首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT Studies were performed to compare the germination and infection of ascospores and conidia of Didymella rabiei under different temperature and moisture conditions. Germination of ascospores and conidia on cover glasses coated with water agar began after 2 h, with maximum germination (>95%) occurring in 6 h at 20 degrees C. No germination occurred at 0 and 35 degrees C. Ascospores germinated more rapidly than conidia at all temperatures. Germination declined rapidly as the water potential varied from 0 to -4 MPa, although some germination occurred at -6 MPa at 20 and 25 degrees C. Ascospores germinated over a wider range of water potentials than conidia and their germ tubes were longer than those of conidia at most water potentials and temperatures. The optimum temperature for infection and disease development by both ascospores and conidia was around 20 degrees C. Disease severity was higher when ascospores were discharged directly onto plant surfaces from naturally infested chickpea debris compared with aqueous suspensions of ascospores and conidia sprayed onto plants Disease severity increased as the length of the wetness period increased. When dry periods of 6 to 48 h occurred immediately after inoculation, disease severity decreased, except for the shorter periods which had the opposite effect. Disease severity was higher with ascospore inoculum when no dry periods occurred after inoculation.  相似文献   

2.
A dynamic model, called VenInf, was developed to forecast infection of pear leaves by conidia of Venturia nashicola. By simulating conidial infection processes following a rain event, the model estimates % conidia that successfully infected leaves at the end of an infection period. The model is mainly derived from logistic models developed from recent laboratory and glasshouse experimental results on infection of pear seedlings to estimate the rates of infection and mortality. It simulates the conidial infection process at 5 min intervals using temperature, relative humidity (RH), surface wetness and rainfall as input. The model was evaluated against pear scab in four unsprayed orchards in China over a 4-year period. In all orchards, all significant disease increases were associated with infection periods predicted by the model. In one orchard, in 2004 the incidence of leaf infection remained very low (<3%) during the entire season despite the model forecasting several severe infection periods. Results of orchard evaluation suggest that the model is able to identify all important potential infection periods. Thus, further field studies should be carried out to determine whether and how the model can be used in practice to assist farmers in making decisions on fungicide applications.  相似文献   

3.
Apple scab, caused by Venturia inaequalis, can lead to large losses of marketable fruit if left uncontrolled. The disease appears in orchards during spring as lesions on leaves. These primary lesions are caused by spores released at bud burst from overwintering sources; these spores can be sexually produced ascospores from the leaf litter or asexual conidia from mycelium in wood scab or within buds. The relative importance of conidia and ascospores as primary inoculum were investigated in an orchard in southeast England, UK. Potted trees not previously exposed to apple scab were placed next to (c. 1 m) orchard trees to trap air‐dispersed ascospores. Number and position of scab lesions were assessed on the leaves of shoots from both the potted trees (infection by airborne ascospores) and neighbouring orchard trees (infection by both ascospores and splash‐dispersed, overwintered conidia). The distribution and population similarity of scab lesions were compared in the two tree types by molecular analysis and through modelling of scab incidence and count data. Molecular analysis was inconclusive. Statistical modelling of results suggested that conidia may have contributed approximately 20–50% of the primary inoculum in early spring within this orchard: incidence was estimated to be reduced by 20% on potted trees, and lesion number by 50%. These results indicate that, although conidia are still a minority contributor to primary inoculum, their contribution in this orchard is sufficient to require current management to be reviewed. This might also be true of other orchards with a similar climate.  相似文献   

