首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Leptin mRNA is expressed in not only adipocytes but also mammary epithelial cells and leptin protein is present in milk. Although milk leptin is thought to influence metabolism or the immune system in neonates, there is little information about the regulation of leptin expression in mammary epithelial cells. We examined the effect of growth hormone (GH) and/or lactogenic hormone complex (DIP; dexamethasone, insulin and prolactin) on leptin mRNA expression in mammary epithelial cells. We used a bovine mammary epithelial cell (BMEC) clonal line, which was established from a 26-day pregnant Holstein heifer. We confirmed that the mRNA was expressed in BMECs and the expression was significantly reduced by GH and/or DIP, when the cells were cultured on both plastic plates and cell culture inserts at days 2 and 7 after stimulation with lactogenic hormones. GH and/or DIP significantly increased level of alpha-casein mRNA in BMECs after 7 days on the cell culture inserts, but no mRNA expression was detected at day 2. GH and DIP significantly stimulated the secretion of alpha-casein from BMEC on cell culture inserts at 3.5 and 7 days. However, neither alpha-casein mRNA expression nor secretion was observed in the BMECs cultured on plastic dishes, even in the presence of GH or/and DIP. These results indicate that GH and DIP can directly reduce leptin mRNA expression in both undifferentiated and functionally differentiated bovine mammary epithelial cell.  相似文献   

2.
Adiponectin is an adipocyte-derived hormone, which circulates in the form of homo-multimers. The individual oligomers have a distinct profile of activity, playing crucial roles in several biological processes, including metabolism and inflammation. Adiponectin exerts many of its effects by interacting with the receptors, AdipoR1 and AdipoR2. In the present study, mRNA expression of adiponectin, AdipoR1 and AdipoR2 was evaluated by quantitative PCR in different areas of the mammary gland in healthy lactating cows. The adiponectin isoforms in milk and blood were investigated by Western blotting and 2D-electrophoresis, and the presence of adiponectin protein was determined by immunohistochemistry.Low level expression of adiponectin mRNA was found in all areas of bovine mammary gland tissues examined. AdipoR1 and AdipoR2 mRNAs were also detected in mammary tissues and their expression was particularly prominent in the parenchyma and cistern. Western blotting revealed a heterogeneous electrophoretic pattern, indicating that different adiponectin isoforms exist in milk, compared with blood. In particular, milk shows a low molecular weight isoform of adiponectin, corresponding to the globular domain. Adiponectin in milk is characterised by a more complex 2D electrophoretic pattern, compared with blood, as illustrated by the presence of proteins of different molecular weights and isoelectric points. Adiponectin protein was detected by immunohistochemistry in epithelial cells lining the secretory alveoli, in secretum within the alveolar lumen and in small peripheral nerves. The study findings support a role for adiponectin in regulating metabolism and immunity of the bovine mammary gland and potentially the calf intestine, following ingestion of milk.  相似文献   

3.
The objective of this study was to determine the effects of steroid hormone implantation in heifer calves on the ability of mammary tissue to develop subsequently in organ culture. Twenty-four calves were paired by date of birth and assigned to groups (eight calves/group). At 4, 7, or 10 mo of age, calves were implanted subcutaneously (s.c.) with pellets containing cholesterol or cholesterol, 17β-estradiol, and progesterone for 9 or 18 d. The calves were euthanized and uteri and mammary glands were removed and weighed. Slices of mammary parenchymal tissue were incubated for 5 d at 37°C in a 50% O2, 5% CO2 humidified atmosphere in Waymouth’s 752/liter medium supplemented with insulin (5.0 μg/ml) or lactogenic hormone complex insulin (5.0 μg/ml), aldosterone (0.1 μg/ml), hydrocortisone (0.1 μg/ml), and prolactin (1.0 μg/ml) in the presence or absence of epidermal growth factor (EGF) (0.06 μg/ml) to promote lobulo-alveolar development. Tissue sections were stained and mounted on slides for morphologic and histologic analysis or prepared to evaluate expression of β-casein mRNA. There were no morphologic differences in slices from calf mammary tissues despite age, steroid hormone priming, or hormones used in tissue culture. The 4-mo-old calves required steroid priming followed by incubation of the tissue slices with the lactogenic complex with or without epidermal growth factor to induce cytological changes associated with lactogenesis but did not express β-casein mRNA. At 7 mo of age, steroid hormone priming was not necessary for induction of alveolar formation and secretion. Incubation of the tissue slices from 7-mo-old calves with the lactogenic complex was sufficient to induce alveolar formation and secretion. However, β-casein mRNA was not expressed. At 10 mo of age, exposure of tissue from calves to the lactogenic hormones caused histologic changes reminiscent of the ability to secrete milk regardless of hormone priming. However, estrogen and progesterone priming was necessary before incubation of the tissue slices with the lactogenic hormones to induce β-casein mRNA expression. When epidermal growth factor was added to the lactogenic hormone complex, β-casein mRNA expression decreased. These data support the concept that there is a sequential development of responsiveness of the mammary gland to various hormones. By 10 mo of age, prepubertal heifers reach a stage of maturity where steroid hormone priming followed by incubation of tissue slices with the lactogenic hormones is sufficient to induce both structural and functional differentiation.  相似文献   

