首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

2.
The performance of three live attenuated feline parvovirus vaccines licensed for use in the dog was studied. At the end of the primary vaccination course 67 per cent of dogs had inadequate antibody levels (less than or equal to 32) as measured by a haemagglutination inhibition test. Interference by maternal antibody accounted for some of the failures but the fact that there was no significant difference in performance between dogs vaccinated at 12 weeks or 16 weeks of age indicated that maternal antibody was not the only factor.  相似文献   

3.
OBJECTIVE: To determine the effects of anesthesia and surgery on serologic responses to vaccination in kittens. DESIGN: Prospective controlled trial. ANIMALS: 32 specific-pathogen-free kittens. PROCEDURES: Kittens were assigned to 1 of 4 treatment groups: neutering at 7, 8, or 9 weeks of age or no neutering. All kittens were inoculated with modified-live virus vaccines against feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV) at 8, 11, and 14 weeks of age and inactivated rabies virus (RV) at 14 weeks of age. Serum antibody titers against FPV, FHV, and FCV were determined at 8, 9, 11, 14, and 17 weeks of age; RV titers were determined at 14 and 17 weeks of age. RESULTS: Serologic responses of kittens neutered at the time of first vaccination (8 weeks) were not different from those of kittens neutered 1 week before (7 weeks) or 1 week after (9 weeks) first vaccination or from those of kittens that were not neutered. In total, 31%, 0%, 69%, and 9% of kittens failed to develop adequate titers against FPV, FCV, FHV, and RV, respectively, by 17 weeks of age. CONCLUSIONS AND CLINICAL RELEVANCE: Neutering at or near the time of first vaccination with a modified-live virus vaccine did not impair antibody responses in kittens. Many kittens that were last vaccinated at 14 weeks of age had inadequate antibody titers at 17 weeks of age. Kittens may be vaccinated in the perioperative period when necessary, and the primary vaccination series should be extended through at least 16 weeks of age.  相似文献   

4.
Inactivated canine parvovirus (CPV) and inactivated feline panleukopenia virus (FPV) vaccines were evaluated in dogs. Maximal serologic response occurred within 1-2 weeks after vaccination. Antibody titers then declined rapidly to low levels that persisted at least 20 weeks. Immunity to CPV, defined as complete resistance to infection, was correlated with serum antibody titer and did not persist longer than 6 weeks after vaccination with inactivated virus. However, protection against generalized infection was demonstrated 20 weeks after vaccination. In unvaccinated dogs, viremia and generalized infection occurred after oronasal challenge with virulent CPV. In contrast, viral replication was restricted to the intestinal tract and gut-associated lymphoid tissue of vaccinated dogs. Canine parvovirus was inactivated by formalin, beta-propiolactone (BPL), and binary ethylenimine (BEI) in serum-free media; inactivation kinetics were determined. Formalin resulted in a greater loss of viral HA than either BEI of BPL, and antigenicity was correspondingly reduced.  相似文献   

5.
The induction of a quick onset of immunity against feline parvovirus (FPV), feline herpesvirus (FHV) and feline calicivirus (FCV) is critical both in young kittens after the decline of maternal antibodies and in cats at high risk of exposure. The onset of immunity for the core components was evaluated in 8–9 week old specific pathogen free kittens by challenge 1 week after vaccination with a combined modified live (FPV, FHV) and inactivated (FCV) vaccine. The protection obtained 1 week after vaccination was compared to that obtained when the challenge was performed 3–4 weeks after vaccination. The protocol consisted of a single injection for vaccination against FPV and two injections 4 weeks apart for FHV and FCV.At 1 week after vaccination, the kittens showed no FPV-induced clinical signs or leukopenia following challenge, and after FCV and FHV challenges the clinical score was significantly lower in vaccinated animals than in controls. Interestingly, the relative efficacy of the vaccination was comparable whether the animals were challenged 1 week or 3–4 weeks after vaccination, indicating that the onset of protection occurred within 7 days of vaccination. Following the 1-week challenge, excretion of FPV, FHV and FCV was significantly reduced in vaccinated cats compared to control kittens, confirming the onset of immunity within 7 days of vaccination.  相似文献   