4.
ABSTRACT Field observations in four pear orchards during 5 years from April to October indicated that days with uninterrupted wetness of variable length represented 83.9% of the total days studied. However, days with surface wetness interruptions and with high relative humidity (RH) (>/=90%) without wetness occurred with a frequency of 7.1 and 6.2%, respectively. Accordingly, the effect of interruption of 24-h wetness periods by dry periods of high or low RH on infections caused by Stemphylium vesicarium on pear was determined. Pear plants inoculated with conidia of S. vesicarium were exposed to a 12-h wet period followed by a dry period of variable length (0, 3, 6, 12, 18, or 24 h) and a second wet period of 12 h. The dry period consisted either of low (60%) or high (96%) RH. The infection process was irreversibly stopped under low RH during dry periods between wetness, but continued at high RH. The effect of high RH on disease severity in the absence of wetness was also determined. Pear plants inoculated with S. vesicarium were exposed to periods of variable length (3 to 24 h) either at high RH (96%) in the presence of wetness or at high RH (96%) without wetness. No infections were observed on plants incubated under high RH without wetness, indicating that conidia of S. vesicarium require the presence of a water film in the plant surface to develop infections on pear.  相似文献   

5.
ABSTRACT Mills' infection period table describes the number of hours of continuous leaf wetness required at temperatures from 6 to 25 degrees C for infection of apple leaves by ascospores of Venturia inaequalis and reports that conidia require approximately two-thirds the duration of leaf wetness required by ascospores at any given temperature. Mills' table also provides a general guideline that more than 2 days of wetting is required for leaf infection by ascospores below 6 degrees C. Although the table is widely used, infection times shorter than those in the table have been reported in lab and field studies. In 1989 a published revision of the table eliminated a potential source of error, the delay of ascospore release until dawn when rain begins at night, and shortened the times reported by Mills for ascospore infection by 3 h at all temperatures. Data to support the infection times below 6 degrees C were lacking, however. Our objective was to quantify the effects of low temperatures on ascospore discharge, ascospore infection, and infection by conidia. In two of three experiments at 1 degrees C, the initial release of ascospores occurred after 131 and 153 min. In the third experiment at 1 degrees C, no ascospores were detected during the first 6 h. The mean time required to exceed a cumulative catch of 1% was 143 min at 2 degrees C, 67 min at 4 degrees C, 56 min at 6 degrees C, and 40 min at 8 degrees C. At 4, 6, and 8 degrees C, the mean times required to exceed a cumulative catch of 5% were 103, 84, and 53 min, respectively. Infection of potted apple trees by ascospores at 2, 4, 6, and 8 degrees C required 35, 28, 18, and 13 h, respectively; substantially shorter times than previously were reported. In parallel inoculations of potted apple trees, conidia required approximately the same periods of leaf wetness as ascospores at temperatures from 2 to 8 degrees C, rather than the shorter times reported by Mills or the longer times reported in the revision of the Mills table. We propose the following revisions to infection period tables: (i) shorter minimum infection times for ascospores and conidia at or below 8 degrees C, and (ii) because both ascospores and conidia are often present simultaneously during the season of ascospore production and the required minimum infection times appear to be similar for both spore types, the adoption of a uniform set of criteria for ascosporic and conidial infection based on times required for infection by ascospores to be applied during the period prior to the exhaustion of the ascospore supply. Further revisions of infection times for ascospores may be warranted in view of the delay of ascospore discharge and the reduction of airborne ascospore doses at temperatures at or below 2 degrees C.  相似文献   

6.
ABSTRACT Maturation and release of ascospores of Anisogramma anomala were monitored over a 6-year period (1988 to 1995) in European hazelnut orchards located in western Oregon. Perithecia of A. anomala were dissected from stromata collected monthly from September to May to determine spore maturation. Spore maturation began in late summer; by January, >90% of the spores were morphologically mature. Similarly, both the number of mature ascospores per perithecium and the proportion of ascospores that germinated increased through autumn. After January, the number of spores per perithecium declined until May, when few viable spores remained. Each of the 6 years, rain catch-type spore traps were placed under cankers in diseased trees from 15 September to 30 June. Based on spore collection periods of 1 to 4 weeks, three patterns for the seasonal release of A. anomala ascospores were observed: in the 1988-1989 season, >80% of the seasonal ascospore release occurred between September and January; in the 1989-1990 season, 32 to 42% of the seasonal ascospore release occurred after mid-April; and in the other 4 years, monthly releases of ascospores were relatively uniform over the 9-month seasonal period. Timing and amount of precipitation were the most important variables accounting for the differences among the yearly patterns of ascospore release. Over all years and sites, the cumulative proportion of total ascospores collected in each orchard was highly correlated (R(2) = 0.90) with cumulative precipitation. This relationship was confirmed in mist chamber experiments. A regression model was developed relating cumulative ascospore release to cumulative hours of precipitation. The model provides an estimate of the proportion of ascospores remaining to be released after budbreak, which coincides with the period of highest susceptibility to infection.  相似文献   