4.
Although our previous report demonstrated that adiponectin and AdipoR1 gene expressions changed among different lactation stages in the bovine mammary gland, its in vivo kinetics remain unclear in ruminant animals. In this study, we investigated the changes in circulating concentrations of adiponectin, as well as other metabolic hormones and metabolites, (i) during the periparturient period and (ii) among different lactation stages, in Holstein dairy cows. In experiment 1, serum adiponectin concentrations increased after parturition. Serum insulin concentrations were lower in the postpartum than prepartum period, whereas serum growth hormone (GH) concentrations increased in the postpartum period. Serum nonesterified fatty acids (NEFA) levels were increased during the postpartum period and were dependent on the parity. In experiment 2, there was no significant difference in plasma adiponectin concentrations among lactational stages. Plasma insulin concentrations tended to be lower in early lactation while plasma GH levels tended to be higher. Plasma NEFA concentrations were significantly lower in mid‐ and late‐lactation stages than non‐lactation stages. These findings indicate that elevation of serum adiponectin might be involved in energy metabolism just around parturition, and might exert its action through regulation of receptor expression levels in target tissues in each lactational stage in Holstein dairy cows.  相似文献   

5.
Bovine colostrogenesis is distinguished by the specific transfer of IgG1 from the blood to mammary secretions. The process has been shown to be initiated by hormones and occurs during the last weeks of pregnancy when steroid concentrations of estradiol (E2) and progesterone (P4) are highly elevated. Rodent intestinal uptake of immunoglobulin G is mediated by a receptor termed Fc fragment of IgG, Receptor, Transporter, alpha (FcGRT) and supported by light chain Beta‐2‐Microglobulin (β2M). We hypothesized that steroid hormone treatments (E2 and P4) of bovine mammary epithelial cells in vitro would induce up‐regulation of IgG1 transcytosis candidate gene mRNA expression suggesting involvement in IgG1 transcytosis. Two different primary bovine mammary epithelial cell cultures were cultured on plastic and rat tail collagen and treated with hormonal combinations (steroids/lactogenic hormones). Evaluated mRNA components were bLactoferrin (bLf: a control), bFcGRT, β2M, and various small GTPases; the latter components are reported to direct endosomal movements in eukaryotic cells. All tested transcytosis components showed strong expression of mRNA in the cells. Expression of bFcGRT, bRab25 and bRhoB were significantly up‐regulated (p < 0.05) by steroid hormones. bRab25 and bRhoB showed increased expression by steroid treatments, but also with lactogenic hormones. Analysis for the oestrogen receptor (ER) mRNA was mostly negative, but 25% of the cultures tested exhibited weak expression, while the progesterone receptor (PR) mRNA was always detected. bRab25 and bRhoB and likely bFcGRT are potential candidate genes for IgG1 transcytosis in bovine mammary cells.  相似文献   

6.
This study was conducted to investigate the expression of oligopeptide transporter 2 (PepT2) and its potential function in bovine mammary gland. First, the PepT2 mRNA and protein were determined in cultured mammary epithelial cells. Then the effects of lactogenic hormones (prolactin, hydrocortisone or insulin) and substrate (threonyl-phenylalanyl-phenylalanine) on PepT2 were investigated. The PepT2 mRNA and protein were successfully detected in bovine mammary epithelial cells. PepT2 gene expression was enhanced by the addition of 50, 500 and 5000 ng/ml prolactin, 10 and 100 ng/ml hydrocortisone, and 50, 500, 5000 and 50,000 ng/ml insulin. PepT2 mRNA abundance was increased when 5, 10 and 15% of threonyl-phenylalanyl-phenylalanine was included. Responses of PepT2 to lactogenic hormones and oligopeptide inferred that it may play an important role in bovine mammary gland.  相似文献   

