evapotranspiration plus percolation. A new return flow analysis, the “replacement-in-order method”, which introduces a unique numbering system for very complicated irrigation and drainage networks, is proposed for the main canal with the dual purposes of irrigation and drainage. The method is applied to the Shichika irrigation district in the ordinal (season) irrigation period, resulting in a return flow ratio of 45 % for the entire area. Of this amount, 25 % is available for irrigation again. The remaining 20 % is unavailable, because the return flow discharged directly into a canal lacking a diversion weir in the drainage system, or into the Japan Sea. The return flow ratio is very different at the main canal location, from no return flow to 88 %. With the aid of the above method, theoretical analysis of return flow for paddy irrigation water can be done. This includes the deterministic return flow ratio inside and outside the irrigation area, plus precise information of return flow ratios at various main canal locations and routes of irrigation and drainage water.  相似文献   

3.
Sodic soils are characterized by high exchangeable sodium on exchange sites, soil pH greater than 8.5, relatively low electrical conductivity, low infiltration rate and dispersed clay. These characteristics restrict the capacity of soil to absorb water, resulting in poor infiltration. Evidently, these soils require application of irrigation water at shorter intervals for crop production. Thus, irrigation strategy for sodic soils differs from that of normal soils. An experiment to determine the suitable irrigation strategy along with methods of application namely: surface (farmer’s practice), sprinkler (double nozzle impact sprinkler), and low-energy water application device (LEWA) were initiated in the year 2012 for rice crop. Irrigation depths of 6 cm in case of surface method and 4 cm in case of sprinkler and LEWA methods were applied at each irrigation event. The irrigation events for rice were scheduled at 2-DAD (days after the disappearance of the ponded water), 3-DAD, and 4-DAD through surface method, and at daily, 1- and 2-day intervals (after initial ponding disappeared) by sprinkler and LEWA methods. Sprinkler and LEWA methods resulted in highest rice yield of 4.4 t ha?1 in irrigated plots at the 2-day interval which was at par with the highest yielding surface-irrigated plot scheduled at 2-DAD. At the same time, irrigation strategy of 2-day interval through sprinkler and LEWA methods registered water saving to the extent of 30–40% over 2-DAD under surface irrigation method. Results revealed that there could be substantial saving of water and energy (electricity and diesel) through the use of sprinkling devices for irrigating rice under sodic soil environments.  相似文献   

4.
Rice is cultivated through transplanting of seedling in submerged field which is a cumbersome, labour intensive and water-guzzling practice. A field experiment was conducted to study the effect of crop establishment methods and irrigation schedules on water productivity, economics and energetics of aerobic direct-seeded rice at Punjab Agricultural University, Ludhiana, India, during Kharif 2012–2013. The experiment was laid out in split plot design, keeping combinations of two tillage system (no-tillage and conventional tillage) and two methods of sowing (uni-directional and bi-directional) in main plots and four irrigation schedule [(30, 45, 60 and 75 mm CPE (cumulative pan evaporation)] in sub plots. Aerobic direct-seeded rice sown after conventional tillage gave significantly higher grain yield than no-till with 15.4 % higher water expense efficiency. The energy gain and net monetary returns were 13.2 and 21.2 % higher in conventional sown crop than no-till, respectively. Bi-directional sowing resulted in 26.5 % higher grain yield than uni-directional with no effect on quality traits of grains. The net energy gain and net monetary returns were 26.5 thousands MJ/ha and 125.3 $/ha higher from bi-directional sown crop than uni-directional sown crop. Crop irrigated at 30 mm CPE schedule resulted in significantly higher grain yield than that irrigated at 45, 60 and 75 mm CPE. The energy gain, energy use efficiency and net returns were also maximum at 30 CPE schedule than at 45, 60 or 75 CPE. However, brown, milled and head rice recoveries were statistically at par between irrigation scheduling at 30 and 45 mm CPE but significantly better than 60 and 75 mm CPE. Bi-directional sowing with conventional tillage and irrigation at 30 CPE is an energy efficient and economical viable technique for direct-seeded rice.  相似文献   

