首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tomato pectinmethylesterase (PME) was successfully purified by a two-step method consisting of affinity chromatography followed by cation exchange chromatography. According to this procedure, four different isoenzymes were identified representing molar masses around 34.5-35.0 kDa. Thermal and high-pressure inactivation kinetics of the two major isoenzymes of tomato PME were studied. A striking difference between their process stability was found. The thermostable isoenzyme was completely inactivated after 5.0 min at 70 degrees C, whereas for the thermolabile isoenzyme, temperatures at around 60 degrees C were sufficient for complete inactivation. The thermostable isoenzyme was also found to be pressure stable since no inactivation was observed after 5.0 min of treatment at 800 MPa and 20 or 40 degrees C. The thermolabile isoenzyme appeared to be pressure labile since it could be completely inactivated after 5.0 min of treatment at 700 MPa and 20 degrees C or 650 MPa and 40 degrees C. Inactivation kinetics at pH 6.0 could be accurately described by a first-order model.  相似文献   

2.
Soybean lipoxygenase (LOX) inactivation [0.4 mg/mL in Tris-HCl buffer (0.01 M, pH 9)] was studied quantitatively under constant pressure (up to 650 MPa) and temperature (-15 to 68 degrees C) conditions and kinetically characterized by rate constants, activation energies, and activation volumes. The irreversible LOX inactivation followed a first-order reaction at all pressure-temperature combinations tested. In the entire pressure-temperature area studied, LOX inactivation rate constants increased with increasing pressure at constant temperature. On the contrary, at constant pressure, the inactivation rate constants showed a minimum around 30 degrees C and could be increased by either a temperature increase or decrease. On the basis of the calculated rate constants at 102 pressure-temperature combinations, an iso-rate contour diagram was constructed as a function of pressure and temperature. The pressure-temperature dependence of the LOX inactivation rate constants was described successfully using a modified kinetic model of Hawley.  相似文献   

3.
The combined high pressure/thermal (HP/T) inactivation of tomato pectin methyl esterase (PME) and polygalacturonase (PG) was investigated as a possible alternative to thermal processing classically used for enzyme inactivation. The temperature and pressure ranges tested were from 60 degrees C to 105 degrees C, and from 0.1 to 800 MPa, respectively. PME, a heat-labile enzyme at ambient pressure, is dramatically stabilized against thermal denaturation at pressures above atmospheric and up to 500-600 MPa. PG, however, is very resistant to thermal denaturation at 0.1 MPa, but quickly and easily inactivated by combinations of moderate temperatures and pressures. Selective inactivation of either PME or PG was achieved by choosing proper combinations of P and T. The inactivation kinetics of these enzymes was measured and described mathematically over the investigated portion of the P/T plane. Whereas medium composition and salinity had little influence on the inactivation rates, PME was found less sensitive to both heat and pressure when pH was raised above its physiological value. PG, on the other hand, became more labile at higher pH values. The results are discussed in terms of isoenzymes and other physicochemical features of PME and PG.  相似文献   

4.
The Brassicaceae plant family contains high concentrations of glucosinolates, which can be hydrolyzed by myrosinase yielding products having an anticarcinogenic activity. The pressure and temperature stabilities of endogenous broccoli myrosinase, as well as of the synthetic isothiocyanates sulforaphane and phenylethyl isothiocyanate, were studied in broccoli juice on a kinetic basis. At atmospheric pressure, kinetics of thermal (45-60 degrees C) myrosinase inactivation could be described by a consecutive step model. In contrast, only one phase of myrosinase inactivation was observed at elevated pressure (100-600 MPa) combined with temperatures from 10 up to 60 degrees C, indicating inactivation according to first-order kinetics. An antagonistic effect of pressure (up to 200 MPa) on thermal inactivation (50 degrees C and above) of myrosinase was observed indicating that pressure retarded the thermal inactivation. The kinetic parameters of myrosinase inactivation were described as inactivation rate constants (k values), activation energy (Ea values), and activation volume (Va values). On the basis of the kinetic data, a mathematical model describing the pressure and temperature dependence of myrosinase inactivation rate constants was constructed. The stability of isothiocyanates was studied at atmospheric pressure in the temperature range from 60 to 90 degrees C and at elevated pressures in the combined pressure-temperature range from 600 to 800 MPa and from 30 to 60 degrees C. It was found that isothiocyanates were relatively thermolabile and pressure stable. The kinetics of HP/T isothiocyanate degradation could be adequately described by a first-order kinetic model. The obtained kinetic information can be used for process evaluation and optimization to increase the health effect of Brassicaceae.  相似文献   

