首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为探究在不同生境条件下农作物的长势,明确并创造农作物的最佳生长条件,本文设计了一套精细监管下的作物长势与生境信息监测系统,对农作物所处生境与作物长势等信息进行探究。系统利用机器视觉、物联网等技术,完成了作物病虫害识别与生境信息监测等功能,有助于农作物的增产增收。  相似文献   

2.
为了快速获取棉花长势信息为棉田精准水肥管理提供决策支持,以新疆石河子滴灌棉花为研究对象,利用无人机搭载高光谱成像光谱仪采集了滴灌棉花7个生长日期的光谱信息,地面同步采集样本,共收集了176个样本,构建了30个光谱反射率模型,并筛选出了一种基于无人机冠层高光谱遥感的棉花地上部生物量高效无损监测模型。研究结果表明:滴灌棉花地上部生物量与反射率在0.01水平上显著相关,估算滴灌棉花地上部生物量的最优模型为基于连续投影算法的偏最小二乘法的光谱反射率模型,该模型的校正决定系数为0.7061,均方根误差为0.0198,验正决定系数为0.7168,均方根误差为0.0275,可作为无人机遥感快速、无损估测滴灌棉花地上部生物量的技术手段。本研究旨在为开发实时监测的多光谱仪器提供了理论支持。  相似文献   

3.
无人机是无人驾驶航空飞行器的简称,在农业方面可用于农田信息监测。无人机监测农田信息的覆盖范围广,实效性强且客观准确,具有其它方法无可比拟的优势。计算机视觉是一种新兴的图像分析技术,可以分析无人机拍摄的农田作物图像,其与无人机结合应用符合精准农业的发展趋势。为此,基于计算机视觉建立了一种农田信息获取的无人机系统。无人机拍摄农田图像,由信息检测中心转换为数字信号后发给计算机视觉模块处理,根据颜色特征识别作物种类和长势,并计算各区域面积。试验结果表明:该系统对水稻、小麦和大豆的信息获取相对误差较小,玉米由于植株太高形成遮挡,降低了农田信息获取的准确性。系统从拍摄图像到输出结果的整个过程耗时2s,具有较强的实时性,可以为拓宽无人机在农业中的应用范围提供技术支持。  相似文献   

4.
罗元成  汪应 《农机化研究》2017,(12):205-209
为了克服农作物生长大面积遥感监测精度较低的缺陷,实现作物生长态势的自动化监测,提出了一种基于计算机视觉的自主导航作物生长监测车辆,从而有效地提高了作物生长监测的精度和自动化程度。该型自动化车辆通过导航标定线在田间对作物的生长状况进行实时跟踪监测,采用CCD数字摄像头对作物的生长状况进行图像采集,使用PC机对图像进行处理,并将图像利用通信技术传输到远程监控端,并根据图像特征数据建立了作物长势的监测和预测模型。为了验证其可行性,对作物的长势进行了实地测试,通过对叶面指数和作物生物量预测模型的测试表明:数据模型的实测值和理论值基本吻合,利用该方法可以建立多种作物的长势监测和预测模型,具有推广价值。  相似文献   

5.
机器视觉技术在精细农业中的研究进展   总被引:2,自引:0,他引:2  
精细农业以节约投入、增加产出、提高投入物利用率、减少环境污染为目的.快速、准确地采集各种农田信息,有效地监测农业对象是实施精细农业的重要基础.机器视觉技术由于其非破坏性、精度高、成本效率高、信息量大、灵活等特点,在精细农业中得到了广泛的应用.为此,通过对大量参考文献进行分析,发现机器视觉在精细农业中的主要研究方向集中在农业机械自动导航、作物生长信息检测、变量控制等方面.同时,对机器视觉技术在上述领域中的研究情况进行分析和总结,并讨论了未来机器视觉技术在精细农业中应用存在的问题以及发展前景.  相似文献   