7.
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot in apples and pears. In this study, effects of temperature, wetness duration, relative humidity (RH), dryness, and interrupted wetness duration on conidial germination of the fungus were evaluated. Conidial germination and germ tube elongation occurred at temperatures from 0°C to 30°C. The optimum temperature for germination and germ tube elongation appeared to be 20°C, at which a minimum wetness period of 5 h was required. Conidia germinated at RH as low as 92% after 36 h at 20°C, but not at 88.5% RH. The effect of dry periods on germination depended on RH. Conidial germination at 85% RH was higher than that at 25% RH within a 4-h dry period, after which time no difference was observed. Less than 10% conidia germinated after a 10-day dry period at both 20°C and 28°C. Conidial germination decreased as the wetness duration prior to dryness increased. Conidia wetted for 6 h prior to dryness died within a 1-h dry period. After a 12-h dry period, no or few conidia germinated at 25% RH, whereas 3% to 10% of the conidia germinated at 85% RH and no further decrease was observed as the dry period increased. The results contribute to our understanding of conditions required for conidial germination of S. pyriputrescens and infection of fruit leading to Sphaeropsis rot.  相似文献   

8.
渭北旱塬苹果黑星病的初侵染来源   总被引:4,自引:0,他引:4  
 苹果黑星病是世界各苹果产区的重要病害之一,也是我国渭北旱塬苹果产区的新病害。近5年调查研究证明,渭北旱塬苹果落叶上分生孢子数量随时间推移呈急剧下降趋势,在春季苹果芽鳞萌动之前,分生孢子呈无色透明薄片状,均已失去存活力,芽鳞内外检测到分生孢子的数量很少,且均已丧失萌发力。果园中孢子捕捉结果表明,子囊孢子出现在先,分生孢子在后,两者出现时间相差15d以上,且捕捉到分生孢子的日期是在黑星病发病以后。对洛川县、白水县、长武县、永寿县、泾川县和平凉市等地苹果黑星病普查中未发现发病枝条,以菌丝体在枝条上越冬的可能性极小。综合以上试验结果,初步确定子囊孢子是渭北旱塬苹果黑星病的初侵来染,分生孢子不能越冬。  相似文献   

9.
Experiments were conducted to determine the effects of temperature, relative humidity (RH) and duration of wetness period on in vitro germination of conidia and infection of detached pear leaves by Venturia nashicola , the causal agent of pear scab. Conidia germinated only in near-saturation humidity (RH > 97%). The final percentage germination (24 h after inoculation) at 100% RH without free water was less than half that in free water. Conidia germinated over the range of temperatures tested (5–30°C); the optimum temperature for germination was ≈21°C. Changes in percentage germination of conidia over time were fitted by logistic models at each individual temperature. Polynomial models satisfactorily described the relationships between two (rate and time to 50% of maximum germination) of the three logistic model parameters and temperature. The minimum length of the wetness period for successful infection of detached pear leaves by conidia was observed at several temperatures. The shortest length of wetness period required for infection was 7 h at 22°C. Two polynomial models fitted well the relationship between the minimum wetness duration required for infection, and temperature.  相似文献   

