首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated pest management systems were developed originally in response to the appearance of insect populations with resistance to common insecticides. Cotton with its heavy dependence on insecticidal sprays was one of the first crops in which the effectiveness of control declined due to resistance in the target pests. Although insecticide resistance is more of a problem in large scale production systems, the IPM approach can also benefit the smallholder by reducing the number of sprays required with consequent cost savings. Where crop growth is adversely affected by diseases, competition from weeds or poor management, the full benefit of insecticide spray programmes cannot be realised. To be fully effective, insect control should therefore be integrated with other crop protection activities. This paper reviews the insect pests, diseases and weed problems of cotton in Africa and discusses the possibilities for extending the principles of IPM to cover all the crop protection activities with practical examples drawn from both small scale and larger scale production systems.  相似文献   

2.
Weed species diversity may benefit from organic farming due to enhanced temporal diversification of crop species in a rotation and omission of herbicide applications. However, in intensively managed conventional systems, little evidence exists as to what extent diversified crop rotations contribute to higher weed species richness. Using an on-farm approach, the effect of crop rotation (organic, conventional diverse (CD) and conventional simple (CS) crop rotations) and weed control (with vs. without) on weed species richness, cover, community composition and crop biomass, was analysed in 24 winter wheat fields. Weed species with beneficial functions for invertebrates and birds were analysed separately. Weed species richness was higher in the organic crop rotation, but did not differ between CD and CS crop rotations. Weed control treatment reduced species richness in both conventional rotations, but not in the organic one. Redundancy analyses revealed that crop rotation intensity accounted for the largest part of the explained variation in weed species composition. Results from the study indicate that the maintenance of weed species richness and conservation of species with important ecological functions requires not only temporal diversification of crop species in the rotation, but also an adjustment of weed control strategies.  相似文献   

3.
Liebman  & Davis 《Weed Research》2000,40(1):27-47
Greater adoption and refinement of low-external-input (LEI) farming systems have been proposed as ways to ameliorate economic, environmental and health problems associated with conventional farming systems. Organic soil amendments and crop diversification are basic components of LEI systems. Weed scientists can improve the use of these practices for weed management by improving knowledge of four relevant ecological mechanisms. First, multispecies crop rotations, intercrops and cover crops may reduce opportunities for weed growth and regeneration through resource competition and niche disruption. Secondly, weed species appear to be more susceptible to phytotoxic effects of crop residues and other organic soil amendments than crop species, possibly because of differences in seed mass. Thirdly, delayed patterns of N availability in LEI systems may favour large-seeded crops over small-seeded weeds. Finally, additions of organic materials can change the incidence and severity of soil-borne diseases affecting weeds and crops. Our research on LEI sweetcorn and potato production systems in central and northern Maine (USA) suggests that these mechanisms can reduce weed density and growth while maintaining crop yields. Low-external-input farming systems will advance most quickly through the application of interdisciplinary research focused on these and other ecological mechanisms.  相似文献   

4.
Weed control within crop rows is one of the main problems in organic farming. For centuries, different weed removal tools have been used to reduce weeds in the crop rows. Stimulated by the demand from organic farmers, research in several European countries over the last decade has focused on mechanisation using harrowing, torsion finger weeding and weeding with compressed air (Pneumat). Intelligent weeders are now being developed which offer more advanced ways to control weeds, including larger ones and to leave the crop plants unharmed. One of the first commercially available intelligent weeders, the Sarl Radis from France, has a simple crop detection system based on light interception, which guides a hoe in and out of the crop row, around the crop plants. The inclusion of innovative technologies, including advanced sensing and robotics, in combination with new cropping systems, might lead to a breakthrough in physical weed control in row crops leading to significant reductions, or even elimination, of the need for hand weeding.  相似文献   

5.
Weeds may serve as reservoirs for new and invasive insect pests. The cassava root scale ( Protortonia navesi ) is a recent pest in the Brazilian 'Cerrado' that causes qualitative and quantitative damage by sucking plant sap. Recently, field surveys revealed that many common weeds in this region act as host for P. navesi in cassava fields. In a discrete survey, 15 weed species were identified that were hosting P. navesi . Among these, 13 species occurred during the cropping season and five were observed 4 months after cassava harvest. Eight months after harvest, only cassava volunteer plants were found to be hosting P. navesi . This survey provided a real example of the problem created when weeds host new crop pests. The management of weeds (including crop volunteers) needs to be considered as part of generalised pest management and pest invasion prevention schemes. Effective weed management can be a means of limiting the survival of new pests and the re-infestation of susceptible crop species in subsequent years. Simple studies like this point to a practical need to create greater collaborations between pest management researchers working within discrete pest categories.  相似文献   