6.
基于无人机遥感的玉米水分利用效率与生物量监测   总被引:1,自引:0,他引:1  
玉米生物量及水分利用效率是反映作物长势和作物品质的重要指标。为实现农业精准管理,本文以不同水分处理的青贮玉米为研究对象,探讨无人机多光谱遥感平台结合作物生长模型估测青贮玉米生物量及水分利用效率的可行性。首先,将基于高时空分辨率无人机多光谱图像估测的关键作物参数蒸腾系数kt输入到简单的水分效率模型中,来拟合不同水分胁迫处理下玉米水分利用效率WUE和标准化水分利用效率WP*;然后,采用拟合的WUE、WP*估算相同水分和不同水分状况下的玉米生物量,并进行验证;基于高时空分辨的无人机多光谱遥感图像获取了大田尺度上的WUE、WP*和生物量的空间分布图。结果表明,基于无人机多光谱、气象和土壤水分数据计算的实际蒸腾量∑Tc,adj和∑ktkswkst(ksw、kst为环境胁迫因子)与玉米生物量具有极显著(P<0.001)的相关性,不同水分处理下WUE的决定系数R2均不小于0.92,WP*的R2均不小于0.93。在同一水分胁迫下,使用拟合的WUE和WP*对生物量的估测精度几乎相同,玉米V-R4生育期估测精度较高,WUE的RMSE为126g/m2,WP*的RMSE为91.7g/m2,一致性指数d均为0.98,但在R5-R6生育期内精度不高。在不同水分胁迫下,使用WUE和WP*估测生物量时,WUE容易受到水分胁迫影响,精度较低(RMSE为306g/m2,d=0.93),而WP*的精度较高(RMSE为195g/m2,d=0.97)。研究表明,将无人机遥感平台与作物生长模型相结合能够很好地估测大田玉米生物量及水分利用效率。  相似文献   

7.
基于机器视觉的番茄长势信息无损检测的研究   总被引:1,自引:0,他引:1  
提出了利用机器视觉的方法在复杂自然条件环境下对番茄的茎粗、株高和果实横截面积进行快速测定方法。通过利用CCD获取不同生长周期下番茄的长势信息,采用中值滤波方法对图像进行预处理;采用基于rg颜色因子的Otsu自动阈值分割法来提取目标区域。同时,通过相关性分析建立作物长势参数与目标图像特征值的拟合函数,实现了番茄长势信息的有效获取。试验结果表明:对番茄茎粗的检测在幼苗期、开花坐果期、结果期的相对误差分别为1.73%~4.04%,0.64%~4.42%,0.46%~4.78%;株高和果实横截面积检测的相对误差分别为1.2%~6.5%,0.8%~3.1%。  相似文献   

8.
农作物的苗期生长是一个复杂的生理生化及代谢过程,苗期的生长发育直接影响到作物的生物产量、经济产量、营养品质及其安全性。农作物苗期长势监测对于作物肥水管理、病虫害防治具有指导作用,是精细农业和数字农业的关键技术之一。该文从农作物苗期生长形态检测、营养组分检测和病虫害诊断3个方面,详细阐述了各种无损检测技术,如机器视觉技术、激光漫反射技术、荧光测量技术和反射光谱分析技术等在作物苗期长势监测中的应用进展。国内外学者对上述技术进行了较深入的理论方法研究,部分技术已在实践中得到广泛应用,但目前作物无损检测技术大多强调单一信息的获取及分析,随着数字农业和智慧农业的发展,未来将更加强调多源、多尺度数据的获取及形态、养分、病虫害综合信息的提取。作物苗期长势的监测数据将与精准农业的联系更加紧密,为农事操作提供传感信息,形成智能化的农业施工、调优栽培与管理决策系统。   相似文献   

9.
计算机技术的快速发展推动了现代控制技术在设施农业中的应用。为此,综述了国内外将机器视觉技术用于植物生长信息检测的研究进展,认为通过机器视觉技术获取作物生长信息,结合现代智能控制策略及先进的调控设施研究植物的生理特性,可为作物提供理想的生长环境,提高作物的产量、质量与经济效益,是极具时代意义的研究领域。  相似文献   

10.
基于无人机高光谱长势指标的冬小麦长势监测   总被引:5,自引:0,他引:5  
为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R~2、RMSE和NRMSE分别是0. 716 4、0. 096 3、15. 90%。  相似文献   

