首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Traditional exhaustive extraction methods often overestimate the risk of polycyclic aromatic hydrocarbon(PAH) bioaccessibility to biota. Therefore, reliable assessment methods need to be established. In this study, a composite extraction with hydroxypropyl-β-cyclodextrin(HPCD) and three low-molecular-weight organic acids, oxalic acid(OA), malic acid(MA), and citric acid(CA), was used to predict the PAH bioaccessibility to earthworms, subjecting to two soils(red soil and yellow soil) spiked with selected PAHs,phenanthrene, pyrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. For both soils,concentrations of PAHs by composite extraction using HPCD-OA(R~2= 0.89–0.92, slope = 1.89–2.03; n = 35), HPCD-MA(R~2=0.92–0.96, slope = 1.43–1.67; n = 35), and HPCD-CA(R~2= 0.92–0.96, slope = 1.26–1.56; n = 35) were significantly correlated with PAH accumulation in the Eisenia fetida earthworms. Moreover, the HPCD-CA-and HPCD-MA-extracted PAH concentrations were closer to the earthworm-accumulated PAH concentration than the extraction using just HPCD. The results indicated that the composite extraction could improve the prediction of PAH bioaccessibility, and therefore can serve as a reliable chemical method to predict PAH bioaccessibility to earthworms in contaminated soils.  相似文献   

2.
Polycyclic aromatic hydrocarbons(PAHs) in soil retain for a quite long period due to their hydrophobicity and aggregation properties. Biofilm-forming marine bacterial consortium(named as NCPR), composed of Stenotrophomonas acidaminiphila NCW702,Alcaligenes faecalis NCW402, Pseudomonas mendocina NR802, Pseudomonas aeruginosa N6P6, and Pseudomonas pseudoalcaligenes NP103, was used for the bioremediation of PAHs in a soil microcosm. Phenanthrene and pyrene were used as reference PAHs. Parameters that can affect PAH degradation, such as chemotaxis, solubility of PAHs in extracellular polymeric substances(EPS), and catechol2,3-dioxygenase(C23O) activity, were evaluated. P. aeruginosa N6P6 and P. pseudoalcaligenes NP103 showed chemotactic movement towards both the reference PAHs. The solubility of both the PAHs was increased with an increase in EPS concentration(extracted from all the 5 selected isolates). Significantly(P 0.001) high phenanthrene(70.29%) and pyrene(55.54%) degradation was observed in the bioaugmented soil microcosm. The C23O enzyme activity was significantly(P 0.05) higher in the bioaugmented soil microcosm with phenanthrene added at 173.26 ± 2.06 nmol min~(-1) mg~(-1) protein than with pyrene added at 61.80 ± 2.20 nmol min~(-1) mg~(-1) protein. The C23O activity and gas chromatography-mass spectrometer analyses indicated catechol pathway of phenanthrene metabolism. However, the metabolites obtained from the soil microcosm added with pyrene revealed both the catechol and phthalate pathways for pyrene degradation.  相似文献   

3.
长江三角洲地区污泥中多环芳烃的污染研究   总被引:4,自引:0,他引:4  
To ascertain the contaminated conditions of polycyclic aromatic hydrocarbons (PAHs) in sludge and to evaluate the risk of application of this sludge for agricultural purposes, 44 sludge samples obtained from 15 cities in the Yangtze River Delta area of China were investigated using capillary gas chromatography/mass spectrometry (GC/MS) after ultrasonic extraction and silica gel cleanup. PAHs' contents ranged from 0.0167 to 15.4860 mg kg^-1 (dry weight, DW) and averaged 1.376 mg kg^-1, with most samples containing 〈 1.5 mg kg^-1. Pyrene (PY), fluoranthene (FL), benzo[b]fluoranthene (BbF), indeno[1,2,3-cd]pyrene (IND), benzo[a]pyrene (B[a]P), and benzo[g,h,i]perylene (BghiP) were the most dominant compounds, ranging from 0.1582 to 0.2518 mg kg^-1. Single PAH, such as naphthalene (NAP, 2-benzene rings), phenanthrene (PA, 3-benzene rings), PY (4-benzene rings), and FL (3-benzene rings), had high detection rates (76.1%-93.5%). The distribution patterns of PAHs were found to vary with the sludge samples; however, the patterns showed that a few compounds with 2- and 3-benzene rings were commonly found in the samples, whereas those with 4-, 5-, and 6-benzene rings were usually less commonly found. All the 44 sludge samples were within the B[a]P concentration limit for sludge applied to agricultural land in China (〈 3.0 rag kg^-1). The probable sources of PAH contamination in the sludge samples were petroleum, petroleum products, and combustion of liquid and solid fuel. The concentrations and distributions of the 16 PAHs in sludge were related to sludge type, source, and treatment technology, together with the physicochemical properties.  相似文献   