5.
Recent water shortages in reservoirs have caused such problems as insufficient water and fallow rice fields in Southern Taiwan; therefore, comparing irrigation water requirements and crop production of paddy fields using a technique that differs from the conventional flood irrigation method is important. Field experiments for the second paddy field with four irrigation schedules and two repeated treatments were conducted at the HsuehChia Experiment Station, ChiaNan Irrigation Association, Taiwan. Experimental results demonstrate that irrigation water requirements for the comparison method, and 7-, 10- and 15-day irrigation schedules were 1248, 993, 848, and 718 mm, respectively. Compared to the conventional method of flooding fields at a 7-day interval, the 10- and 15-day irrigation schedules reduced water requirements by 14.6 and 27.3 %, respectively; however, crop yields decreased by 7 and 15 %, respectively. Based on the results, it was recommended that the ChaiNan Irrigation Association could adopt 10 days irrigation schedule and plant drought-enduring paddy to save irrigation water requirements for the water resource scarcity in southern Taiwan. The CROPWAT model was utilized to simulate the on-farm water balance with a 10-day irrigation schedule for the second paddy field. A comparison of net irrigation water requirements with the 10-day irrigation schedule from model and field experiment were 818 and 848 mm, respectively, and the error was 3.54 %.  相似文献   

6.
Egypt faces great challenges due to its limited water resources by enforcement policies to improve the performance of the existing delivery system and its development. The improvement of irrigation systems in the Nile Delta is one of the most important attempts in Egypt to implement more effective irrigation technologies. This study was carried out to evaluate improved tertiary canal level and farmers’ practices by comparing with other unimproved systems to understand the farmers’ practices in their farms after modifying the existing irrigation system. This study area applied to the Wasat command area’s most commonly used to the cultivation of a paddy field in Egypt, which contributes 40 % of production. The overall results indicate that the water-use application at the improved system level improved. This was due to the role of water user association in the successful management and operation of the water-supply system on the private level of water distribution network. So, water users’ association has the positive effect on managing of the improved tertiary canal. Although, there are main problems of water delivery in the irrigation networks that was a water shortage in the main canal owing to its location at the tail of the feeder canal system in the Nile Delta, and other reasons include the absence of crop production planning by farmers, especially rice farmers in summer, and the greater demand of some fields than supply.  相似文献   

7.
The center of Jilin Province is one of the major rice-producing areas of Northeast China; however, rice production consumes large amounts of water, which is incompatible with the increasingly limited water supply. Rice yield and water consumption are the two most important considerations in the rice production process, and they may vary under different irrigation schedules. In this study, conducted in 2011 and 2012, differences in water consumption and rice yield were observed and analyzed under four different irrigation schedules—flooding irrigation (FI), shallow-wet irrigation (SWI), intermittent irrigation (II), and controlled irrigation (CI)—in a typical rice-growing area of central Jilin. The results showed that, under the four irrigation schedules, water consumption rates were (from highest to lowest) FI (1137.9 mm), SWI (984.0 mm), II (804.3 mm), and CI (678.5 mm), and rice yield rates were (from highest to lowest) SWI (9777.5 kg/ha), FI (9006.1 kg/ha), II (8936.3 kg/ha), and CI (8843.7 kg/ha), respectively. This indicated that, in central Jilin Province, the application of an advanced irrigation schedule not only saved a large amount of water for irrigation, but also that rice yields were not greatly reduced, and even increased in SWI. Therefore, we hope that in this and other similar rice cultivation areas, a universal high-yield and water-saving irrigation schedule can effectively reduce the problem of agricultural water use.  相似文献   

