首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
连续换道是一种危险的驾驶行为,易导致交通效率降低,甚至诱发交通事故,因此有必要对连续换道进行研究。首先,基于NGSIM数据对有等待时间和无等待时间的连续换道轨迹分别拟合,建立了换道轨迹模型;其次,基于LTV-MPC算法设计了控制器,通过Car Sim与Simulink联合仿真实验平台进行算法验证。结果表明,对于无等待时间的连续换道,跟踪效果及稳定性均优于有等待时间的连续换道;所设计的控制器对所有参考轨迹的跟踪效果较好,横向载荷率均小于风险阈值,具有较好的稳定性和鲁棒性,所提出的规划控制器可为道路几何设计提供理论依据。  相似文献   

2.
现有的自动泊车系统研究,由于忽略实际车辆转向约束和初始位姿条件而影响实际车辆跟踪参考路径效果,本文提出基于B样条曲线的路径规划算法和基于趋近律的非时间参考终端滑模路径跟踪控制算法。首先,对车辆的运动过程进行研究,建立车辆的运动学模型。其次,基于B样条曲线理论建立非线性约束平行泊车路径优化函数,并分析车辆运动学约束条件。然后,结合非时间参考路径跟踪控制和终端滑模控制方法,提出基于趋近律的非时间参考终端滑模路径跟踪控制方法。最后,通过Simulink和Car Sim联合仿真,验证了规划路径的合理性以及路径跟踪控制器的效果。  相似文献   

3.
基于跟踪误差模型的无人驾驶车辆预测控制方法   总被引:1,自引:0,他引:1  
针对无人驾驶车辆的轨迹跟踪问题,在分析车辆运动学模型的基础上,设计了一种基于模型预测控制理论的轨迹跟踪控制方法。首先,将车辆运动学模型进行线性化处理,得到车辆运动学线性跟踪误差模型,该模型可以用来预测车辆的未来行为。其次,利用此跟踪误差模型作为预测模型,应用线性模型预测控制方法,通过优化得到使性能指标最小的控制序列,将控制序列的第一步作用于系统。最后,建立了3种典型的道路试验曲线,并且在基于实时多体动力学软件Vortex搭建的虚拟仿真平台中对轨迹跟踪控制器进行了仿真。仿真结果表明,该控制器可以保证无人驾驶车辆快速且稳定地跟踪参考轨迹,距离偏差和方位偏差都在合理的范围内,且实时性可以达到要求。  相似文献   

4.
区域交通智能车辆控制器优化设计和品质分析   总被引:1,自引:2,他引:1  
为实现区域交通智能车辆(CyberCar)对目标路径的稳定跟踪,导航控制器设计是核心技术之一。首先建立基于视觉预瞄的车辆转向动力学控制数学模型,根据现代控制理论研究了最优导航控制器设计中加权矩阵、加权系数和预瞄距离的优化选取方法。仿真分析和试验结果表明,经过优化设计后的控制器对车辆模型中的不确定因素具有很好的品质特性,使区域交通智能车辆在户外自主导航中具有良好的跟踪性能。  相似文献   

5.
扰动下农用运输车辆路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用运输车辆路径跟踪的鲁棒稳定性,基于线性模型预测控制结合农用运输车辆特点设计了路径跟踪控制器。该方法首先将农用运输车辆的运动学模型进行离散化求解,推出误差模型作为控制器预测方程,为使农用运输车能够克服在田间行驶时的各种干扰,通过构建李雅普诺夫函数重点分析了该模型的鲁棒稳定性,得到控制周期约束条件,然后建立目标函数并引入松弛因子,最后把预测模型代入目标函数进行优化求解,重复以上过程,实现优化控制。Matlab仿真表明:当前轮转角扰动不大于15°及横向扰动不大于1.5m时,控制器可以迅速起到调节作用,使车辆快速回到参考轨迹上行驶。对应的场地试验结果表明:试验小车以2m/s的速度跟踪参考路径时,直线路段跟踪效果良好,最大横向偏差为10.57cm,均值为8.49cm;添加扰动路段的跟踪偏差较大,最大横向偏差为23.89cm,最大纵向偏差为62.53cm,但在控制器的控制作用下可以实现对路径的有效跟踪。由此可见,该控制器在速度小于等于2m/s的情况下,可以满足农用运输车辆对路径跟踪的精度与鲁棒稳定性要求。  相似文献   