6.
In 1991, a farming-system comparison was established on Burgrain Farm (Alberswil) to investigate the long-term sustainability of farming systems in Switzerland. In this study, the impacts of the three farming systems [organic (ORG), and integrated (IF) with an extensive (IF ext ) and an intensive (IF int ) variant] on weed dynamics and diversity in six fields planted with winter wheat, maize, summer/winter barley, potatoes/oilseed rape and temporary grassland are examined. Altogether, 51 plant species were recorded from 1999 to 2006 in the maize and winter wheat crop. Total weed ground cover prior to harvest was seven times higher for wheat and 15 times higher for maize in ORG than in IF int , but grain yields were not negatively affected. Weed diversity was higher for ORG than for IF. In the temporary grassland, Taraxacum officinale and Rumex obtusifolius increased with time and dominated the weed community in the maize which followed. Chenopodium and Polygonum species dominated in the wheat, especially in ORG. We conclude from this study that an optimal combination of direct and indirect means for controlling weeds would allow organic farming at this site, provided that problematic weeds (e.g. Elytrigia repens ) can be kept at the low level observed at the end of 2006.  相似文献   

7.
Abstract

Weeds are major components of agro-ecosystems and they affect the biology of pests and beneficial insects in several ways; provision of flowers, presence of neutral insects, modification of crop microclimate, production of chemical stimulus, alteration of colonisation background, etc. The more relevant beneficial crop–weed–insect interactions are discussed. The role of weeds in regulating pest populations is illustrated by studies on bean (Phaseolus vulgaris L.) cropping systems, in which chemical interactions between Empoasca kraemeri Ross &; Moore and two grass weeds were identified. It is proposed to continue and develop this kind of research in order to incorporate weeds into pest control strategies.  相似文献   

8.
Weed communities of winter wheat as influenced by input level and rotation   总被引:5,自引:0,他引:5  
The influence of cropping systems constituted by the combination of three input levels (low, intermediate and high) and four 2-year rotations between a spring summer crop and winter wheat ( Triticum aestivum L.) on the density and composition of the winter wheat weed flora was evaluated from 1989 to 1992. Spring summer crops were maize ( Zea mays L.). soyabean ( Glycine max (L.) Merr.). sugar beet ( Beta vulgaris L.) and sunflower ( Helianthus and L.) Total weed density at the end of the wheat tillering stage ranged from 2.5 to 128.7 plants m-2 and generally decreased with cropping intensity, although to a differing extent, depending upon rotation. Differences among weed communities of the 12 cropping systems were mostly dependent upon input level. The effect of the preceding crop on the weed flora composition of winter wheat was evident only with reduced herbicide use (low-input systems). Weed species could be ascribed to four categories: (a) species sporadically associated with cropping systems (most of the weeds); (b) species associated with a specific input level (e.g. Papaver rhoeas L. to low and intermediate input levels and Veronica persica Poiret to the high input ievel): (c) species associated with a specific rotation (e.g. Anm majus L. to sugar beet winter wheat): and (d) species associated with specitie plots that become important every other year (e.g. Convolvulus arvensis L. and Stellaria media (L.) Vill.).  相似文献   

9.
卞悦  姜玉英  曾娟 《植物保护》2023,49(3):1-12
自《农作物病虫害防治条例》颁布以来,各省(直辖市、自治区)积极落实,先后公布了二类农作物病虫害名录。经系统整理,二类农作物病虫害有害虫、害螨、病原微生物、杂草、害鼠共计209种(属),其中虫害(害虫和害螨)112种,病害(病原微生物)64种,杂草23种(属),害鼠10种。分析认为,我国二类农作物病虫害名录涵盖种类多,且发生面积大、危害损失重、呈区域性聚集分布,基本反映了各区域农作物病虫害的经济重要性和防控实践需求。基于各地公布名录中反映出的引用不够准确、分类鉴定困难和缺乏配套监测调查标准等问题,提出应高度重视学名引用准确性,加强农作物病虫害分类鉴定基础性工作,进一步推进病虫害监控技术研究和标准化工作。  相似文献   