5.
The kinetics of lipoxygenase (LOX) inactivation in green beans due to high-pressure treatment were studied in the pressure-temperature area of 0.1 up to 650 MPa and -10 up to 70 degrees C for systems with different levels of food complexity, i.e., in green bean juice and intact green beans (in situ study). For both systems, LOX was irreversibly inactivated by high-pressure treatment combined with subzero and elevated temperatures and the inactivation could be described as a first-order reaction. At ambient pressure, in situ LOX was less thermostable than in the juice at temperatures below 68 degrees C whereas the stability ranking was reverse at temperatures above 68 degrees C. At temperatures below 63 degrees C, sensitivity of the inactivation rate constants to temperature changes was on the same order of magnitude in the juice and in situ, while at higher temperature it was lower in situ. The pressure needed to obtain the same rate of LOX inactivation at a given temperature was lower in situ than in the juice. Application of high-pressure treatment at low/subzero temperature resulted in an antagonistic effect on LOX inactivation for both systems, whereas no such effect was found above room temperature. The pressure-temperature dependence of the LOX inactivation rate constants in green beans was successfully modeled.  相似文献   

6.
Thermal inactivation kinetics have been determined for pectin methylesterase (PME), polygalacturonase (PG), and peroxidase (POD) in tomato juice. Two parameters, the inactivation rate constant (k) at a reference temperature and the activation energy for inactivation (E(a)), were determined for each enzyme. For PME and PG, the k and E(a) values reported here do not agree with those in several previously published reports. These differences can be explained either by the differences in pH values used for inactivation determinations or by inadequacies in the heating methods used in some previous studies. POD showed simple first-order inactivation kinetics and was less thermally stable than either PME or PG. When different cultivars of tomatoes were evaluated, there was no difference in the thermal inactivation kinetics of these enzymes.  相似文献   

7.
Pectin methylesterase (PME) was extracted from bananas and purified by affinity chromatography. The thermal-high-pressure inactivation (at moderate temperature, 30-76 degrees C, in combination with high pressure, 0.1-900 MPa) of PME was investigated in a model system at pH 7.0. Under these conditions, the stable fraction was not inactivated and isobaric-isothermal inactivation followed a fractional-conversion model. At lower pressure (< or =300-400 MPa) and higher temperature (> or =64 degrees C), an antagonistic effect of pressure and heat was observed. Third-degree polynomial models (derived from the thermodynamic model) were successfully used to describe the heat-pressure dependence of the inactivation rate constants.  相似文献   