10.
No infection occurred at less than 95% relative humidity (r.h.) when chickpea plants were dried after inoculation with conidia of Didymella rabiei. Infection was significant when the dry leaves were exposed to 98% r.h. for 48 h. When inoculated plants were subjected to different leaf wetness periods, some infection occurred with 4 h wetness, and disease severity increased with wetness duration according to an exponential asymptote, with a maximum value after about 18 h. Germination of conidia and germ tube penetration increased linearly with increasing wetness periods when recorded 42 h after inoculation. With a 24-h wetness period, germination of conidia was first observed 12 h after inoculation and increased linearly with time up to 52 h (end of the experiment). Dry periods immediately after inoculation, followed by 24-h leaf wetness, reduced disease severity; as the dry period increased the severity decreased. Disease severity increased with increasing periods of darkness after inoculation. The number of pycnidia and the production of conidia on infected leaves increased only slightly with high r.h. (either in the light or in the dark), but large increases occurred over an 8-day period when the leaves were kept wet.  相似文献   

11.
Microcyclus ulei, the fungus causing South American leaf blight (SALB) on rubber tree leaves, produces two main types of spores: ascospores and conidia. To assess their respective epidemiological role, a field experiment was conducted in French Guiana over 3 years. Tree phenology, disease severity and climate variables were recorded while airborne spores were trapped and quantified. Ascospores were shown to play an essential role in the perpetuation of the disease outside the host's growth periods, in the resumption of epidemics, and in the spread of the disease to disease‐free zones. Conidia were trapped in visibly infected plots only, during periods of host growth. Disseminated over short distances and present only temporarily on leaves, the conidia enabled the disease to spread stepwise when the climate was conducive. Segmentation analysis revealed that the duration of high relative humidity was the climatic variable most related to ascospore trapping. Ascospore release did not require low temperatures. Considering the essential role of the ascospores in the initiation and spread of disease, artificial defoliation as a means of reducing the inoculum pressure during tree refoliation is proposed to control SALB. To check the validity of this method, a survey over several years of natural defoliation–refoliation in relation to climate and other leaf diseases is needed.  相似文献   

12.
The effects of age of ascospores (0–18 days after discharge), photon flux density (0–494 mol m–2 s–1 PAR), temperature (4–30 °C), frost (–15 °C for 30 min), relative humidity (RH; 0–100%), pH (2.5–6.5) and dryness (0 and 53% RH for up to 40 min) on the germination of the ascospores of the mycotoxin-producing fungus Gibberella zeae (anamorph Fusarium graminearum) were studied. Freshly discharged ascospores germinated within 4 h at 20 °C and 100% RH. The rate of germination and the percentage of viable ascospores decreased over time after the spores were discharged from perithecia. The time course of ascospore germination was not significantly affected by photon flux density. The period of time required to obtain 50% germinated ascospores at 100% RH was 26.90 h at 4 °C, 10.40 h at 14 °C, 3.44 h at 20 °C and 3.31 h at 30 °C. There was no significant effect of frost on the percentage of viable ascospores. A small percentage (6.6 ± 3.8%) of the ascospores germinated at 53% RH. At RH 84% and 20 °C almost 100% of the freshly discharged ascospores germinated. The time course of ascospore germination was affected by pH. The maximum rate of ascospore germination was estimated to be at pH 3.76. Ascospores lost their ability to germinate following exposure to 0% RH almost instantaneously. No germinating spores were detected after an incubation period of 1 min at 0% RH. Incubating the ascospores at 53% RH decreased the percentage of viable spores from 93 to 6% within 10 min. The data demonstrate that age of spores, relative humidity, temperature and pH, but not photon flux density, are key factors in germination of G. zeae ascospores.  相似文献   