4.
The transformation profiles of polycyclic aromatic hydrocarbons (PAHs) by pure laccases from Trametes versicolor and Pycnoporus sanguineus, and the optimal reaction conditions (acetonitrile concentration, pH, temperature and incubation time) were determined. Anthracene was the most transformable PAH by both laccases, followed by benzo[a]pyrene, and benzo[a]anthracene. Laccase-mediator system (LMS) could not only improve the PAH oxidation but also extend the substrate types compared to laccase alone. 5e/0 or 10~ (v/v) of acetonitrile concentration, pH 4, temperature of 40 ~C, and incubation time of 24 h were most favorable for anthracene oxidation by laccase from T. versicolor or P. sanguineus. The gas chromatography-mass spectrometry analysis indicated that 9,10- anthraquinone was the main product of anthracene transformed by laccase from T. versicolor. Microtox test results showed that both anthracene and its laccase-transformation products were not acute toxic compounds, suggesting that laccase-treatment of anthracene would not increase the acute toxicity of contaminated site.  相似文献   

5.
Fluoranthene, a four-ring polycyclic aromatic hydrocarbon that is possible genotoxic in nature, has been used as an indicator for assessing polycyclic aromatic hydrocarbon(PAH)-containing pollutants. Microbial degradation is one of the promising methods in removing up PAH-contaminated environments. White-rot fungi have showed the ability to degrade a wide range of PAHs. This study aimed to investigate enzyme production, fungal biomass, and glucose utilization during the biodegradation process of fluoranthene by a white-rot fungus Pleurotus pulmonarius F043 and to identify the metabolites produced in the degradation process. The extracellular ligninolytic enzyme system of the fungi, producing laccases and peroxidases, was directly linked to the biodegradation of fluoranthene.The production of ligninolytic enzymes during fluoranthene degradation was related to an increase in the biomass of Pleurotus pulmonarius F043. Fluoranthene removal decreased with an increase in fluoranthene concentrations. The highest biomass production of Pleurotus pulmonarius F043(≥ 4 400 mg L~(-1)) was found in the 10 mg L~(-1) fluoranthene culture after 30 d of incubation. Two fluoranthene metabolites, naphthalene-1,8-dicarboxylic acid and phthalic acid, were found in the process of fluoranthene degradation.Laccase was revealed as the major enzyme that played an important role in degradation process. Suitable conditions must be found to promote a successful fungal biotransformation augmentation in liquid culture.  相似文献   

6.
土壤中多环芳烃的微生物降解: 降解途径及其影响影子   总被引:4,自引:0,他引:4  
Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.  相似文献   

7.
The objectives of this work were to determine the potential mineralization of various organic pollutants that are likely found in compostable materials during composting, and to evaluate the participation of the microflora of the thermophilic and maturation composting phases in pollutant mineralization. Four composts were used: a biowaste compost (BioW), a municipal solid waste compost (MSW), a green waste compost (GW) and a co-compost of green waste and sludge (GW+S). In each composting plant, two samples were withdrawn: one in the thermophilic phase (fresh compost) and one in the maturation phase (mature compost) to have the microflora of thermophilic and maturation phases active, respectively. The mineralization of 5 organic pollutants, 3 polycyclic aromatic hydrocarbons (PAHs) (i.e., phenanthrene, fluoranthene and benzo(a)pyrene), 1 herbicide (dicamba) and 1 polychlorinated biphenyl (PCB, congener 52), was measured in a laboratory setting during incubations at 60 ℃ in fresh composts and at 28 ℃ in mature composts. All molecules were 14 C-labeled, which allowed the mineralization of the molecules to be measured by trapping of produced 14CO2 in NaOH. Their volatilization was also measured by trapping molecules on glass wool impregnated with paraffin oil. Mineralization of the organic molecules was only observed when the maturation microflora was present in the mature composts or when it was inoculated into the fresh compost. Phenanthrene mineralization of up to 60% in the fresh GW+S compost was the only exception. Mineralization of PAH decreased when the complexity of the PAH molecules increased. Mineralization of phenanthrene and fluoranthene reached 50%-70% in all mature composts. Benzo(a)pyrene was mineralized (30%) only in the MSW mature compost. Dicamba was moderately mineralized (30%-40%). Finally, no PCB mineralization was detected, but 20% of the PCB had volatilized after 12 d at 60 ℃. No clear difference was observed in the degrading capacity of the different composts, and the major difference was the larger mineralizing capacity of the maturation microflora compared with the thermophilic microflora.  相似文献   