8.
Two major superoxide dismutases (SODs; SODs I and II) were found in the crude enzyme extract of wheat seedlings after heat treatment, ammonium sulfate fractionation, anionic exchange chromatography, and gel permeation chromatography. The purification fold for SODs I and II were 154 and 98, and the yields were 11 and 2.4%, respectively. SOD I was further characterized. It was found that SOD I from wheat seedlings is a homodimer, with a subunit molecular mass of 23 kDa. Isoelectric focusing electrophoresis (IEF) and zymogram staining results indicated that the isoelectric point of SOD I is 3.95. It belongs to the MnSOD category due to the fact that it was insensitive to KCN or hydrogen peroxide inhibitor. This MnSOD from wheat seedlings was found to be stable over pH 7-9, with an optimum pH of 8, but was sensitive to extreme pH, particularly to acidic pH. It was stable over a wide range of temperatures (5-50 degrees C). Thermal inactivation of wheat seedling MnSOD followed first-order reaction kinetics, and the temperature dependence of rate constants was in agreement with the Arrhenius equation. The activation energy for thermal inactivation of wheat seedling MnSOD in the temperature range of 50-70 degrees C was found to be 150 kJ/mol. HgCl2 and SDS at a concentration of 1.0 mM significantly inhibited enzyme activity. Chemical modification agents, including diethyl pyrocarbonate (2.5 mM) and Woodward's reagent K (50 mM), significantly inhibited the activity of wheat seedling SOD, implying that imidazole groups from histidine and carboxyl groups from aspartic acid and glutamic acid are probably located at or near the active site of the enzyme.  相似文献   

9.
Soy foods contain significant health-promoting components but also may contain beany flavor and trypsin inhibitor activity (TIA), which can cause pancreatic disease if present at a high level. Thermal processing can inactivate TIA and lipoxygenase. Ultrahigh-temperature (UHT) processing is relatively new for manufacturing soy milk. Simultaneous elimination of TIA and soy odor by UHT processing for enhancing soy milk quality has not been reported. The objective was to determine TIA in soy milk processed by traditional, steam injection, blanching, and UHT methods and to compare the products with commercial soy milk products. Soybean was soaked and blanched at 70-85 degrees C for 30 s-7.5 min. The blanched beans were made into base soy milk. The hexanal content of the base soy milk was determined by gas chromatography to determine the best conditions for further thermal processing by indirect and direct UHT methods at 135-150 degrees C for 10-50 s using the Microthermics processor. Soy milk was also made from soaked soybeans by traditional batch cooking and steaming methods. Eighteen commercial products were selected from the supermarket. Residual TIA in soy milk processed by the traditional and steam injection to 100 degrees C for 20 min was approximately 13%. Blanching could inactivate 25-50% of TIAs of the raw soy milk. The blanch conditions of 80 degrees C and 2 min were selected for UHT processing because these conditions produced blanched soy milk without hexanal, indicating a complete heat inactivation of lipoxygenases. The TIA decreased with increased temperature and time of UHT heating. The maximal trypsin inhibitor inactivation was achieved by UHT direct and indirect methods with residual activities of approximately 10%. Some commercial soy milk products contained high TIAs. The results are important to the food industry and consumers. Kinetic analysis showed that heat inactivation (denaturation) of TIA, under the continuous processing conditions of the Microthermics processor, followed first-order reaction kinetics, and the activation energy of the inactivation was 34 kJ/mol.  相似文献   

10.
Pressure and/or temperature inactivation of orange pectinesterase (PE) was investigated. Thermal inactivation showed a biphasic behavior, indicating the presence of labile and stable fractions of the enzyme. In a first part, the inactivation of the labile fraction was studied in detail. The combined pressure-temperature inactivation of the labile fraction was studied in the pressure range 0.1-900 MPa combined with temperatures from 15 to 65 degrees C. Inactivation in the pressure-temperature domain specified could be accurately described by a first-order fractional conversion model, estimating the inactivation rate constant of the labile fraction and the remaining activity of the stable fraction. Pressure and temperature dependence of the inactivation rate constants of the labile fraction was quantified using the Eyring and Arrhenius relations, respectively. By replacing in the latter equation the pressure-dependent parameters (E(a), k(ref)(T)()) by mathematical expressions, a global model was formulated. This mathematical model could accurately predict the inactivation rate constant of the labile fraction of orange PE as a function of pressure and temperature. In a second part, the stable fraction was studied in more detail. The stable fraction inactivated at temperatures exceeding 75 degrees C. Acidification (pH 3.7) enhanced thermal inactivation of the stable fraction, whereas addition of Ca(2+) ions (1 M) suppressed inactivation. At elevated pressure (up to 900 MPa), an antagonistic effect of pressure and temperature on the inactivation of the stable fraction was observed. The antagonistic effect was more pronounced in the presence of a 1 M CaCl(2) solution as compared to the inactivation in water, whereas it was less pronounced for the inactivation in acid medium.  相似文献   