6.
The optimal vaccination protocol to induce immunity in kittens with maternal antibodies is unknown. The objective of this study was to determine the effects of maternally-derived antibody (MDA) on serologic responses to vaccination in kittens. Vaccination with a modified live virus (MLV) product was more effective than an inactivated (IA) product at inducing protective antibody titers (PAT) against feline panleukopenia virus (FPV). IA vaccination against feline herpesvirus-1 (FHV) and feline calicivirus (FCV) was more effective in the presence of low MDA than high MDA. Among kittens with low MDA, MLV vaccination against FCV was more effective than IA vaccination. A total of 15%, 44% and 4% of kittens had insufficient titers against FPV, FHV and FCV, respectively, at 17 weeks of age. Serologic response to vaccination of kittens varies based on vaccination type and MDA level. In most situations, MLV vaccination should be utilized and protocols continued beyond 14 weeks of age to optimize response by all kittens.  相似文献   

7.
Fifty-one specific pathogen-free (SPF) cats 10 weeks to 13 years of age were infected with a cat-to-cat fecal-oral passed strain of feline enteric coronavirus (FECV). Clinical signs ranged from unapparent to a mild and self-limiting diarrhea. Twenty-nine of these cats were FECV na?ve before infection and followed sequentially for fecal virus shedding and antibody responses over a period of 8-48 months. Fecal shedding, as determined by real-time polymerase chain reaction (RT-PCR) from rectal swabs, appeared within a week and was significantly higher in kittens than older cats. FECV shedding remained at high levels for 2-10 months before eventually evolving into one of three excretion patterns. Eleven cats shed the virus persistently at varying levels over an observation period of 9-24 months. Eleven cats appeared to have periods of virus shedding interlaced with periods of non-shedding (intermittent or recurrent shedders), and seven cats ceased shedding after 5-19 months (average 12 months). There was no change in the patterns of virus shedding among cats that were excreting FECV at the time of a secondary challenge exposure. Four cats, which had ceased shedding, re-manifested a primary type infection when secondarily infected. Cats with higher feline coronavirus (FCoV) antibody titers were significantly more likely to shed virus, while cats with lower titers were significantly less likely to be shedding. Twenty-two kittens born to experimentally infected project queens began shedding virus spontaneously, but never before 9-10 weeks of age. Natural kittenhood infections appeared to be low grade and abortive. However, a characteristic primary type infection occurred following experimental infection with FECV at 12-15 weeks of age. Pregnancy, parturition and lactation had no influence on fecal shedding by queens. Methylprednisolone acetate treatment did not induce non-shedders to shed and shedders to increase shedding.  相似文献   

8.
A group of 15 cats experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV) and a group of 15 FIV-negative control cats were inoculated with an FeLV vaccine containing recombinant FeLV-envelope. High ELISA antibody titer developed after vaccination in FIV-positive and FIV-negative cats. Vaccinated and nonvaccinated controls were later challenge exposed by intraperitoneal administration of virulent FeLV subtype A (Glasgow). Although 12 of 12 nonvaccinated controls became infected with FeLV (10 persistently, 2 transiently), only 1 of 18 vaccinated (9 FIV positive, 9 FIV negative) cats had persistent and 2 of 18 had transient viremia. From these data and other observations, 2 conclusions were drawn: In the early phase of FIV infection, the immune system is not depressed appreciably, and therefore, cats may be successfully immunized; a recombinant FeLV vaccine was efficacious in protecting cats against intraperitoneal challenge exposure with FeLV.  相似文献   

9.
Three adult bengal tigers, 2 immature white tigers, and 3 adult servals were vaccinated IM with three 1-ml doses of a subunit FeLV vaccine with dosage interval guidelines of the manufacturer. All cats had increased antibody titers to FeLV gp 70 capsular antigen and feline oncornavirus cell membrane-associated antigen during the vaccination trial. Three weeks after the third vaccination, 7 of the 8 cats had gp70 antibody titers greater than 0.2 (optical density), and all 8 cats had feline oncornavirus cell membrane-associated antigen antibody titers greater than 1:8.  相似文献   