8.
Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.  相似文献   

9.
The objectives of this work were to determine the potential mineralization of various organic pollutants that are likely found in compostable materials during composting, and to evaluate the participation of the microflora of the thermophilic and maturation composting phases in pollutant mineralization. Four composts were used: a biowaste compost (BioW), a municipal solid waste compost (MSW), a green waste compost (GW) and a co-compost of green waste and sludge (GW+S). In each composting plant, two samples were withdrawn: one in the thermophilic phase (fresh compost) and one in the maturation phase (mature compost) to have the microflora of thermophilic and maturation phases active, respectively. The mineralization of 5 organic pollutants, 3 polycyclic aromatic hydrocarbons (PAHs) (i.e., phenanthrene, fluoranthene and benzo(a)pyrene), 1 herbicide (dicamba) and 1 polychlorinated biphenyl (PCB, congener 52), was measured in a laboratory setting during incubations at 60 ℃ in fresh composts and at 28 ℃ in mature composts. All molecules were 14 C-labeled, which allowed the mineralization of the molecules to be measured by trapping of produced 14CO2 in NaOH. Their volatilization was also measured by trapping molecules on glass wool impregnated with paraffin oil. Mineralization of the organic molecules was only observed when the maturation microflora was present in the mature composts or when it was inoculated into the fresh compost. Phenanthrene mineralization of up to 60% in the fresh GW+S compost was the only exception. Mineralization of PAH decreased when the complexity of the PAH molecules increased. Mineralization of phenanthrene and fluoranthene reached 50%-70% in all mature composts. Benzo(a)pyrene was mineralized (30%) only in the MSW mature compost. Dicamba was moderately mineralized (30%-40%). Finally, no PCB mineralization was detected, but 20% of the PCB had volatilized after 12 d at 60 ℃. No clear difference was observed in the degrading capacity of the different composts, and the major difference was the larger mineralizing capacity of the maturation microflora compared with the thermophilic microflora.  相似文献   

10.
三叶草对污染土壤中芘的去除研究   总被引:1,自引:0,他引:1  
Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons (PAHs), ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes, in the last decade. In this study, a pot experiment was conducted to investigate the potential of phytoremediation of pyrene from spiked soils planted with white clover (Trifolium repens) in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1. The results showed that growth of white clover on pyrenecontaminated soils was not affected. The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils. At the end of the experiment (60 d), the average removal ratio of pyrene in the spiked soils with white clover was 77%, which was 31% and 57% higher than those of the controls with or without micobes, respectively. Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration. However, the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation. Bioconcentration factors of pyrene (BCFs, ratio of pyrene, on a dry weight basis, in the plant to that in the soil) tended to decrease with increase in the residual soil pyrene concentration. Therefore, removal of pyrene in the contaminated soils was feasible using white clove.  相似文献   

11.
PAHs生物降解程度受多种因素影响。通过筛选驯化PAHs降解菌,研究混合菌对土壤中菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的生物降解性能,并考察污染时间对土壤中PAHs降解效果的影响。结果表明,筛选的混合菌具有很强的PAHs降解能力,缩短了PAHs生物降解的半衰期,且PAHs起始降解速率较快,之后趋于平缓。27d内土壤中的菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的平均降解率分别为98.14%、89.97%、88.47%、63.55%、65.24%、60.49%,其中菲在5d之内的降解率高于93%。污染210d的土壤中各PAHs的起始降解速率高于污染50d的土壤,因此污染时间越长,PAHs生物降解的停滞期越短。  相似文献   