6.
对拖拉机—牵引式农机具跟踪控制进行研究,建立该系统在卡迪尔坐标系和极坐标系下的车辆非线性运动模型。为简化求解过程,通过准确线性变换方法对建立的系统进行线性化,设计滑模变结构控制器,基于Ackermann公式进行极点配置选取控制参数,最后对直线运动轨迹和圆弧轨迹的跟踪控制进行仿真分析。仿真结果表明:设计的路径跟踪控制器可以使线性化的拖拉机—牵引式农机具系统的状态变量经过约3 s收敛到0;直线跟踪时,农机具车轴中心从偏离X轴0.5 m的初始位置经过3 s跟踪到期望路径X轴;半径为5 m、10 m和20 m的圆弧轨迹跟踪时,农机具车轴中心从偏离期望圆弧半径1 m的初始位置经过约3 s跟踪到期望圆弧,验证了设计的控制器具有良好的道路跟踪精度,使偏离的车辆快速返回到不同期望的稳态轨迹上。  相似文献   

7.
为了提升无人车辆轨迹跟踪性能,提出了一种基于LQR与前向增益的无人车辆轨迹跟踪控制方法。基于牛顿矢量力学体系进行车辆动力学建模,基于该模型进行状态观测器、LQR(Linear Quadratic Regulator)控制器以及前向增益的设计,以达到期望的轨迹跟踪速度、低能量损耗和零稳态误差。基于CarSim与MATLAB/Simulink联合仿真,使用双移线工况进行控制器的测试验证。仿真结果表明:所设计的状态观测器、LQR控制器以及前向增益可以满足期望的轨迹跟踪与航向跟踪需求。  相似文献   

8.
基于主动制动的车辆稳定性系统最优控制策略   总被引:1,自引:1,他引:0  
引入分层控制概念设计了横摆力矩控制和滑移率控制相结合的车辆稳定性控制系统.建立了侧偏角和横摆角速度具有最佳输出响应的车辆理想模型,采用前馈与反馈控制相结合跟踪理想模型的控制策略,基于最优控制理论设计横摆力矩控制器.通过设计理想滑移率分配模块确定下层滑移率控制器理想值,基于模糊控制理论设计滑移率控制器.在Matlab/Simulink平台上建立8自由度非线性车辆模型,分别在低附着和高附着路面条件下进行了仿真分析.结果表明:采用分层控制可以很好地实现车辆所需横摆力矩,有效地控制车辆质心侧偏角和横摆角速度跟踪理想模型,瞬态及稳态响应良好,改善了车辆操纵稳定性.  相似文献   

9.
针对多数的自适应巡航系统因不能考虑驾驶员意图,在遇到施工路段、道路合流或者车辆长时间跟随低速行驶的前车等情况时,造成无法满足驾驶员的主观需求和节能要求的问题。在传统自适应巡航系统模型基础上考虑了驾驶员意图辨识,提出了基于五次多项式曲线的换道路径规划,通过对换道轨迹约束条件的分析,得出了换道轨迹方程。通过构造跟随性指标以及舒适性指标的代价函数选取合适的换道轨迹方程。提出了基于两点预瞄的轨迹跟踪控制,实现了对换道轨迹的良好跟踪,并结合CarSim与Simulink进行联合仿真实验。仿真结果表明,采用此自适应巡航控制策略,既可实现传统意义上的定速巡航与自动跟车,又可实现满足换道意图的自主决策换道,换道效果良好且具有较强的实用性。  相似文献   

10.
为了满足四轮转向无人车辆在湿滑路面极限转向的路径跟踪需求,设立了双排直线车道并规划了路径,建立车辆动力学模型。对反步控制跟踪算法进行改进,通过启发式优化算法结合滑模控制设计反步滑模控制器。即在反步滑模控制器设计过程中,对于影响控制器性能的常数参数,对于常数参数不确定的函数,通过粒子群优化算法寻找最优值,分别设立3s和5s变道时限以及摩擦系数0.3和0.9四种工况。通过CarSim软件与MATLAB/Simulink联合仿真,通过车辆横向偏移误差以及航偏角误差作为判断依据,发现在低摩擦系数和极限变道时长下,滑模面最后已接近零,并且车辆控制器对轨迹跟踪十分稳定,这表明反步滑模控制器满足要求。  相似文献   