11.
油菜生物量是喂入量和作业质量的主要影响因素,高效、快速地检测油菜生物量是实现油菜收获机自动控制的基础和前提。为研究收获期油菜生物量的影响因素和分布规律,首先利用无人机采集联合收获期油菜的田间可见光图像并实测油菜的生物量信息,提取并构建与油菜生物量有关的32个特征参数,通过相关性分析筛选出与油菜生物量相关性较高的10个显著特征;分别建立基于随机森林(Random forest,RF)、主成分分析(Principal component analysis,PCA)和支持向量机(Support vector machine,SVM)的联合收获期油菜生物量估算模型;利用训练集确定模型参数并优化,利用测试集估算油菜生物量,验证估算模型的性能并比较精度。结果表明:3种模型的评价指标均方根误差(RMSE)、相对误差(RE)和决定系数(R2)分别为0.24 kg/m2、0.04%~22.23%、0.87,0.36 kg/m2、0.92%~21.14%、0.71和0.26 kg/m2、0.28%~34.17%、0.84;对比估算结果可知,基于随机森林的估算模型的RMSE小于PCA和SVM模型,决定系数R2最大且相对误差较小,模型精度和稳定性较优,是估算联合收获期油菜生物量一种较优的方法。基于可见光图像特征和随机森林的油菜生物量估算方法可为油菜联合收割机喂入量自动检测提供方法和参考。  相似文献   

12.
为了研究不同施肥制度对设施生菜长势及产量的影响,将样本分为氮磷钾重度缺失、中度缺失、轻度缺失、正常及过量施用13个处理.在整个生育期利用机器视觉技术连续获取生菜冠层主视及俯视图像,提取与生菜长势显著相关的冠幅投影面积、冠幅周长及株高信息.利用灰色系统理论,研究生菜养分质量分数、长势及产量三者间的灰色关系.不同营养对生菜长势影响从大到小依次为氮,磷,钾,进一步分析了不同施氮条件下,生菜体内的磷钾质量分数及产量的变化规律,当产量达到最大时,氮磷钾3种元素质量分数分别为4.83%,0.63%和2.82%,且氮磷钾元素间存在一定协同交互作用.结合环境信息和生菜“慢-快-慢”的S型生长规律,建立了3个生长时期的养分质量分数与长势关系模型,为指导设施生菜科学施肥,高产栽培提供依据和理论指导.  相似文献   

13.
设施农业具有可控的环境条件,可以通过工程技术手段实现作物的高效生产。大棚是设施农业的重要形式,能够显著提高作物的抗灾减灾和反季节生产能力。大棚作物的生长状况反映出大棚生产管理的效果,并作为农艺操作和产量预测的依据。为此,开发了通过计算机视觉分析大棚作物的植株颜色和发育阶段等生长信息的方法,利用专家系统挖掘视觉分析数据,评判作物的生长状况,预测后续生长趋势和最终产量。大棚黄瓜的试验结果表明:基于计算机视觉的数据挖掘可以准确评判黄瓜的生长状况,较为准确地预测成熟时期和最终产量,提高了大棚生产的智能化水平。  相似文献   

14.
农田监测可以获取作物的生长状态,是农艺管理操作的依据。传统的农田监测由人工完成,效率和准确性较低,无法满足现代化农业的要求。以无人机为平台的遥感技术应用于农田信息监测中,能有效地解决这个问题。高光谱遥感具有连续的光谱,通过光谱分析可以得到农田作物的完整信息。为此,设计了基于无人机光谱分析的农田监测系统,利用无人机搭载的光谱仪拍摄水稻田的高光谱影像,基于多个光谱参数建立估算叶绿素含量(SPAD)的回归模型。结果表明:4个光谱参数与建模样本SPAD值的回归分析都达到显著水平,以DR 526和SD y建立的模型精确度较高。综合考虑决定系数和斜率值,将SD y作为文中SPAD值的最佳估算参数,可为精准农业的发展提供技术支撑。  相似文献   