12.
The purpose of this study was to determine the degree of PAH contamination and the association of PAHs with metals in urban soil samples from Sevilla (Spain). Fifteen polycyclic aromatic hydrocarbons-PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) and seven metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn) have been evaluated in representative urban soil samples. Forty-one top soils (0–10 cm) under different land use (garden, roadside, riverbank and agricultural allotment) were selected. PAHs from soil samples were extracted by sonication using dichloromethane. The simultaneous quantification of 15 different PAH compounds were carried out by HPLC using multiple wavelength shift in the fluorescence detector. For qualitative analysis a photo diode-array detector was used. Metal (pseudo-total) analysis was carried out by digestion of the soils with aqua regia in microwave oven. The mean concentration of each PAH in urban soils of Sevilla showed a wide range, they are not considered highly contaminated. The results of the sum of 15 PAHs in Sevilla soils are in the range 89.5–4004.2 μg kg?1, but there seems not to be a correlation between the concentration of PAHs and the land use. Of the 15 PAHs examined, phenanthrene, fluoranthene and pyrene were present at the highest concentrations, being the sum of these PAHs about 40% of the total content. Although metal content were not especially high in most soils, there are significant hints of moderate pollution in some particular spots. Such spots are mainly related with some gardens within the historic quarters of the city. The associations among metals and PAHs content in the soil samples was checked by principal components analysis (PCA). The largest values both for ‘urban’ metals (Pb, Cu and Zn) and for PAHs were mainly found in sites close to the historic quarters of the city in which a heavy traffic of motor vehicles is suffered from years.  相似文献   

13.
A method is described for the determination of polycyclic aromatic hydrocarbons (PAHs) with 3-7 rings in (I) meat, poultry, fish, and yeast; and (II) oils and fats. The extraction of PAHs from group I is incomplete, and, therefore, group I samples must be dissolved homogeneously by saponification in 2N methanolic potassium hydroxide. The PAHs are concentrated by liquid-liquid extraction (methanol-water-cyclohexane, N,N - dimethylformamide - water-cyclohexane) and by column chromatography on Sephadex LH 20. The PAHs are separated by high-performance gas-liquid chromatography (GLC) with columns containing 5% OV-101 on Gas-Chrom Q and estimated by integration of the flame ionization detector signals in relation to an internal standard (3,6-dimethylphenanthrene and/or benzo(b)chrysene). The sensitivity is significantly higher than that obtained with ultraviolet spectroscopic methods. The reproducibility and margin of error were tested with meat samples fortified with 11 PAHs and with samples of sunflower oil. The method was further applied to meat, smoked fish, yeast, and unrefined sunflower oil. All samples investigated contained more than 100 PAHs (characterized by mass spectrometry) of which only the main components were determined: phenanthrene, anthracene, fluorene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene + benzo (j)fluoranthene + benzo(k) fluoranthene, benzo(e)pyrene, benzo(a)pyrene, perylene, dibenz(a,j)anthracene, dibenz(a,h)anthracene + indeno(1,2,3,-cd)pyrene, benzo(ghi)perylene, anthanthrene, and coronene. In contrast to other methods, the GLC profile analysis allows the recording of known and unknown PAH peaks simultaneously and also allows a compilation of all PAHs.  相似文献   

14.
以常州市某农药厂搬迁土地为研究对象,在监测分析土壤中16种多环芳烃(PAHs)的基础上,对该区域土壤进行健康风险和生态风险评价。结果表明,研究区域土壤中∑PAHs的含量范围为0~1.546mg·kg-1,优势化合物中萘、菲等低环化合物含量大于高环的荧蒽、苯并[k]荧蒽和芘等化合物,且土壤中PAHs可能来源于石油源。健康风险评价结果在可接受的10-6~10-4范围内,而生态风险评价表明,尽管研究区域土壤中的多环芳烃不存在严重的生态风险,但是化合物苊和芴含量超出了风险评价低值(ER-L和ISQV-L),存在着对生物的潜在危害。  相似文献   

15.
The determination of poly-aromatic hydrocarbons (PAHs) in the soil is of interest because of their carcinogenic and mutagenic activity in biological systems. The present study deals with the rapid application of infrared, fluorescence, synchronous luminescence spectrometries and gas chromatography to detect organic pollutants and their quantity in the soil. Sohxlet extraction followed by column separation was used to isolate organic pollutants. Although several solvent mixtures were used as eluents for the column, the solvent mixture, hexane:dichloromethane (50:50) efficiently extracts the aromatic compounds. Total petroleum hydrocarbons (TPH) measured by IR were found at high concentrations (30810.0 ppm) in the contaminated soil compared with the reference soil (30.0 ppm). Furthermore, the fluorescence results reveal that almost one-fourth of the 30810.0 ppm are aromatic hydrocarbons. In addition, the presence of PAHs such as naphthalene, acenaphthene, fluorene, fluoranthene, phenanthrene, pyrene, benzo(a)pyrene, chrysene, and dibenzo(a,h)anthracene in the polluted soil was determined by using synchronous study.  相似文献   