10.
Conventional equine influenza vaccination schedules consist of a primary course of two vaccinations given 4-6 weeks apart followed by a third vaccination (booster) given approximately 5 months later. In between the primary course and the third vaccination, horses are generally considered not to be adequately protected against influenza. This study aimed to investigate whether Thoroughbred foals would benefit from a vaccination schedule in which the third vaccination was given earlier than in conventional vaccination schedules. The vaccines used were an inactivated whole virus equine influenza vaccine and an inactivated whole virus combination vaccine containing equine influenza and equine herpesvirus antigens. Four groups of foals were vaccinated with the two vaccines according to a conventional and an accelerated vaccination schedule in which the third vaccination was given 14 weeks after the first administration. In both groups, the fourth vaccination was given at the normally recommended interval of 26 weeks after the third vaccination for the combination vaccine and 52 weeks after the third vaccination with the influenza only vaccine. The horses were 4-11 months of age and seronegative for influenza. Immunological responses after vaccination were monitored for several months using the single radial haemolysis test. The results indicated that 28 weeks after the first vaccination, antibody levels in horses vaccinated according to the accelerated schedule were not significantly higher than in horses vaccinated according to the conventional schedule. In addition, the total level of antibody production (area under the curve) was not significantly different at that point although antibody titres were slightly higher (but not significantly so) between 16-30 weeks in the accelerated schedule. Between the third and fourth doses, horses vaccinated according to the accelerated schedule had antibodies against influenza below the level required for clinical protection for 39 and 18 weeks for the influenza only and the combination vaccine, respectively, whereas those vaccinated according to the conventional schedule had antibody titres below the level for clinical protection for 9-15 weeks in the corresponding period for both vaccines. Horses vaccinated according to the accelerated schedule with the combination vaccine had lower antibody titres after the fourth vaccination than those vaccinated according to the conventional schedule after the third vaccination, although antibody titres prior to vaccination were similar. For the influenza only vaccine, titres after the accelerated fourth administration were not different to those after the conventional third vaccination. There was no benefit from early booster vaccinations with the vaccines used in this study, so for these vaccines the conventional schedule provided better protection than the selected accelerated alternative. This may contrast with some other vaccine formulations, although a direct comparison using similar protocols has not been made.  相似文献   

11.
Specific pathogen free kittens were vaccinated with an unattenuated field isolate of canine coronavirus (CCV) either by aerosol or subcutaneously, and received boosting vaccinations four weeks later. Aerosolisation elicited a homologous virus-neutralising (VN) antibody response that increased steadily over a four-week period and levelled off one to two weeks after revaccination. The initial aerosolised dose produced an asymptomatic infection with excretion of CCV from the oropharynx up to eight days after vaccination; virus shedding was not detected, however, after the second inoculation. Cats vaccinated subcutaneously developed low VN antibody titres after the first CCV dose and experienced a strong anamnestic response after the second dose. Neutralising antibody titres then levelled off one to two weeks after revaccination at mean values somewhat lower than in cats vaccinated by aerosol. CCV was not isolated from the oropharynx after either subcutaneous dose. Four weeks after CCV boosting inoculations, vaccinated cats and sham-vaccinated control cats were divided into three subgroups and challenged by aerosol with the virulent UCD1 strain of feline infectious peritonitis virus (FIPV UCD1) at three different dosage levels. Five of six cats (including sham-vaccinated controls) given the lowest challenge dose showed no signs of disease, while all other cats developed lesions typical of feline infectious peritonitis (FIP). The five surviving cats developed FIP after subsequent challenge with a fivefold higher dose of FIPV. Thus heterotypic vaccination of cats with CCV did not provide effective protection against FIPV challenge.  相似文献   

12.
Modified live feline panleukopenia virus (FPLV) vaccine protected dogs against canine parvovirus (CPV) infection. However, unlike the long-lived (greater than or equal to 20-month) immunity engendered by CPV infection, the response of dogs to living FPLV was variable. Doses of FPLV (snow leopard strain) in excess of 10(5.7) TCID50 were necessary for uniform immunization; smaller inocula resulted in decreased success rates. The duration of immunity, as measured by the persistence of hemagglutination-inhibiting antibody, was related to the magnitude of the initial response to vaccination; dogs with vigorous initial responses resisted oronasal CPV challenge exposure 6 months after vaccination, and hemagglutination-inhibiting antibodies persisted in such dogs for greater than 1 year. Limited replication of FPLV in dogs was demonstrated, but unlike CPV, the feline virus did not spread to contact dogs or cats. Adverse reactions were not associated with living FPLV vaccination, and FPLV did not interfere with simultaneous response to attenuated canine distemper virus.  相似文献   