8.
Drought condition in many places leads to the imperative use of greywater for irrigation. There is a serious concern on the impact of such prolonged uses on soil sustainability. The objective of this study was to evaluate the long-term impacts of greywater irrigation on soil electrical conductivity (EC) and other soil quality parameters in field conditions. Six locations were monitored in this study where home gardens have been irrigated with treated greywater for 2 years. Results showed a general reduction in EC levels of soil samples along all depth intervals at all locations. The average soil EC before greywater irrigation was 0.97 dS/m and decreased to 0.41 dS/m, which may be due to the use of greywater as well as the rainwater effect. The reduction in soil EC and irrigation water quantity shows positive correlation (correlation coefficient r = 0.64). Calcium precipitation might also have a major role in soil EC reduction. Soil calcium content was 81 mg L?1 before using treated greywater and decreased to 43 mg L?1 after 2 years of treated greywater usage, which might have been caused by calcium carbonates (CaCO3) precipitation. The results of other soil chemical analyses clearly show that using treated greywater for irrigation has reduced the concentration of organic matters, K, Cd, Pb, P, Mg, Cl, Na, exchangeable sodium percentage, and sodium adsorption ratio after 2 years of application. Zn concentration increased from 11 to 15 mg L?1, and soil pH became slightly higher from 7.6 to 7.8.  相似文献   

9.
Application of biochar to soils is hypothesized to increase crop yield. Crop productivity impacts of biochar application in southeastern cropping systems consisting of peanut (Arachis hypogaea L.), corn (Zea mays L.), and cotton (Gossypium hirsutum L.) produced under varying rates of irrigation have not been addressed. This research incorporated biochar at two different rates into a long-term irrigation and cropping systems study to compare yield and quality response of peanut, corn, and cotton. Biochar was incorporated into soil once at the beginning of the 4-year project at rates of 22.4 and 44.8 Mg ha?1. Peanut, corn, and cotton were produced under three sprinkler irrigation levels (100%, 66%, and 33%), shallow surface drip irrigation (100%), and a nonirrigated control. Crop input management followed best management practices. Sprinkler irrigation was scheduled by Irrigator Pro for Peanuts, Corn, and Cotton at the 100% level and the 66% and 33% levels were applied at the same time as the 100% level. Significant year, irrigation, and year × irrigation effects for corn, cotton, and peanut yield resulted (p < 0.001). No differences resulted for biochar in corn (p = 0.930) or cotton (p = 0.678). Peanut yield showed a significant response to biochar comparing the 44.8 Mg ha?1 rate to the untreated control in nonirrigated production at the p = 0.05 level and in the 33% irrigated treatment at the p = 0.10 level. No negative effects resulted from biochar opening opportunities for biochar application in southeastern U.S. cropping systems for purposes related to carbon sequestration without compromising productivity of producers and related agricultural sectors.  相似文献   

10.
Summary Potatoes were irrigated at three growth stages: (1) planting-stolon initiation. (2) stolon initiation-tuber bulking, and (3) tuber bulking, when available soil water dropped to 25%, 50% and 75%, bringing it up to field capacity; and irrigation ceased 0, 10 and 20 days before maturity. Significant increases in specific gravity, dry matter, starch content, chip yield and significant decreases in protein content and oil absorption rate of chips were observed due to the frequent irrigation at growth stages 1 and 2. No significant effect on chip colour was attributed to irrigation during the early growth stages. Frequent irrigations at the final growth stage were found to have deleterious effects on specific gravity, dry matter, starch content and chip yield especially when irrigation continued until maturity.  相似文献   

11.
In Northeast Thailand, which overlaps with an erosional plain that is not suitable for irrigation because of poor water resources and terrains that prevent efficient water distribution, farmers have long supplied water to surrounding paddy fields by blocking rivers completely with earthen bunds. Although such a traditional irrigation system fits well with the characteristics of Northeast Thailand, those who are concerned with modern irrigation development projects in Northeast Thailand seem to have been paying little attention to it. The present study was performed to facilitate development of more appropriate irrigation systems in Northeast Thailand by providing information regarding traditional irrigation methods. We investigated the traditional irrigation methods with earthen bunds at three study sites, and our results indicated that styles of irrigation vary with riverbed slope. The traditional irrigation system that is used in most of Northeast Thailand is different from ordinal weir irrigation, in that paddy fields are not irrigated by gravity flow but by backwater of earthen bunds. Our results suggest that the development of more successful irrigation systems would be possible through improvement of the design ideas of traditional irrigation methods.
Keisuke HoshikawaEmail:
  相似文献   