16.
An integrated study of the qualitative and quantitative composition of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric precipitation-soil-lysimetric water system was performed using high performance liquid chromatography. It was shown that the accumulation of low-molecular PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, and chrysene) in soils is due to the transformation of organic matter and the regional transport and deposition of PAHs with atmospheric precipitation on the underlying surface. High-molecular polyarenes (benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene) mainly result from the decomposition of soil organic matter.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs), mainly formed by incomplete anthropogenic organic matter combustion, are ubiquitous in the environment. To assess milk PAH contamination sources, milk samples were collected from the tank milk at farms located near potential contaminating emission sources such as cementworks, steelworks, and motorways. PAH analyses were carried out by gas chromatography coupled to mass spectrometry. Eight PAHs were identified in milk: naphthalene, acenaphthylene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, and benzo[a]anthracene. For all potential contaminating sources, these eight PAHs were detected with similar profiles and at low concentrations except for fluorene and naphthalene, for which source-molecule interaction is pointed out.  相似文献   

18.
Contents of 11 most prevalent polycyclic aromatic hydrocarbons (PAHs) in snow and soils of arable, fallow, and forest areas significantly remote from impact technogenic sources of polyarenes have been examined in the Torzhok district of Tver oblast. From the analysis of snow samples, the volumes and composition of PAHs coming from the atmosphere onto the areas of different land use have been determined. Light hydrocarbons prevail in PAHs. They make up 65–70% of total PAHs; their share in soils reaches almost 95%. An increase in the content of PAHs is revealed in fallow soils compared to arable and afforested areas. A direct relationship is revealed between the lateral distribution of total PAHs and the content of organic carbon. The distribution of total PAHs is surface-accumulative in forest soils, mainly uniform in arable soils, and deepaccumulative in fallow soils. PAH groups characterized by similar radial distributions and ratios between their reserves in snow and soils are distinguished: (1) fluorene and phenanthrene, (2) biphenyl and naphthalene, (3) benzo(a)anthracene, chrysene, perylene, and benzo[a]pyrene, and (4) anthracene and benzo[ghi]pyrene.  相似文献   

19.
Microtox技术检测多环芳烃生物毒性的研究   总被引:9,自引:0,他引:9  
利用Microtox技术检测 5种多环芳烃化合物生物毒性结果表明 ,二甲亚砜配制的测试液中萘、菲及荧蒽均对发光细菌具有一定生物毒性 ,且随浓度的增大而增强 ,相同浓度下毒性菲 >萘 ;测试液中当萘浓度小于其溶解度时即产生 10 0 %的抑光率 ,萘EC50 为 4 .32mg/L ,而菲及荧蒽浓度近其溶解度时所产生的最大抑光率分别为 <5 0 %和15 %左右 ;芘及蒽最大浓度时则对发光细菌无生物毒性显示。表明Microtox技术可有效检测低环化合物萘的生物毒性 ,但对高环化合物 (≥ 3环 )的检测因受其低水溶性的限制而灵敏度降低 ,利用二甲亚砜获取多环芳烃污染物提取液的生物毒性主要与低分子化合物萘及菲有关  相似文献   

20.
北京东南郊再生水灌区土壤PAHs污染特征   总被引:1,自引:0,他引:1  
采用Eijkelkamp土壤采样器对北京东南郊再生水灌区进行了3个钻孔剖面采样,同时采集了灌溉用水及地下水样品,并采用气相色谱-质谱联用仪对16种多环芳烃(PAHs)进行定量分析。结果表明,表层土壤中有14种PAHs检出,浓度在0.4-53.1 μg·kg-1之间,∑PAHs平均含量为206.7 μg·kg-1,达到了土壤污染临界值;表层以下PAHs的检出种类和含量显著减少,以中、低环的萘、菲、芴、荧蒽、芘为主,∑PAHs仅占表层的3.8%-12.0%,从剖面PAHs含量变化可以判断,低环PAHs较易迁移,迁移性强弱顺序为萘、芴〉菲〉芘、荧蒽;污灌区表土中PAHs组成与大气降尘接近,但与再生灌区有明显差异,这种差异主要由于灌溉用水不同所造成;再生水灌区表土以下土壤剖面检出的PAHs与再生水中的PAHs一致,说明再生水灌溉是导致土壤剖面PAHs污染的主要原因,同时地下水中检出的PAHs种类也与土壤剖面基本一致,但含量较高,可能是早期污水灌溉所造成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号