7.
During the onset of lactation, there is a dramatic increase in the expression of glucose transporters (GLUT) and a group of enzymes involved in milk fat synthesis in the bovine mammary gland. The objective of this study was to investigate whether the lactogenic hormones mediate both of these increases. Bovine mammary explants were cultured for 48, 72, or 96 h with the following hormone treatments: no hormone (control), IGF-I, insulin (Ins), Ins + hydrocortisone + ovine prolactin (InsHPrl), or Ins + hydrocortisone + prolactin + 17β-estradiol (InsHPrlE). The relative expression of β-casein, α-lactalbumin, sterol regulatory element binding factor 1 (SREBF1), fatty acid synthase (FASN), acetyl-CoA carboxylase α (ACACA), stearyol-CoA desaturase (SCD), GLUT1, GLUT8, and GLUT12 were measured by real-time PCR. Exposure to the lactogenic hormone combinations InsHPrl and InsHPrlE for 96 h stimulated expression of β-casein and α-lactalbumin mRNA by several hundred-fold and also increased the expression of SREBF1, FASN, ACACA, and SCD genes in mammary explants (P < 0.01). However, those hormone combinations had no effect on GLUT1 or GLUT8 expression and inhibited GLUT12 expression by 50% after 72 h of treatment (P < 0.05). In separate experiments, the expression of GLUTs in the mouse mammary epithelial cell line HC11 or in bovine primary mammary epithelial cells was not increased by lactogenic hormone treatments. Moreover, treatment of dairy cows with bovine prolactin had no effect on GLUT expression in the mammary gland. In conclusion, lactogenic hormones clearly stimulate expression of milk protein and lipogenic genes, but they do not appear to mediate the marked up-regulation of GLUT expression in the mammary gland during the onset of lactation.  相似文献   

8.
脂多糖诱导奶牛乳腺上皮细胞先天性免疫反应   总被引:1,自引:0,他引:1  
采取荷斯坦奶牛乳腺,进行体外分离培养,并纯化细胞。用不同质量浓度(0、1、10、100mg/L)的脂多糖刺激乳腺上皮细胞,采用MTT法检测脂多糖对细胞增殖的影响,半定量PCR检测10mg/L的LPS对乳腺上皮细胞TLR4、TLR2、CD14、MD-2四个基因在不同时间(0、2、6h)mRNA表达水平的差异。结果表明,高剂量(100mg/L)的LPS对乳腺上皮细胞的增殖产生明显影响;LPS刺激乳腺上皮细胞后,导致TLR4、CD14、MD-2mRNA表达迅速升高,而TLR2mRNA弱表达。说明TLR4、CD14、MD-2参与LPS的识别,同时也说明脂多糖刺激乳腺上皮细胞后,乳腺上皮细胞能够产生先天性免疫反应。  相似文献   

9.
The exact role and sensitivity of cells to estrogen and progesterone mediated through the steroid receptors during lactation is not known. Expression of estrogen receptor 1 (ESR1) and progesterone receptor (PGR) was quantified in mammary tissue‐derived primary goat mammary epithelial cells (pgMECs) to determine the influence of donor tissue physiology (lactating and juvenile) and cell culture growth conditions (basal and lactogenic) on ESR1 and PGR expression in the derived cells. Relative messenger RNA (mRNA) levels for both receptors were the highest in cell lines derived from mammary tissue of juvenile goats. Maintaining pgMECs in lactogenic conditions resulted in up‐regulation of ESR1 (1.36‐ to 12.35‐fold) and in down‐regulation of PGR (‐2.53‐ to ‐3.62‐fold), compared to basal conditions. Based on Western blotting analysis we suggest that the differences in mRNA expression are translated to the protein level. We suggest that differential expression in lactating conditions is correlated with terminal differentiation of the pgMECs. Double immunostainings showed that estrogen receptor alpha (ER‐α) positive cells do not exclusively belong to the luminal lineage and that ER‐α and PGR can be expressed individually or co‐expressed in the pgMECs. The derived primary cultures/lines in early passages are hormone‐responsive and represent a useful surrogate for mammary tissue in research experiments.  相似文献   