12.
The effect of controlled irrigation and drainage on N leaching losses from paddy fields was investigated by controlling root zone soil water content and water table depth using a lysimeter equipped with an automatic water table control system. Three treatments that combined irrigation and drainage managements were implemented: controlled irrigation (CI) + controlled water table depth 1 (CWT1), CI + controlled water table depth 2 (CWT2), and flooding irrigation (FI) + actual field water table depth (FWT). Controlled irrigation and drainage had significant environmental effects on the reduction of NH4 +–N and NO3 ?–N leaching losses from paddy fields by decreasing water leakage. The NH4 +–N leaching losses from CI + CWT1 and CI + CWT2 were 3.68 and 4.45 kg ha?1, respectively, which significantly reduced by 59.2 and 50.7 % compared with FI + FWT (9.02 kg ha?1). The NO3 ?–N leaching losses from CI + CWT1 and CI + CWT2 were 0.88 and 0.43 kg ha?1 with a significant reduction of 45.2 and 73.2 %, respectively, compared with FI + FWT (1.61 kg ha?1). The application of CI + CWT1 can be a pollution-controlled water management method of reducing N leaching losses from paddy fields.  相似文献   

13.
As the challenges toward increasing water for irrigation become more prevalent, knowledge of crop yield response to water can facilitate the development of irrigation strategies for improving agricultural productivity. Experiments were conducted to quantify maize yield response to soil moisture deficits, and assess the effects of deficit irrigation (DI) on water productivity (water and irrigation water use efficiency, WUE and IWUE). Five irrigation treatments were investigated: a full irrigation (I1) with a water application of 60 mm and four deficit treatments with application depths of 50 (I2), 40 (I3), 30 (I4), and 20 mm (I5). On average, the highest grain yield observed was 1008.41 g m?2 in I1, and water deficits resulted in significant (p < .05) reduction within range of 6 and 33%. This reduction was significantly correlated with a decline in grain number per ear, 1000-grain weight, ear number per plant, and number of grain per row. The highest correlation was found between grain yield and grain number per ear. The WUE and IWUE were within range of 1.52–2.25 kg m?3 and 1.64–4.53 kg m?3, respectively. High water productivity without significant reduction in yield (<13%) for I2 and I3 compared to the yield in I1 indicates that these water depths are viable practices to promote sustainable water development. Also, for assessing the benefits of irrigation practices in the region crop water production functions were established. Maize yield response to water stress was estimated as .92, suggesting the environmental conditions are conducive for implementing DI strategies.  相似文献   

14.
Crop management is an important factor affecting the quality of medicinal plants. Therefore, objectives of our investigation on roselle (Hibiscus sabdariffa L.) were: 1) To identify an appropriate planting method in semi-arid regions and 2) to study crop production under water-deficit conditions using eco-friendly techniques. We specifically investigated the effects of planting methods (direct sowing vs. transplanting) (experiment 1, in a randomized complete-block design), as well as effects of water regimes [irrigation after pan evaporation of 100 mm (normal irrigation) and 200 mm (deficit irrigation)], humic acid application (0 and 4 kg ha ?1) and mycorrhizal inoculation (Glomus versiforme, Glomus intraradices, and control) (experiment 2, in a split-split-plot layout) on certain qualitative indices of roselle. The amounts of total soluble solids (TSS), anthocyanin content, and maturity index for direct seeding were, respectively, 17%, 15%, and 33% higher than those for transplanting, whereas vitamin C content and total acidity for transplanting treatment were, respectively, 17% and 20% more than those for direct sowing. According to data obtained from the average of the three mycorrhizal treatments, normal irrigation combined with humic acid application increased total acidity (0.88 mg.100 g?1), anthocyanins (67.1 mg.l?1), and vitamin C content (2177 mg.100 g?1) over the control (deficit irrigation and no humic acid application, which had lower acidity (0.53 mg.100 g?1), anthocyanins (38.8 mg.l?1), and vitamin C content (1882 mg.100 g?1). Total phenol and anthocyanins content under mycorrhizal inoculation were relatively higher than under control treatment at both levels of irrigation. G. intraradices produced the largest amount of vitamin C (2353 mg.100 g?1) under deficit irrigation. On average, no-inoculation treatment had higher TSS, pH, and total acidity than any mycorrhizal inoculation treatment. Humic acid application and mycorrhizal inoculation, especially using G. intraradices, showed the highest values of anthocyanins (56.9 mg.l?1) and vitamin C (2309 mg.100 g?1) content. Overall, normal irrigation, combined with humic acid application and mycorrhizal inoculation, partially improved the quality indices of roselle.  相似文献   