10.
Heterogeneous field conditions are ubiquitous throughout agricultural systems and have given rise to the practice of site‐specific management, in an effort to increase sustainability and/or homogenise growing conditions and thereby increase crop yields. The spatial pattern of weeds in conventional systems is widely accepted to be aggregated, but there have been no scientific studies regarding the spatial pattern of weed distribution in organic systems. Using a combination of aggregation measures and quadrat variance techniques, this study compared the spatial pattern of weed distribution in conventionally managed no‐tillage spring wheat fields to those of organically managed spring wheat fields. Per cent weed cover data (by species) were collected in the summers of 2005 and 2006 from transects located in conventional no‐tillage and organic spring wheat fields. Weed cover was aggregated in both the conventional and the organic systems, but the patterns of aggregation were different for the two systems. Conventional no‐tillage systems showed a patch/gap pattern, while organic systems showed multiple scales of patchiness with few gaps. These results suggest that processes causing aggregation in the two systems may be different and that site‐specific management may be applicable to organic systems as well as conventional spring wheat systems.  相似文献   

11.
发展化学除草重视综合治理   总被引:4,自引:0,他引:4  
我国农田杂草有250多种,全国农田受草害面积4300多万hm2,平均受草害减产13.4%,每年减产粮食1750万t,皮棉25.5万t和大豆50万t。传统农业生产采用机械作业及人力等除草。随着农村经济的发展,化学除草面积迅速扩大,全国农田化学除草面积从1975年的170万hm2增加到1995年的4133万hm2。但是,长期化学除草也带来了除草剂土壤残留对后茬作物药害、农田杂草种群更替和产生抗药性等新问题。必须重视农田杂草综合治理,通过采用各种有效的农业技术措施,为农作物保持良好的生态条件,结合化学除草才是最有效的防除杂草方法  相似文献   

12.
Α three‐year, non‐irrigated field study was conducted in 1998, 1999, and 2000 at the Southern Weed Science Research Unit farm, Stoneville, MS to study the effects of rye cover crop residue, soybean planting systems, and herbicide application programs on the control, density and biomass of several weed species and soybean yield. The soybean planting systems comprised 19 cm rows with high plant density, 57 cm rows with medium plant density, and 95 cm rows with low plant density. The herbicide programs evaluated were pre‐emergence, postemergence, pre‐emergence followed by postemergence, and no herbicide. Flumetsulam and metolachlor were applied pre‐emergence, and acifluorfen, bentazon, and clethodim were applied postemergence. The presence or absence of rye cover crop residue and a soybean planting system did not affect weed control of the species evaluated (browntop millet, barnyard grass, broadleaf signal grass, pitted morningglory, yellow nutsedge, Palmer amaranth and hyssop spurge), when herbicides were applied, regardless of the application program. In addition, rye cover crop residue was not an effective weed management tool when no herbicide was applied, because density and biomass of most weeds evaluated were higher than a no cover crop residue system. Among soybean planting systems, narrow with high plant density soybeans reduced density of grasses, broadleaf weeds and yellow nutsedge by 24–83% and total weed biomass by 38%, compared to wide with low plant density soybeans. Although weed pressure was reduced by narrow with high plant density soybeans, herbicide applications had the most impact on weed control, weed density and biomass. All herbicide programs controlled all weed species 81–100% at two weeks after postemergence herbicide applications, in comparison to no‐herbicide. Density of grasses and all broadleaf weeds as well as total weed biomass was lower with the pre‐emergence followed by postemergence program than these programs alone. Soybean yields were higher in the pre‐emergence followed by postemergence, and postemergence only programs than the pre‐emergence alone program. Planting crops in narrow rows is one cultural method of reducing weed pressure. However, even with the use of this cultural practice, prevalent weed pressure often requires management with herbicides.  相似文献   