11.
针对目前车道保持系统中车速变化较大时,被控车辆偏移量较大的问题,通过状态预测方法,设计了用于单目视觉车道保持系统的状态预测模型.单目摄像头识别预瞄点处车一路偏差,考虑车辆经过预瞄时间后的状态变化量,设计基于车辆状态的预瞄点处车一路偏差模型.通过仿真与实车试验验证,说明提出的车辆预测模型能够准确预测出预瞄点处的车一路偏差,减小预测模型误差,提高车道保持系统控制精度和准确性,一般工况下,能够使车-路偏移量控制在10 cm以下.与目前采用的简化车路偏差模型相比较,能够提高被控车辆对于车道中心线的跟随性能.  相似文献   

12.
为降低取投苗装置对穴盘苗钵体的损伤,通过构建运动学模型,对一种单自由度蔬菜苗移栽机自动取投苗装置的夹取轨迹进行分析。针对装置取苗指插入姿态不理想和摆动幅度较大的问题,连杆长度与行星轮系中的轴间距相等,实现装置往返取苗轨迹曲线的重合;改变凸轮槽参数使其取苗段轨迹与凸轮轴心轨迹斜率相等实现取苗指姿态及轨迹在重合状态下插入取苗;优化支架与取苗指结构参数使取苗指姿态与其尖点轨迹重合,减小了插入方向的截面积。对推苗杆有效推苗的问题,采用阶梯型廓线提供苗钵初速度。针对取苗指挤压苗钵的问题,优化轴向凸轮廓线得到组合规律凸轮轮廓曲线,使取苗指在插入过程中取苗指姿态与其尖点轨迹在末端夹角缩小至0.117°。  相似文献   

13.
顾万里  胡云峰  宫洵  蔡硕  陈虹 《农业机械学报》2017,48(10):25-31,75
针对轮式移动机器人给定速度需求的非连续路径跟踪控制问题,将其转换为满足速度约束的轨迹规划和轨迹跟踪控制。首先,针对给定速度需求的路径跟踪问题,以运行时间和能量为优化目标,给定的路径和速度为约束条件,采用五次Bezier样条方法优化得到了满足需求的连续光滑轨迹。其次,利用轮式移动人系统的微分平坦特性,采用微分平坦方法设计前馈控制器;然后,将轮式移动机器人运动学模型在前馈控制的平衡点处进行一阶泰勒展开,得到了线性时变的误差模型,并通过定义新的状态变量,设计了具有Lyapunov稳定性的误差反馈控制器。结合前馈控制和反馈控制得到了二自由度轨迹跟踪控制器。同时将泰勒展开的高阶项考虑为有界的扰动输入,在输入到状态稳定性框架下证明了控制系统的鲁棒稳定性;最后,通过Pioneer 3-dx轮式移动机器人进行了实验验证,实验结果表明,提出的算法能够满足给定速度需求的非连续路径的跟踪控制需求。  相似文献   

14.
针对目前已有智能车辆轨迹跟踪控制存在跟踪精度低、鲁棒性弱等问题,结合滑模控制响应迅速、抗干扰能力强的优点,提出一种基于趋近律的滑模控制方法。提出的趋近律通过特殊幂次函数和反双曲正弦函数的组合,提高了系统状态的趋近速度并且平滑和限制了抖振现象,可实现控制车辆平顺快速跟踪参考轨迹。在Simulink软件上搭建了车辆运动学模型并进行轨迹跟踪仿真实验,通过与双幂次趋近律滑模控制进行对比验证了控制效果。仿真实验结果表明,相对于双幂次趋近律滑模控制,提出的趋近律滑模控制的车辆能更快地跟踪到参考轨迹,横向和纵向误差收敛速度明显增快,航向角抖振现象减弱,系统具有更快的趋近速度,并且抖振现象被削弱。  相似文献   