11.
Pectinmethylesterase of navel oranges shows two fractions greatly differing in thermostability. The most thermostable fraction accounts for approximately 10% of total activity. The thermal inactivation of this fraction follows first-order kinetics both in 5 mM, pH 3.5, citrate buffer and in orange juice at the same pH, showing a z value of 5.1 degrees C and an activation energy (E(a)) of 435 kJ mol(-)(1) K(-)(1). The heat resistance of the enzyme is approximately 25-fold higher in the juice than in citrate buffer. When ascorbic acid, sucrose, glucose, and fructose are added to the citrate buffer at the concentrations found in orange juice, the heat resistance of the enzyme increases 3-fold. The addition of pectin at 0.01% concentration multiplies it by a factor of 50. Manothermosonication (MTS), the simultaneous application of heat and ultrasound under moderate pressure (200 kPa), at 72 degrees C, increases the inactivation rate 25 times in buffer and >400 times in orange juice. MTS inactivation shows a higher z value (35.7 degrees C) and lower E(a) (56.9 kJ mol(-)(1) K(-)(1)) than simple heating.  相似文献   

12.
The reaction kinetics of two heat damage indices, HMF and furosine, were examined in four tomato products with different dry matter contents (10.2, 25.5, 28.6, and 34.5%) over a temperature-time range of 80-120 degrees C and 0-255 min. The reactions followed pseudo-zero order kinetics. E(a) and z-value were, respectively, 139. 9 kJ/mol and 19.2 degrees C for HMF, and 93.9 kJ/mol and 28.4 degrees C for furosine. The analyses of both indices in several samples of commercial and industrial tomato products showed very low levels of HMF (from 1 to 42 ppm) and a lack of correlation between HMF and furosine mainly because of the different evolution of the two indices during storage. The HMF level of a tomato paste sample stored at 25 degrees C decreased from 609 to 17 ppm after 98 days, while furosine increased from 458 to 550 mg/100 g of protein.  相似文献   

13.
Polyphenol oxidase (PPO) of garland chrysanthemum (Chrysanthemum coronarium L.) was purified approximately 32-fold with a recovery rate of 16% by ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme appeared as a single band on PAGE and SDS-PAGE. The molecular weight of the enzyme was estimated to be about 47000 and 45000 by gel filtration and SDS-PAGE, respectively. The purified enzyme quickly oxidized chlorogenic acid and (-)-epicatechin. The K(m) value (Michaelis constant) of the enzyme was 2.0 mM for chlorogenic acid (pH 4.0, 30 degrees C) and 10.0 mM for (-)-epicatechin (pH 8.0, 40 degrees C). The optimum pH was 4.0 for chlorogenic acid oxidase (ChO) and 8.0 for (-)-epicatechin oxidase (EpO). In the pH range from 5 to 11, their activities were quite stable at 5 degrees C for 22 h. The optimum temperatures of ChO and EpO activities were 30 and 40 degrees C, respectively. Both activities were stable at up to 50 degrees C after heat treatment for 30 min. The purified enzyme was strongly inhibited by l-ascorbic acid and l-cysteine at 1 mM.  相似文献   