15.
The aim of this study is to assess the potential of the irrigation return-flow in a water reuse system, for the supply of other local water users. Both field survey and water-budget analysis were conducted, and the Chitong irrigation district in Taiwan was selected as the case study area. The results indicate that through the regulation of a pond with the effective capacity of 20,000 m3, a stable supply of 10,000 CMD of reuse water can be generated if the return-flow from the irrigation area of 200 hectares, which is about the size of a rotation plot, is intercepted. However, as the irrigation and effective rainfall are low from December to March, which are considered high risk for water supply, the irrigation return-flow decreases accordingly, and a series of responding measures are also suggested.  相似文献   

16.
The widely adopted alternate wetting and drying (AWD) irrigation for rice production is increasingly needed to quantify the different water outflows and nitrogen leaching losses. We investigated the effects of AWD on percolation, water productivity, nitrogen leaching losses, and nitrogen productivity through in situ experiments. Results show that AWD reduced irrigation water without a significant impact on grain yields and increased the mean water productivity by 16.9 % compared with continuously flood irrigation (CFI). The mean nitrogen productivity of 135 kg ha?1 N level was 22.2 % higher than that of 180 kg ha?1 N level, although grain yields substantially increased because of nitrogen fertilization application. The percolation was also reduced by 15.3 % in 2007 and 8.3 % in 2008 compared to CFI. However, the cumulative percolation of the first 5 days after irrigation in AWD plots is significantly larger than that in CFI plots. The NH4 +–N and TN leaching losses of AWD and CFI had no significant variations while the NO3 ?–N leaching losses were increased caused by AWD. The total NH4 +–N, NO3 ?–N, and TN leaching losses of AWD in the first 3 days after irrigation were higher than that of contemporaneous CFI. The results indicate that the bypass or preferential flow and strengthened nitrification–denitrification nitrogen transformation processes because of alternate wetting and drying potentially decrease the water saving effectiveness and increase the NO3 ?–N loading to the groundwater.  相似文献   

17.
The productivity of irrigated rice is low in Tanzania. We hypothesized that this is caused by the absence of a packaged application of basic cultivation techniques. A baseline survey of 31 rice irrigation schemes across the country revealed that a large proportion of fields were cultivated without a technical package. Thus, a package was introduced to each of the 31 schemes through a farmer-to-farmer (FTF) extension approach. First, selected key farmers (KFs) were trained with the basic cultivation techniques at agricultural training institutes. Second, the KFs transferred their knowledge to intermediate farmers (IFs) by working together at a demo-field established in each scheme. Third, the KFs and IFs exhibited the rice performance to other farmers (OFs). The paddy yield across the 31 schemes greatly increased from the pre-training level of 2.4 t ha?1 to 3.6 t ha?1after the FTF extension. However, the farmer interviews in the four selected schemes suggested that the technical package was not adopted by all farmers owing to the time-consuming nature of the FTF extension. It was inferred from our study that the low productivity of irrigated rice is caused by the absence of basic cultivation techniques in Tanzania. However, the post-training yield remained relatively low compared with high-yields (4.3–8.4 t ha?1) recorded in cultivar selection trials and high-performing schemes in the county. This “yield gap” could be partly ascribed to the insufficient technical diffusion and the technique-dependent adoption among OFs.  相似文献   