10.
Suckling both, or only one contralateral mammary gland during 15 days postpartum was utilized to study lactogenic hormone binding to mammary microsomal membranes and quantitative mammary morphology in ewes. Binding of radiolabeled human growth hormone was specific for lactogenic hormones. Non-radiolabeled human growth hormone, ovine and bovine prolactin and human placental lactogen effectively competed with radiolabeled human growth hormone for binding sites but ovine and bovine growth hormone were completely ineffective. Specific binding of radiolabeled human growth hormone to 600 μg of membrane protein averaged 23 ± 3% in all lactating glands. Neither days postpartum nor treatment of contralateral mammary glands substantially altered hormone binding in lactating glands. Specific human growth hormone binding (6 ± 0.5%) in non-suckled glands (15 days postpartum both udder halves) was significantly lower (P<0.01) than in lactating tissue but only a moderate and variable reduction in specific binding was measured in membranes from glands non-suckled for 15 days but contralateral to a suckled gland (14 ± 4%). Specific binding was approximately doubled in assays with 600 compared with 300 μg of membrane protein and the pattern of binding among variously suckled glands was not changed by treatment of membranes with 4 M MgCl2 prior to assay. Most secretory cells from all lactating glands had rounded, basally displaced nuclei, apical fat globules, secretory vesicles and abundant densely stained basal cytoplasm (ergastoplasm). Alveolar lumenal area was maximal (50% of tissue area) and stromal tissue area was minimal. After 15 days of non-suckling (both udder halves) mammary cells were engorged with lipid, ergastoplasm was reduced and nuclei were irregularly shaped and randomly displaced compared with lactating tissue. In addition, lumenal area was reduced and stromal tissue more evident. Lack of suckling for 5 days had little apparent effect on mammary cytology. Like lactogenic hormone binding, mammary tissue morphology was only moderately altered by 15 days of non-suckling when the remaining gland was suckled. RNA concentration was lowest (2.1 ± 0.3 mg/g) in mammary tissue from ewes in which neither gland was suckled for 15 days postpartum but non-suckling interval had no significant effect when contralateral glands were suckled. DNA concentration was not significantly influenced by suckling treatments. Relative lactogenic hormone binding closely corresponded to changes in cytological and biochemical indices of secretory cell function.  相似文献   

11.
Adiponectin's beneficial effects are mediated by the AdipoR1 and AdipoR2 receptors (AdipoRs). The pig is a good model to study complex disorders such as obesity. We analyzed the expression of adiponectin, AdipoRs and some key molecules of energy metabolism (AMP-activated protein kinase α [AMPKα], p38 mitogen-activated protein kinase [p38 MAPK], and PPARα) in 2 pig breeds that displayed an opposite genetic behavior for energy metabolism: Casertana (CE), a fat-type animal, and Large White (LW), a lean-type animal. Muscle, liver, visceral and subcutaneous adipose tissues, and brain tissues were examined. The AdipoRs cDNA sequences were identical in the 2 breeds. AdipoRs mRNA expression, measured in all tissues, was significantly lower only in the 2 adipose tissues of CE pigs (P < 0.05). The muscle expression of AdipoRs, AMPKα, p38 MAPK, and PPARα was lower in CE than in LW animals (P < 0.01, P < 0.05, P < 0.01, P < 0.01, respectively). In liver, no molecule differed between breeds. The expression of both AdipoRs in visceral and subcutaneous adipose tissues was lower in CE pigs (P < 0.01). In brain, AdipoR1 and AMPKα expression was lower in CE pigs (P < 0.01), whereas AdipoR2 tended to be lower in CE than LW pigs (P = 0.05). In conclusion, our results suggest that tissue-specific downregulation of Adiponectin, AdipoRs, and of the key molecules of energy metabolism may be associated with the tendency of CE pigs to accumulate fat.  相似文献   

12.
Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.  相似文献   

13.
曹越  李大彪 《中国畜牧兽医》2021,48(8):2778-2786
乳脂肪是高质量的天然脂肪,其可为人类提供营养和能量,在各种膳食脂肪和油类中,是最容易被消化吸收的。乳脂肪是在乳腺中由从头合成或外源摄取的脂肪酸与甘油酯化形成的一种脂类物质,其含量的高低关系着牛奶品质的优劣和乳制品的加工特性。在奶牛的泌乳周期中,乳腺泌乳功能受多种因素影响,其中内分泌腺分泌的多种激素对奶牛乳腺上皮细胞(BMECs)乳脂的合成具有积极的调控作用。综上所述,作者介绍了氢化可的松、催乳素、胰岛素和生长激素4种泌乳相关激素对BMECs乳脂肪合成的调控机理,即从乳脂合成适宜的激素添加量、激素对乳脂球形态的影响方面初步阐释其调控作用,并从乳脂合成的关键酶及转录因子、激素对乳脂合成相关基因表达量方面深入阐释其作用机理,旨在为研究泌乳相关激素对奶牛乳腺内乳脂肪合成的调控机理提供参考。  相似文献   