13.
Seroconversion after early vaccination at four weeks against canine parvovirus (CPV) using a high antigen titre vaccine was evaluated in 121 puppies from three breeds of dogs housed in kennels representative of the private practitioner's environment. The trial included 52 German shepherd pups, 25 Rottweiler pups and 44 Boerboel pups. From each group 11, 4, and 18 puppies acted as control dogs, respectively. Depending on the different groups, puppies were vaccinated at 4, 6, 9 and 12 weeks. The experimental group differed from the control group in that they received the high titre vaccine at 4 weeks of age, whereas the control group was not vaccinated at 4 weeks. Blood was collected from all pups prior to vaccination to measure maternally derived colostral antibody. The results indicated that vaccination at 4 weeks of age in pups with high maternally derived antibody levels, results in seroconversion rates that may lead to a reduction in the window of susceptibility with respect to CPV infection. The implications of the findings with respect to dogs in heavily contaminated environments are discussed.  相似文献   

14.
Transfer and decline of maternal antibody to feline calicivirus   总被引:1,自引:0,他引:1  
Twelve kittens born to four queens immune to feline calicivirus acquired maternal serum neutralizing antibody to feline calicivirus primarily via the colostrum. At one week of age, their titres approached or equalled those of their dams. In the absence of feline calicivirus infection, titres of maternal antibody declined to undetected levels between ten and 14 weeks of age. The half-life of maternal antibody was approximately 15 days.  相似文献   

15.
One month prior to breeding, sows were vaccinated with an attenuated pseudorabies virus vaccine or challenged with a field strain of pseudorabies virus. A third group of sows were not vaccinated or challenged before breeding. Pigs from these sows were vaccinated at 3, 6, or 12 weeks of age and challenged with virulent virus three weeks later. One pig from each litter served as an unvaccinated, unchallenged control. Serum neutralization titers of these pigs were monitored from birth until 22 weeks of age. Titers of the sows were monitored through breeding, gestation and farrowing. The maximum prefarrowing anti-pseudorabies virus titer in the field virus challenged sows occurred four weeks following challenge. A significant decline in titers occurred at farrowing. Titers rose from one week postfarrowing and then declined. Titers in the field virus infected sows were consistently two to threefold greater than those of the vaccinated sows. The maximum prefarrowing anti-pseudorabies virus titer in the vaccinated sows occurred six weeks following vaccination. The geometric mean titer in these sow's then decreased and increased for two weeks after farrowing. The results in the pigs can be summarized as follows: Pigs from control sows had a greater serological response following field virus challenge than following vaccination with a modified live virus. Pigs from control sows responded serologically to vaccination at 3, 6 and 12 weeks of age. Pigs from control sows which were challenged at 6, 9 and 15 weeks of age had similar antibody responses. Pigs from vaccinated sows had no increase in titer following vaccination at three and six weeks of age. Titers increased when these pigs were vaccinated at 12 weeks of age. There was no significant increase in mean titers of pigs from challenged sows following vaccination at 3, 6 and 12 weeks of age. Vaccinated pigs from control and vaccinated sows had a secondary response following challenge three weeks after vaccination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Tumor necrosis factor alpha (TNF alpha) levels were determined by enzyme-linked immunosorbent assay (ELISA) and by cell culture bioassay in supernatants of lipopolysaccharide-stimulated feline monocyte cultures and in cat serum samples. There was a good correlation between the results obtained by the two methods. From the fact that TNF alpha was neutralized quantitatively by antibodies to human TNF alpha in feline monocyte supernatants and in feline sera, it was concluded that feline TNF alpha immunologically cross-reacts with human TNF alpha and that the human TNF alpha ELISA can be used to quantitate feline TNF alpha. During the first 6 months after experimental feline immunodeficiency virus (FIV) infection no differences in serum TNF alpha values were observed between infected and non-infected cats. TNF alpha levels increased significantly after primary vaccination with a feline leukemia virus (FeLV) vaccine in FIV infected cats over those in the non-infected controls. During secondary immune response TNF alpha levels rose transiently for a period of a few days in both the FIV positive and the FIV negative cats. After FeLV challenge, TNF alpha levels increased in all animals challenged with virulent FeLV for a period of 3 weeks. This period corresponded to the time necessary to develop persistent FeLV viremia in the control cats. It was concluded from these experiments that in the asymptomatic phase of FIV infection no increased levels of TNF alpha are present, similar to the situation in asymptomatic HIV infected humans. Activation of monocytes/macrophages in FIV infected cats by stimuli such as vaccination or FeLV challenge readily leads to increased levels of TNF alpha.  相似文献   