14.
The activity of tomato pectinesterase (PE) was studied as a function of pressure (0.1-900 MPa) and temperature (20-75 degrees C). Tomato PE was rather heat labile at atmospheric pressure (inactivation in the temperature domain 57-65 degrees C), but it was very pressure resistant. Even at 900 MPa and 60 degrees C the inactivation was slower as compared to the same treatment at atmospheric pressure. At atmospheric pressure, optimal catalytic activity of PE was found at neutral pH and a temperature of 55 degrees C. Increasing pressure up to 300 MPa increased the enzyme activity as compared to atmospheric pressure. A maximal enzyme activity was found at 100-200 MPa combined with a temperature of 60-65 degrees C. The presence of Ca(2+) ions (60 mM) decreased the enzyme activity at atmospheric pressure in the temperature range 45-60 degrees C but increased enzyme activity at elevated pressure (up to 300 MPa). Maximal enzyme activity in the presence of Ca(2+) ions was noted at 200-300 MPa in combination with a temperature of 65-70 degrees C.  相似文献   

15.
The activity of microbial transglutaminase (MTG) and the corresponding secondary structure, measured by circular dichroism (CD), was analyzed before and after treatment at different temperatures (40 and 80 degrees C) and pressures (0.1, 200, 400, 600 MPa). Irreversible enzyme inactivation was achieved after 2 min at 80 degrees C and 0.1 MPa. Enzyme inactivation at 0.1, 200, 400, and 600 MPa and 40 degrees C followed first-order kinetics. The enzyme showed residual activity of 50% after 12 min at 600 MPa and 40 degrees C. Mobility of aromatic side chains of the enzyme molecule was observed in all temperature- and/or pressure-treated samples; however, high-pressure treatment at 600 MPa induced a loss of tertiary structure and a significant decrease in the alpha-helix content. The relative content of beta-strand substructures was significantly increased after 30 min at 600 MPa and 40 degrees C or 2 min at 0.1 MPa and 80 degrees C. We conclude that the active center of MTG, which is located in an expanded beta-strand domain, is resistant to high hydrostatic pressure and pressure-induced inactivation is caused by destruction of alpha-helix elements with a corresponding influence on the enzyme stability in solution.  相似文献   

16.
Kinetics of maneb degradation during thermal treatment of tomatoes   总被引:1,自引:0,他引:1  
The kinetics of maneb degradation in tomato homogenates at high temperatures and at two pH values (4 and 9) and the rate of formation of the toxic metabolite, ethylenethiourea (ETU), were studied. Maneb was measured as carbon disulfide by headspace gas-chromatography and ETU by high-performance liquid chromatography with photodiode array detection. First-order kinetics adequately described the degradation of maneb in tomato homogenates. The degradation rate constants exhibited an Arrhenius temperature dependence in the range from 50 to 90 degrees C and the apparent activation energy (E(a)) was calculated to be 36 KJ mol(-1) in homogenates with natural pH (4). Raising temperature from 60 to 75 and to 90 degrees C, ETU formation was significantly increased. Interestingly, the selectivity toward ETU showed a downward trend when the total conversion increased at longer heating times. When the pH of the tomato homogenates was adjusted to 9, the degradation of maneb proceeded faster at both 60 and 90 degrees C. The combination of alkaline pH and the highest temperature (90 degrees C) resulted in the maximum ETU conversion rates. The results of the present study on the fate of maneb and ETU residues during tomato processing, may prove valuable in estimating potential risk from dietary exposure.  相似文献   

17.
Malted cereals are rich sources of alpha-amylase, which catalyzes the random hydrolysis of internal alpha-(1-4)-glycosidic bonds of starch, leading to liquefaction. Amylases play a role in the predigestion of starch, leading to a reduction in the water absorption capacity of the cereal. Among the three cereal amylases (barley, ragi, and jowar), jowar amylase is found to be the most thermostable. The major amylase from malted jowar, a 47 kDa alpha-amylase, purified to homogeneity, is rich in beta structure ( approximately 60%) like other cereal amylases. T(m), the midpoint of thermal inactivation, is found to be 69.6 +/- 0.3 degrees C. Thermal inactivation is found to follow first-order kinetics at pH 4.8, the pH optimum of the enzyme. Activation energy, E(a), is found to be 45.3 +/- 0.2 kcal mol(-)(1). The activation enthalpy (DeltaH), entropy (DeltaS*), and free energy change (DeltaG) are calculated to be 44.6 +/- 0.2 kcal mol(-)(1), 57.1 +/- 0.3 cal mol(-)(1) K(-)(1), and 25.2 +/- 0.2 kcal mol(-)(1), respectively. The thermal stability of the enzyme in the presence of the commonly used food additives NaCl and sucrose has been studied. T(m) is found to decrease to 66.3 +/- 0.3, 58.1 +/- 0.2, and 48.1 +/- 0.5 degrees C, corresponding to the presence of 0.1, 0.5, and 1 M NaCl, respectively. Sucrose acts as a stabilizer; the T(m) value is found to be 77.3 +/- 0.3 degrees C compared to 69.6 +/- 0.3 degrees C in the control.  相似文献   