15.
针对高地隙喷雾机在自主导航作业中因侧滑影响而导致轨迹跟踪精度降低的问题,提出一种基于四轮独立驱动(4WID)高地隙无人喷雾机的自适应控制方法。首先,建立4WID高地隙喷雾机的运动学模型;然后基于运动学几何约束和速度约束,引入两个表征侧滑效应的参数构建改进位姿误差模型;最后将参数自适应与反步控制方法结合,设计自适应控制律实时估计并补偿侧滑效应。以典型的U形作业路径为例,在考虑和不考虑侧滑的情况下分别进行了仿真和试验验证。仿真结果表明:本文提出的控制算法在喷雾机出现侧滑的情况下可以保证较高的轨迹跟踪精度;水田试验表明,当喷雾机在常规作业速度3.6km/h时,与不考虑侧滑的轨迹跟踪控制算法相比,喷雾机轨迹跟踪的横向平均绝对误差减小至0.041m,标准差减小至0.059m;纵向平均绝对误差减小至0.018m,标准差减小至0.015m;航向平均绝对误差减小至2.56°,标准差减小至3.57°。  相似文献   

16.
为了解决机器人将农产品从收获场所转移到仓库或运输车辆存在的移动轨迹和作业轨迹相对独立且耗时长的问题,本文设计一种物料移运机器人,并提出一种物料移运机器人协同作业时间最优轨迹规划方法,获得机器人作业系统和行驶系统协同作业的时间最优轨迹。该方法建立机器人协同作业的运动学模型和动力学模型,对物料移运机器人开展时间最优轨迹规划,并基于Lyapunov理论设计控制律减少跟踪误差,最后通过Matlab/Simulink和ADAMS联合仿真验证方法的有效性。结果表明,提出的轨迹规划方法可使机器人在抓放料协同作业和避障协同作业中取得平滑且时间最优的运动轨迹,机器人各关节的位移、速度、加速度、力/力矩曲线变化平缓,两履带牵引力满足机器人的要求且可快速稳定跟踪时间最优路径。  相似文献   

17.
智能除草机器人在草坪作业时,易受到外界扰动以及系统不确定性的影响,从而导致轨迹跟踪收敛时间长以及跟踪效果差等问题。因此,设计一种面向轨迹跟踪的自适应快速积分终端滑模控制算法。首先,考虑驱动轮动力学特性以及未建模误差、外界干扰、动静摩擦等不确定性因素,建立除草机器人的动力学模型。然后基于所建立的动力学模型,设计自适应快速积分终端滑模控制器。所提出的控制器结合了快速终端滑模、积分滑模和自适应估计技术的优点,能够实现期望的跟踪性能并抑制控制信号抖动。同时,在不需要明确系统不确定性和外界干扰上界的情况下,可以通过所设计自适应估计项进行实时补偿,提高系统的鲁棒性。最后,通过仿真和试验验证了该方法的有效性。试验结果表明,所设计的控制器能够使跟踪误差在有限时间内快速收敛,并且横向误差绝对值不超过0.097 9 m,纵向误差绝对值不超过0.102 6 m,航向角误差绝对值不超过0.057 8 rad,保证除草机器人准确跟踪作业路径,同时具有较强的鲁棒性。  相似文献   

18.
针对传统PID控制参数难以适应不同曲率半径车道下智能车运行速度变化和RS-540有刷直流伺服电机调速变化的问题,设计了自适应模糊PID算法。首先,建立了电机的数学模型,提高控制精度,在此基础上构建了自适应模糊PID控制器,然后,通过PWM脉冲改变电枢电压的平均值来控制电机转速,再通过低通滤波使速度输出平滑。加入陀螺仪使电机在车道缺线的情况下保持原来的转速,并通过Simulink对电机进行仿真。实验测试表明,模糊PID控制能够较好地控制电机的转速,使智能车沿着车道稳定快速地运行。  相似文献   

19.
为提高多轮轮毂电机驱动车辆动力学综合控制性能,提出了一种基于分层模型的直接横摆力矩控制策略。上层为运动跟踪控制层,设计了基于车轮转角的前馈控制器,对车辆横摆角速度稳态增益进行调节,同时将滑模控制进行改进,设计了滑模条件积分控制器进行反馈控制,使横摆角速度追踪其期望值;下层为转矩优化分配层,基于稳定性优先原则,建立了以减小轮胎负荷率为目标的优化函数,并且将控制分配问题转换为二次规划问题进行求解。依托某型8×8轮毂电机驱动样车进行实车试验,结果表明,在连续转向工况和双移线工况下,所提出的控制策略使车辆最大横摆角速度偏差分别降至理想横摆角速度的6%和9%以内。此外,该策略能够有效控制轮胎负荷率,实现转向行驶时的转矩优化分配,改善了车辆操纵稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号