14.
为了研究4F2hc在奶牛乳腺中的表达模式及调控方式,进一步明确氨基酸在奶牛乳腺上皮细胞中的跨膜转运过程,本研究采用Western blotting和实时荧光定量PCR技术检测了4F2hc在泌乳期和干奶期奶牛乳腺组织中的表达变化;在体外培养的泌乳期奶牛乳腺上皮细胞中添加亮氨酸,采用Western blotting和实时荧光定量PCR技术检测其对奶牛乳腺上皮细胞中4F2hc表达的影响;采用雷帕霉素抑制剂抑制mTOR信号通路,使用Western blotting方法检测mTOR信号抑制后奶牛乳腺上皮细胞中4F2hc表达以及乳蛋白合成的变化。结果显示,在泌乳期的奶牛乳腺组织中4F2hc的mRNA和蛋白表达水平均显著或极显著高于干奶期(P<0.05,P<0.01);在体外培养的奶牛乳腺上皮细胞中添加亮氨酸可以极显著提高乳腺上皮细胞中4F2hc的mRNA和蛋白质表达水平(P<0.01);亮氨酸刺激可以激活细胞内的mTOR信号通路(P<0.05),而雷帕霉素处理则可以显著抑制mTOR信号分子的磷酸化并极显著抑制亮氨酸诱导的4F2hc的表达(P<0.05,P<0.01),进而极显著抑制β-Casein的合成(P<0.01)。以上研究结果表明,4F2hc基因的表达与奶牛乳腺的泌乳活性之间呈正相关,亮氨酸可以通过激活mTOR信号通路来调节4F2hc基因的表达,进而影响乳蛋白的合成。  相似文献   

15.
16.
Adiponectin is an adipocyte-derived hormone that can improve insulin sensitivity. Its functions in regulating glucose utilization and fatty acid metabolism in mammals are mediated by 2 subtypes of adiponectin receptors (AdipoR1 and AdipoR2). This study was conducted to determine the effect of fasting on the expression of adiponectin and its receptors. The expression of adiponectin was not affected in s.c. adipose tissue, but adiponectin expression increased in visceral adipose tissue after fasting. In contrast, expression of both AdipoR mRNA was increased in the liver and s.c. adipose tissue of 24-h-fasted pigs compared with fed pigs, but the mRNA in muscle and visceral adipose tissue was not affected by fasting. A third putative adiponectin receptor, T-cadherin, was cloned and the mRNA expression was determined. T-Cadherin has been recognized to act as a vascular adiponectin receptor in vascular endothelial and smooth muscle cells. Our data showed that the expression of T-cadherin was decreased in the muscle of fasted pigs, suggesting that the expression of T-cadherin can be regulated by feeding status. In summary, in young pigs, adiponectin mRNA was up-regulated by fasting in visceral, but not s.c., adipose tissue, whereas AdipoR1 and AdipoR2 mRNA were increased in s.c., but not visceral, adipose tissue. The adiponectin receptor, T-cadherin, was expressed in s.c. and visceral adipose tissue and in muscle, but only muscle mRNA expression was decreased by fasting.  相似文献   

17.
本研究旨在探讨不同泌乳相关激素和生长因子对奶牛乳腺上皮细胞增殖的影响及其与细胞外基质主要成分层黏连蛋白的关系。将正常的荷斯坦泌乳期奶牛乳腺上皮细胞进行体外培养,在未包被或包被层黏连蛋白的条件下,以MTT法检测催乳素(PRL)、牛生长激素(GH)、类胰岛素生长因子-1(IGF-Ⅰ)、类胰岛素生长因子-2(IGF-Ⅱ)对细胞增殖作用的影响。在层黏连蛋白包被条件下,进行血清恢复的同时添加不同泌乳相关激素和生长因子,GH、IGF-Ⅰ有促进细胞增殖的作用(P<0.05),PRL、IGF-Ⅱ有维持细胞存活的作用(P<0.05);无血清时,几种激素和生长因子单独添加均无明显促增殖效应(P>0.05)。无基质条件下,与血清联合使用时,PRL、GH、IGF-Ⅰ、IGF-Ⅱ均对细胞生长有不同程度促进作用(P<0.05);无血清时,仅IGF-Ⅰ使细胞增殖速率显著加快(P<0.05)。层黏连蛋白作为培养基质对于体外培养的泌乳乳腺上皮细胞生长速度没有显著促进作用,但有利于PRL和IGF-Ⅱ发挥促存活作用。PRL、GH、IGF-Ⅰ、IGF-Ⅱ对细胞增殖和存活有促进作用,但需要与血清中其他成分协同才能充分发挥作用,其中IGF-Ⅰ促增殖能力最强。  相似文献   