13.
Based on existing physical theories and models, a dynamic model estimating the concentration of Venturia inaequalis ascospores in the orchard air and their deposition on apple leaves was elaborated. The model produces two main outputs: number of ascospores deposited per leaf and proportion of ascospores discharged from pseudothecia deposited onto the leaves. The model has a relatively simple structure, and computations are based on few algorithms, which are implemented on an electronic data sheet of common use. Nevertheless, it preserves the accuracy of more complex physical models reasonably well. The model includes the effect of meteorological conditions and horticultural characteristics, and thus provides information for each type of orchard. Few input variables are required: wind speed and rainfall rate can be measured in standard meteorological stations; horticultural characteristics of the orchard can be determined for each type of orchard. The model produces conservative estimates of ascospore deposition, because it assumes a complete retention of the spores deposited by rainfall and does not consider either deposition on stems and flowers or the spatial distribution of plant surfaces. After further validation under orchard conditions, the model will be used to obtain better estimates of scab infection risk in current scab control strategies.  相似文献   

14.
苹果炭疽叶枯病(Glomerella cingulata)是我国苹果上新发现的一种病害,为了了解病原菌的产孢条件和产孢动态,为病害的预测预报与防控提供依据。本研究在人工控制条件下,测试了温度、湿度和光照对苹果炭疽叶枯病菌产生分生孢子和子囊孢子的影响。结果表明,苹果炭疽叶枯病新形成的病叶润湿后,在15℃~30℃下保湿培养2~6 d后可产生大量橘黄色的分生孢子堆,其中30℃下产孢量最大,产孢速度最快,仅需2 d时间。炭疽叶枯病菌在新形成的病叶上于15℃~30℃下培养20~30 d可形成子囊孢子,最适温度为25℃,子囊孢子的形成需要高湿环境或叶片润湿。炭疽叶枯病菌的单孢分离菌株于15℃~25℃下,在马铃薯葡萄糖琼脂培养基(PDA)上培养20~30 d也可形成子囊孢子,最适产孢温度25℃。紫外光、黑光和日光都能促进子囊孢子的形成。  相似文献   

15.
The effect of environmental factors on the development of each stage ofPeronospora destructor (Berk.) Caspary on onions is reviewed. For sporulation to take place, a period of light must precede the period of darkness and high humidity in which spores are formed. Spores are discharged when the relative humidity (RH) is increasing or decreasing, and over a wide range of temperatures. Their discharge is triggered by exposure to red-infrared radiation and by vibration of the leaf. Dissemination of spores follows a daily periodic cycle and spores can be blown by wind over long distances. Duration of spore survival depends on temperature, RH and, especially, the absence of strong radiation. The rate of spore germination is highest at 10°C and declines with the rise in temperature. Germ tubes develop in liquid water, and a continuous period of wetness is required for infection to be completed. Systemic infection is common in cooler climates, where necks of onion bulbs are slow to dry. The principal sources of downy mildew infection by wind-borne spores are systemically infected propagation material, onion volunteer plants, and neighboring older crops.  相似文献   

16.
The dynamics of the production of Stemphylium vesicarium conidia and Pleospora allii ascospores from different inoculum sources on the ground were compared in a model system of a wildflower meadow mainly composed of yellow foxtail, creeping cinquefoil and white clover. The meadow was either inoculated (each October) or not inoculated with a virulent strain of S. vesicarium, and either covered or not covered with a litter of inoculated pear leaves. Spore traps positioned a few centimetres above the ground were exposed for 170 7-day periods between October 2003 and December 2006. Ascospores and conidia were trapped in 46 and 25% of samples, respectively. Ascospore numbers trapped from the pear leaf litter were about five times higher than those from the meadow, while conidial numbers were similar from the different inoculum sources. The ascosporic season was very long, with two main trapping periods: December–April, and August–October; the former was most important for the leaf litter, the latter for the meadow. The conidial season lasted from April to November, with 92% of conidia caught between July and September. The fungus persistently colonized the meadow: the meadow inoculated in early October 2003 produced spores until autumn 2006. The present work demonstrates that orchard ground is an important source of inoculum for brown spot of pear. Thus, it is important to reduce inoculum by managing the orchard ground all year long.  相似文献   