13.
Weed competition can decrease crop yield and profit. Herbicides are applied to reduce weed populations, minimize crop loss and maximize profit. Traditional practice is to apply herbicides at a uniform rate over an entire field. Complete knowledge of the weed distribution and appropriate instrumentation on the spraying equipment would allow the farm manager to apply the 'correct' locally varying herbicide application rate. The locally variable rate would be greater in areas of high weed density and less where there are few weeds. A locally varying treatment would have both economic and environmental advantages. A major challenge facing farm managers is the unavoidable uncertainty in the spatial distribution of weeds in any particular field. This uncertainty in weed distribution influences the optimal locally varying herbicide rate. A mathematical model is presented to calculate the optimal herbicide application rate using geostatistical models of uncertainty in weed density combined with principles from decision making. Weed data from a 34-ha field near Saskatoon, Saskatchewan, Canada, illustrate the application of these tools. Weed control was achieved with a significant reduction in total herbicide use.  相似文献   

14.
Seed production of residual weed populations needs to be taken into account when estimating the long-term impact of low-input agronomic practices. The objective of this study was to measure the effects and interactions of crop, weed control, tillage practice and nutrient source on the seed production of the dominant residual weed species in a maize/soyabean rotation at two sites: Echinochloa crus-galli (L.) Beauv. on a Sainte-Rosalie clay and Chenopodium album L. on a Duravin clay loam. Seed production per unit area was estimated in each experimental unit. Weed seed production was greater under mechanical weed control compared with chemical weed control. In 1997, E. crus-galli seed production reached over 326 000 seeds m–2 in mechanical weed control treatments, but averaged less than 500 seeds m–2 in the chemical weed control treatments. Chenopodium album produced in the range of 766 000 and 73 000 seeds m–2 in mechanical and chemical weed control treatments respectively. Very few or no weed seeds were produced in soyabean under chemical control. Tillage intensity and nutrient source did not affect seed production of either weed species, with the exception that E. crus-galli produced more seeds in chisel than in mouldboard plough tillage in soyabean. Weed control method had more impact on seed production than tillage intensity and nutrient source in a maize/soyabean rotation.  相似文献   

15.
Five fodder crop systems of different intensity (ranging from a double annual crop of Italian ryegrass + silage maize to a permanent meadow) were adopted for 30 years in the lowlands of Northern Italy under two input levels, differing mainly in their provision of organic fertiliser (manure). Herbicides were used in the maize crops included in all systems, except the meadow. After 30 years, the weed seedbank of all systems and input levels were assessed by the seedling emergence technique on soil samples from each plot. The cropping systems determined the abundance and composition of the weed assembly. Relatively few, frequent species made up the majority of the emerged seedlings in all systems, and there was no relationship between the total number of emerged seedlings and the mean number of species recorded in the different systems. Arabidopsis thaliana and Oxalis corniculata were abundant in the annual double crop and in the 3- and 6-year rotations that also comprised the annual double crop. These weeds, however, were unlikely to represent a major threat to the crops, due to their vigour and growth period. The permanent meadow tended to greater weed biodiversity than the other systems. The application of manure favoured the seedbank of species such as Lolium multiflorum, Digitaria sanguinalis and A. thaliana. Weed communities in the different systems were mainly determined by herbicide application, (through the ability of weeds to avoid its effects, determined by the weed life history and emergence period) and manure application (with its possible dual effect of spreading weed seeds and favouring nitrogen-responsive weeds).  相似文献   

16.
Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed.  相似文献   

17.
Weed management in conservation crop production systems   总被引:1,自引:0,他引:1  
Information on weed management in conservation crop production systems is needed as adoption of practices such as reduced tillage and cover crops becomes more widespread. This review summarizes recent research on weed management aspects in these systems. Changes in patterns of tillage, planting systems, and other management strategies can alter the soil environment and lead to shifts in weed populations. Weed patterns and populations are not always consistent and vary with locale, crop, and herbicide use. However, in many long-term conservation management studies, a general increase in perennial weeds and grass species has been observed. The development of low-dose herbicides, selective postemergence herbicides, and transgenic crops has greatly improved the flexibility of producers who use conservation systems where opportunities for tillage are limited. With a higher level of management inputs, producers can successfully implement conservation management practices.  相似文献   