15.
作物生长信息智能监测方法研究进展   总被引:1,自引:0,他引:1  
作物营养信息智能监测是数字农业的研究方向之一。随着计算机技术、图像处理技术、光谱技术的发展,基于现代技术的智能诊断方法正在逐渐兴起。为此,介绍了作物生长信息智能监测中机器视觉技术和光谱技术的理论基础、国内外研究现状、发展趋势及关键技术,讨论了作物营养信息智能监测的前景。  相似文献   

16.
为准确估算森林采伐生物量实现森林碳汇的精准计量,针对采用单一时相可见光无人机影像估算高郁闭度森林采伐生物量较困难的问题,基于伐区采伐前后多时相可见光无人机影像,研究森林采伐生物量高精度的估算方法。以福建省闽侯白沙国有林场一个针叶林采伐小班为试验区,采集分辨率优于10 cm的采伐前后多时相可见光无人机影像,采用动态窗口局部最大值法得到高精度的采伐株数与单木树高信息,再基于采伐后无人机影像,运用YOLO v5方法检测并提取伐桩直径信息,根据胸径-伐桩直径模型来估算采伐木胸径信息,再利用树高和胸径二元生物量公式估算采伐生物量,以实测数据进行验证。根据动态窗口局部最大值法获取株数与平均树高精度分别为96.35%、99.01%,运用YOLO v5方法对伐桩目标检测的总体精度为77.05%,根据伐桩直径估算的平均胸径精度为90.14%,最后得到森林采伐生物量精度为83.08%,结果表明这一新方法具备较大的应用潜力。采用采伐前后多时相无人机可见光遥感,可实现森林采伐生物量的有效估算,有助于降低人工调查成本,为政府及有关部门进行碳汇精准计量提供有效的技术支持。  相似文献   

17.
正无人机在农业上的应用有以下几个方面:有效预估作物产量,诊断农作物营养状况,有效监控病虫害,监督作物长势。完成农药的喷洒,种子、化肥的撒播等作业。无人机传感器检测到农作物的长势,传感器通过RF将信息发射给无人机,无人机将信息传递给信息中心,决策者获得信息后立即做出正确的部署,从而加强作物田间管理。一、成武县无人机技术在农业生产上的现状成武县地处黄淮平原,位于鲁西南菏泽市的东南部。境内属温带季风气候,农业人口55.4万,耕地面积106万亩。粮食作物主要以小麦、玉米轮作  相似文献   

18.
采用机器视觉可以实时监测作物长势,然而由于受到复杂背景和变化光照的影响,田间小麦图像叶尖生长点提取难度较大,因此本文提出一种基于深度信息进行区域生长来分割图像并提取小麦叶尖生长点的图像处理方法。首先,根据作物颜色特征去除背景,采用Canny算子检测小麦边缘,然后通过双目视觉技术,获取视差图;然后根据深度信息赋予不同的灰度值,并通过灰度阈值分割仅保留前排小麦深度图,以前排小麦深度图为种子点进行区域生长,得到前排小麦图像;最后检测小麦深度图叶尖,并将其作为初始位置,查找彩色图像前排小麦真实叶尖。结果表明该方法提取准确率为75%,能有效克服复杂背景和纹理的影响,满足应用需求,为植株生长监测提供技术支撑。  相似文献   

19.
在自然光条件下,利用计算机图像处理技术对温室黄瓜幼苗的生长信息进行了检测研究。提取作物的外部形态特征:叶片颜色和仰角,在RGB和HIS颜色模型下,分析了土壤水分含量与各颜色分量、叶片仰角之间的相关性。结果表明:土壤的水分含量与叶片的仰角、G分量和H分量有很好的相关性,决定系数分别达到0.9187、0.8404和0.8822,可作为利用机器视觉检测黄瓜植株生长信息的指标。该研究对于提高温室的智能化控制水平具有重要的意义。  相似文献   

20.
机器视觉在农业车辆导航系统中的研究进展   总被引:5,自引:2,他引:3  
机器视觉是农业自动车辆获得导航信息的一种方式,其基本任务是从图像中识别出作物行,然后提取作物线。目前有两种分析图像的模式:基于2D图像信息的边缘特征分析法,基于1D灰度信息的特征分析法。综述了国内外在这个领域的研究进展,并提出一些符合我国农业现代化发展趋势的机器视觉研究思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号