17.
Ascospores of Mycosphaerella pomi, the pathogen of Brooks fruit spot of apple, were produced in pseudothecia on previously infected and overwintered apple leaves from late April through early August in Aomori Prefecture, Japan. In June 2003, the ascospores were germinating and producing Cylindrosporium-type conidia on apple fruit and leaf surfaces in an orchard. After ascospores were sprayed on apple leaves, Cylindrosporium-type conidia developed on the leaf surfaces. Such Cylindrosporium-type conidia caused typical symptoms of Brooks fruit spot on apple trees after inoculations. These results suggested that the Cylindrosporium-type conidia also serve as an infection source, in addition to the ascospores, for Brooks fruit spot in apple orchards.  相似文献   

18.
Sporogenesis in Spilocaea oleagina was investigated in the field in relation to climatic conditions, in a 2-year trial. At the beginning of each trial, a standard number of infected leaves still attached to the plant were gently scraped in order to remove completely all the fungal structures present on the lesion. At 1-week intervals, four such leaves were detached from the plant, examined in the laboratory for new conidiophores and conidia production, and rated for number of conidia produced by 100 conidiophores. In the first year of the trial, the fungus showed intense activity from the first week of April (beginning of the trial) to the end of April. This activity continued at reduced intensity with small variations until the end of September. In the second year (starting at the beginning of December), the fungus showed an initial lag, starting producing conidia in the last week of December. Activity increased progressively until the beginning of April. After a relatively static period during summer, the fungus resumed intense activity during September and October (end of the trial). Sporogenesis in S. oleugina appears to be linked to climatic conditions, especially to RH, maximum activity of the fungus being recorded during rainy or highly humid periods.  相似文献   

19.
A system was elaborated to estimate the dynamics of primary inoculum of Venturia inaequalis in apple orchards. It separates the primary inoculum season into five periods with different risks: absent (ascospores not yet mature); potential (ascospores mature but not yet ready to be discharged); actual (ascospores can be discharged when favourable conditions occur); present (ascospores are airborne); exhausted (all ascospores have been ejected). These periods were determined by two mathematical models, which use meteorological parameters as driving variables. The first model estimates the development stage of the overwintering pseudothecia and then determines when the first pseudothecia contain pigmented and mature ascospores. A threshold of mature ascospores inside pseudothecia defines when the ascospores become ready for discharge. The second model estimates the proportion of the season's ascospores that are airborne on each discharging event, using temperature and leaf wetness, expressed as the degrees accumulated daily in the hours when leaves are wet. Estimates of absent and potential risk were verified by collecting data on the first ascospore discharge in the period 1991/1998 at Bologna and Modena (northern Italy), and they were always found to be accurate. To verify the estimates of actual, present and exhausted risk, the model outputs were compared with data collected by spore samplers at Modena and Bologna in 1997 and 1998: they were sufficiently accurate because the greatest part of the records from the spore sampler fell inside the confidence limits of the model.  相似文献   

20.
苹果黑星病是辽宁省植物检疫对象。目前主要分布于小苹果栽植区及大、小苹果混栽区,已接近辽宁南部的大苹果主产区。经自然感病和人工接种证明,大、小苹果上的黑星病菌可以交互侵染,目前一些主栽的大苹果品种均能感染此病。辽宁地区苹果黑星病的初次侵染来源是落地越冬病叶上于翌春产生的子囊孢子。分生孢子不能越冬成活。苹果枝条及芽鳞不带菌。黑星病菌的两种孢子随气流传播,使病害逐步扩大蔓延。经过6年的观察,苹果黑星病发生始期早晚及发病轻重,与早春和夏季的降水量多少成正相关。田间药剂防治试验结果,以托布津、乙磷铝、多菌灵、特克多等药剂防治效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号