18.
AdipoR1 and AdipoR2 belong to a novel class of transmembrane receptors that mediate the effects of adiponectin. We have cloned the chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids (cDNA) and determined their expression in various tissues. We also investigated the effect of feed deprivation on the expression of AdipoR1 or AdipoR2 mRNA in the chicken diencephalon, liver, anterior pituitary gland, and adipose tissue. The chicken AdipoR1 and AdipoR2 cDNA sequences were 76-83% identical to the respective mammalian sequences. A hydrophobicity analysis of the deduced amino acid sequences of chicken AdipoR1/AdipoR2 revealed seven distinct hydrophobic regions representing seven transmembrane domains. By RT-PCR, we detected AdipoR1 and AdipoR2 mRNA in adipose tissue, liver, anterior pituitary gland, diencephalon, skeletal muscle, kidney, spleen, ovary, and blood. AdipoR1 or AdipoR2 mRNA expression in various tissues was quantified by real-time quantitative PCR, and AdipoR1 mRNA expression was the highest in skeletal muscle, adipose tissue and diencephalon, followed by kidney, ovary, liver, anterior pituitary gland, and spleen. AdipoR2 mRNA expression was the highest in adipose tissue followed by skeletal muscle, liver, ovary, diencephalon, anterior pituitary gland, kidney, and spleen. We also found that a 48 h feed deprivation significantly decreased AdipoR1 mRNA quantity in the chicken pituitary gland, while AdipoR2 mRNA quantity was significantly increased in adipose tissue (P<0.05). We conclude that the AdipoR1 and AdipoR2 genes are ubiquitously expressed in chicken tissues and that their expression is altered by feed deprivation in the anterior pituitary gland and adipose tissue.  相似文献   

19.
Glycyl-tRNA synthetase is an important member of aminoacyl-tRNA synthetase family.However,the knowledge about expression and regulation mechanism of GlyRS in the development of bovine mammary gland is limited.To reveal the relationship among GlyRS and bovine mammary gland development and lactation,EdU immunofluorescence and flow cytometry were used to analyze the impact of GlyRS on the number of DNA and the influence of the cell cycle of BMEC,and the expression of Cyclin D1 of BMEC by Real-time PCR and Western blotting.The results showed that the DNA synthesis of BMEC,the numbers of cells in S and G2/M phase,and Cyclin D1 expression levels in BMEC were all increased after BMEC was transfected with a GlyRS overexpression vector,whereas all of the above indexes were reduced after BMEC was transfected with a shRNA targeting against GlyRS.This study revealed that GlyRS accelerates cell cycle transformation,increases the number of DNA synthesis by upregulating the expression of Cyclin D1,thereby promoting BMEC proliferation.  相似文献   

20.
甘氨酰tRNA合成酶(glycyl-tRNA synthetase,GlyRS)是重要的氨基酰tRNA合成酶(aminoacyl-tRNA synthetases,aaRSs)家族成员。目前,国内外关于GlyRS 在奶牛乳腺发育过程中表达及调节的研究鲜有报道。为了揭示GlyRS的表达与奶牛乳腺发育与泌乳之间的关系,本试验应用EdU免疫荧光法、流式细胞术检测GlyRS对奶牛乳腺上皮细胞(bovine mammary epithelial cells,BMEC)中DNA数目及细胞周期的影响,实时荧光定量PCR、Western blotting技术检测GlyRS对BMEC中Cyclin D1的表达影响。结果显示,GlyRS过表达时,细胞的DNA合成、处于S期和G2/M期的细胞数、细胞中Cyclin D1的表达均增加;GlyRS抑制后,细胞的DNA合成、处于S期和G2/M期的细胞数、细胞中Cyclin D1的表达均减少。表明GlyRS通过上调Cyclin D1的表达,加快细胞周期转换,增加DNA合成数目,从而促进BMEC增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号