18.
Destabilization of thermostable polyphenol oxidase (TS-PPO) during the ripening of peaches has been previously shown (Yemenicio?lu, A.; Cemero?lu, B. Tr. J. Agric. For. 1998, 22, 261-265). This work studied the effect of ripening on thermal stability of apricot PPO for three different cultivars. Kabaa?i cultivar contained thermolabile PPO, whereas TS-PPO appeared in Hacihalilo?lu and Catalo?lu cultivars. The TS-PPO showed biphasic inactivation curves, and its D and z values between 60 and 90 degrees C varied in the ranges of 357-1.12 min and 11.9-12.7 degrees C, respectively. In Hacihalilo?lu cultivar the TS-PPO was very consistent and existed at all stages of ripening, whereas in Catalo?lu cultivar it appeared only at the half-ripe stage. The loss of consistent TS-PPO in Hacihalilo?lu apricots after partial purification by acetone precipitation and DEAE-cellulose chromatography suggested the non-covalent nature of its stabilization. The main purified fractions (F1 and F2) showed monophasic inactivation curves with similar thermal inactivation parameters (z(F1) = 10.4 degrees C, z(F2) = 10.1 degrees C). However, their kinetic properties against catechol (K(mF1) = 61 mM, K(mF2) = 122.7 mM) and substrate specificities were considerably different. The results of this study showed the presence of TS-PPO forming and destabilizing mechanisms in apricots. Further studies are needed for the solution of these mechanisms and to develop some new strategies that may be utilized by molecular techniques for a planned production of apricot cultivars provided with heat labile but normal PPO activity.  相似文献   

19.
The kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase (PPO) in an aqueous extract from mushroom Agaricus bisporus (J.E. Lange) Imbach was studied, using pyrocatechol as a substrate. Optimal conditions for enzymatic studies were determined to be pH 7.0 and 35-40 °C. The kinetics of PPO-catalyzed oxidation of pyrocatechol followed the Haldane model with an optimum substrate concentration of 20 mM. Thermal inactivation of PPO was examined in more detail between 50 and 73 °C and in relation to exposure time. Obtained monophasic kinetics were adequately described by a first-order model, with significant inactivation occurring with increasing temperature (less than 10% preserved activity after 6 min at 65 °C). Arrhenius plot determination and calculated thermodynamic parameters suggest that the PPO in aqueous extract from Agaricus bisporus mushroom is a structurally robust yet temperature-sensitive biocatalyst whose inactivation process is mainly entropy-driven.  相似文献   

20.
The influence of pH, calcium ion activity, protein, and enzyme purification on the kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied in the temperature range 80-120 degrees C. At pH 5.5-8.6 the rate of inactivation increased slightly with increasing pH values. The pH dependence of inactivation suggests that the inactivation mechanism is mainly through deamidation. Calcium ion activity had no influence on the kinetics of heat inactivation of the proteinase. Addition of 1.8% sodium caseinate to the enzyme solution slightly decreased the heat stability of the proteinase, possibly because part of the inactivation of the proteinase is caused by aggregation to casein. Purification of the proteinase did not change the rate of thermal inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号