18.
Taiwan’s average annual rainfall is high compared to other countries around the world; however, it is considered a country with great demand for water resources. Rainfall along with alternate wetting and drying irrigation is proposed to minimize water demand and maximize water productivity for lowland paddy rice cultivation in southern Taiwan. A field experiment was conducted to determine the most suitable ponded water depth for enhancing water saving in paddy rice irrigation. Different ponded water depths treatments (T2 cm, T3 cm, T4 cm and T5 cm) were applied weekly from transplanting to early heading using a complete randomized block design with four replications. The highest rainwater productivity (2.07 kg/m3) was achieved in T5 cm and the lowest in T2 cm (1.62 kg/m3). The highest total water productivity, (0.75 kg/m3) and irrigation water productivity (1.40 kg/m3) was achieved in T2 cm. The total amount of water saved in T4 cm, T3 cm and T2 cm was 20, 40, and 60%, respectively. Weekly application of T4 cm ponded water depth from transplanting to heading produced the lowest yield reduction (1.57%) and grain production loss (0.06 kg) having no significant impact on yield loss compared to T5 cm. Thus, we assert that the weekly application of T4 cm along with rainfall produced the best results for reducing lowland paddy rice irrigation water use and matching the required crop water.  相似文献   

19.
The uncertainty of monsoon rainfall and the decreasing availability of irrigation water, as a result of climate change, and high water demand of other sectors have resulted to wide adoption of alternate wetting and drying (AWD) technique especially in irrigated lowland rice production to overcome water scarcity. However, under climate change circumstances, AWD can be optimized when taking advantage of favorable water seasonality conditions to increase crop yield and irrigation water use efficiency. Therefore, a field trial was conducted to find suitable water depth for reducing rice irrigation water use by combining four different water depth treatments (T2cm, T3cm, T4cm, and T5cm) with rainfall through a randomized complete block design having 3 replications. Water depths were applied weekly from transplanting to heading. The results showed that water stress at vegetative stage decreased plant height and tillers number between 7 and 33 % at panicle initiation, followed by total and partial growth recovery. In addition, panicle number per hill showed a 53–180 % decrease at the heading stage. Severe water stress induced by the lowest water treatment significantly reduced yield components between 15 and 52 % at harvest. It was found that weekly application of 3 cm water depth combined with rainfall improved AWD effectiveness, and yielded the highest beneficial water productivity with less yield expenses.  相似文献   

20.
Rice is the main crop produced in the Senegal River Valley under the semiarid Sahelian climate where water resource management is critical for the resource use sustainability. However, very limited data exit on rice water use and irrigation water requirement in this water scarcity environment under climate change conditions. Understanding crop water requirements is essential for better irrigation practices, scheduling and efficient use of water. The objectives of this study were to estimate crop water use and irrigation water requirement of rice in the Senegal River Valley at Fanaye. Field experiments were conducted during the 2013 hot and dry season and wet season, and 2014 hot and dry season and wet seasons. Three nitrogen fertilizer treatments were applied to rice variety Sahel 108: 60, 120, and 180 kg N ha?1. Rice water use was estimated by the two-step approach. Results indicated that crop actual evapotranspiration (ETa) varied from 632 to 929 mm with the highest ETa obtained during the hot and dry seasons. Irrigation water requirement varied from 863 to 1198 mm per season. Rice grain yield was function of the growing season and varied from 4.1 to 10.7 tons ha?1 and increased with nitrogen fertilizer rate. Rice water use efficiency relative to ETa and irrigation requirements increased with nitrogen fertilizer rate while rice nitrogen use efficiency decreased with the nitrogen fertilizer rates. The results of this study can be used as a guideline for rice water use and irrigation water requirement for the irrigation design projects, consultants, universities, producers, and other operators within rice value chain in the Senegal River Valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号