17.
Intranasal vaccination with a cold-adapted strain of feline herpesvirus type 1 (FHV-1) two days before challenge gave partial protection, and four days before challenge gave complete protection, against feline viral rhinotracheitis. Protection at this time appeared to be specific since vaccination with FHV-1 did not affect the disease caused by the unrelated feline calicivirus. The time course of onset of protection also confirmed that the protective mechanism was likely to be specific. However, six days after vaccination only low levels of FHV-specific IgA and IgM antibody and of interferon were found in serum and nasal washings. In lymphocyte transformation assays neither peripheral blood lymphocytes nor tonsil lymphocytes gave a significant proliferative response in the presence of FHV antigen. Pathogenesis experiments demonstrated that the tonsil and nasal turbinates were the most important sites of virulent FHV-1 replication. Vaccination significantly reduced levels of infectious virus found in both sites. The results provide evidence that no one mechanism is responsible for protection following vaccination but local specific responses are more likely to be involved.  相似文献   

18.
Significant antibody response to feline panleucopaenia virus was present 2 months after vaccination with modified live virus vaccine and persisted for 4 years.  相似文献   

19.
An attenuated respiratory disease vaccine against feline viral rhinotracheitis (FVR) and feline calicivirus (FCV) disease was evaluated for safety and efficacy in specific-pathogen-free cats. Twenty cats were vaccinated twice intramuscularly, with 28 days between vaccinations. Ten unvaccinated cats were used as contact controls. Adverse effects were not noticed after vaccination, and the vaccinal virus did not spread to contact controls. Arithmetical mean serum-neutralizing titers against vaccinal FCV strain F9 and challenge FCV strain 255 were 1:13 and 1:15 at 28 days after the 1st inoculation. These titers increased to 1:45 and 1:196 after the 2nd inoculation. After challenge exposure of vaccinated cats to virulent FCV 255 virus, mean titers increased to 1:129 and 1:865, respectively for F9 and 255 viruses. The F9 postchallenge mean titer for vaccinated cats was 21.5 times higher than that for the 8 contact controls that survived challenge exposure. The arithmetical mean serum neutralizing titer for FVR was low (1:2) after the 1st vaccination, but increased to 1:35 after the 2nd vaccination. Challenge exposure to virulent FVR virus resulted in a marked anamnestic immune response (mean titer of 1:207, compared with 1:12 for contact controls). In general, vaccinated cats remained alert and healthy after challenge exposure with FCV-255, whereas unvaccinated contact control cats developed definite signs of FCV disease, including central nervous system (CNS) depression (6 of 10) and dyspnea indicative of pneumonia (5 of 10). Two controls died of severe pneumonia. A mild fibrile response was detected in 28% of vaccinated cats, compared with a more severe febrile response in 78% of control cats. Some vaccinated cats developed minute lingual ulcers that did not appear to be detrimental to the health of the cat. After FVR challenge exposure, vaccinated cats were free of serious clinical signs. Five of 18 vaccinated cats had mild signs of FVR, including an occasional sneeze, low temperature, and mild serous lacrimation for 1 or 2 days. Contact controls developed definite clinical signs of FVR. The combined FVR-FCV vaccine appears to be safe and reasonably efficacious. Vaccination against FCV disease and FVR should be part of the routine feline immunization program.  相似文献   

20.
Gilts from dams that had been inoculated with inactivated porcine parvovirus (PPV) vaccine before breeding became seronegative to PPV by 26 weeks of age. Vaccination of these gilts with inactivated PPV vaccine at 32 weeks of age resulted in an antibody response that peaked at about 2 weeks after vaccination, with -log10 mean hemagglutination inhibiting (HI) antibody titers of less than 2. In the first-year group (82 gilts), HI titers gradually decreased, 20% of the gilts being seronegative by 6 to 7 weeks after vaccination and 75% being seronegative by 16 weeks after vaccination. In the second-year group, 93 gilts were infected naturally by a field strain of PPV at about 11 weeks after single vaccination with inactivated PPV. Additionally, in the second year, 20 vaccinated and 6 nonvaccinated gilts were immune-challenged with virulent PPV at 10 to 12 weeks after vaccination. Neither field nor challenge PPV infection of vaccinated pregnant gilts caused reproductive failure, even though some of the gilts became seronegative for PPV before challenge. Our findings suggest that single vaccination of gilts with inactivated PPV vaccine should give adequate protection from PPV-induced reproductive failure, even though serum HI titers decrease to an undetectable level shortly before PPV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号