18.
Since the introduction of rice production in Japan, lowland areas have been managed for rice production with the purpose of better rice growth, as well as lesser weed infestation. Rice is cropped every year in lowland fields by repeated cultivation of a single crop, with high yields and without soil sickness usually being observed in upland fields. This is probably because the irrigation water supplies various nutrients for healthy rice growth and the drainage washes out and removes harmful factors. However, until recently, the wet or flooded conditions of lowland fields in the Asian monsoon region never have allowed humans to cultivate useful summer crops, except rice or some aquatic plants. Therefore, the management of lowland areas in the Asian monsoon region has been significantly different from European field management, where crop rotation has been the traditional standard practice. Paddy weeds are aquatic plants or hygrophytes that have adapted to lowland fields. Traditionally, tillage and puddling were practiced seasonally in lowland fields on a regular schedule every year. Rice cultivation technology was developed and supported by regional irrigation systems that created stable environments for typical paddy weeds to complete their life cycle. After the introduction of chemical weed control, rice fields became very severe habitats for these paddy weeds, where they could not grow and reproduce without strategies for survival under herbicide exposure. Even so, many of the traditional paddy weeds survived because of their accumulated or uneradicated seed banks, although several aquatic plants were listed as endangered or threatened species. The important weed species changed, sometimes rapidly and sometimes slowly, depending both on their reproductive system and their biological response towards field management and weed control systems. Very recently, the level of perennial weeds, herbicide‐resistant weeds, and weedy rice has increased in paddy fields that are highly dependent on herbicide use. In addition, several hygrophyte species have invaded paddy fields. In order to address these issues, the improvement and application of integrated weed management methods are expected to be critical.  相似文献   

19.
While weeds generally are considered as the most important overarching production constraints in inland‐valley cropping systems in West Africa, little is known about species' associations with environmental and crop management factors. Weed species' associations with seasonal and environmental factors, such as their position on the catena, soils and cropping systems, were studied during two seasons (dry and wet) in 45 arable fields of three inland valleys in south‐western Benin, Africa. The three most dominant weed species were Dactyloctenium aegyptium, Commelina benghalensis and Digitaria horizontalis on the inland‐valley crests (uplands), Ludwigia hyssopifolia, Corchorus aestuans and Ludwigia octovalvis on the sloping hydromorphic fringes and Leersia hexandra, Ipomoea aquatica and Fimbristylis ferruginea in the valley bottoms (lowlands). Echinochloa colona, Cleome viscosa and Talinum triangulare were the three most dominant species in the dry‐season crops (maize or vegetables) and Leer. hexandra, I. aquatica and Sphenoclea zeylanica were the three most dominant species in the wet‐season crop (rice). Ageratum conyzoides, Synedrella nodiflora and D. horizontalis were observed throughout the catena. Problem weeds in inland‐valley agro‐ecosystems are those that combine a high frequency with a high submergence tolerance and ecological plasticity, C4 grasses, perennial C3 species with persistent root structures and broad‐leaved species with high propagation rates. Weed management strategies that are aimed at increasing the resilience of rice‐based cropping systems in the inland valleys of the southern Guinea Savanna of Africa should address the categories of problem species that were identified in this study. This can be done best by following an integrated approach, including the use of more weed‐competitive cultivars and rotation crops.  相似文献   

20.
Weeds and weed control are major production costs in global agriculture, with increasing challenges associated with herbicide‐based management because of concerns with chemical residue and herbicide resistance. Non‐chemical weed management may address these challenges but requires the ability to differentiate weeds from crops. Harvest is an ideal opportunity for the differentiation of weeds that grow taller than the crop, however, the ability to differentiate late‐season weeds from the crop is unknown. Weed mapping enables farmers to locate weed patches, evaluate the success of previous weed management strategies, and assist with planning for future herbicide applications. The aim of this study was to determine whether weed patches could be differentiated from the crop plants, based on height differences. Field surveys were carried out before crop harvest in 2018 and 2019, where a total of 86 and 105 weedy patches were manually assessed respectively. The results of this study demonstrated that across the 191 assessed weedy patches, in 97% of patches with Avena fatua (wild oat) plants, 86% with Raphanus raphanistrum (wild radish) plants and 92% with Sonchus oleraceus L. (sow thistles) plants it was possible to distinguish the weeds taller than the 95% of the crop plants. Future work should be dedicated to the assessment of the ability of remote sensing methods such as Light Detection and Ranging to detect and map late‐season weed species based on the results from this study on crop and weed height differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号