首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbohydrate (CHO) stored in the form of skeletal muscle glycogen is the main energy source for glycolytic and oxidative ATP production during vigorous exercise in mammals. In man, horse and dog both short‐term high intensity and prolonged submaximal exercise deplete muscle glycogen. In horses, however, muscle glycogen synthesis is 2–3‐fold slower than in man and rat, even when a diet high in soluble CHO is fed. There appear to be significant differences in CHO and glycogen metabolism between horses and other mammals, and it is becoming increasingly clear that many conclusions drawn from human exercise physiology do not apply to horses. This review aims to provide a comprehensive, comparative summary of the research on muscle glycogen synthesis in horse, man and rodent. Species differences in CHO uptake and utilisation are examined and the issues with feeding high soluble CHO diets to horses are discussed. Alternative feeding strategies, including protein and long and short chain fatty acid supplementation and the importance of rehydration, are explored.  相似文献   

2.
3.
The aim of this study was to determine whether the glycaemic/insulinaemic responses to hay with non-structural carbohydrate (NSC, soluble carbohydrate) of 17% (HC), 10% (MC) or 4% (LC) differs in control horses and whether these responses differ between control and horses with polysaccharide storage myopathy (PSSM). Five clinically normal control horses and seven PSSM horses, all unfit and of Quarter Horse breeding (age 9.4 ± 3.4 years, body condition score range: 4.5-6). A crossover design compared the HC and LC hay, with horses randomly assigned to hay type for 5 days, and all horses fed the MC hay during washout, after which the diets were switched. Horses were fed 1.5% BW (as fed) divided into 2 feeding per day, no grain. On morning of the fifth day of each block (seventh day for washout), horses were given 0.5% BW in hay, blood was drawn before and every 30 min for 5 h after feeding, and the rate of intake was measured. Whole blood glucose and plasma insulin were measured. The intake rate was significantly higher for HC. In control horses, the insulin area under the curve (6891.7 ± 3524.2 HC vs. 1185.4 ± 530.2 LC) was significantly higher than LC. Polysaccharide storage myopathy horses had significantly higher glycaemic and insulinaemic responses to HC vs. LC, however; the magnitude of insulin response was lower and glucose response higher in PSSM vs. control horses. Results suggest that insulin responses can differ significantly with the NSC content of hay. Feeding hay with 17% NSC produces elevations in insulin that could be detrimental for PSSM horses.  相似文献   

4.
To determine the effect of dietary starch, bicarbonate, and fat content on metabolic responses and serum creatine kinase (CK) activity in exercising Thoroughbreds with recurrent exertional rhabdomyolysis (RER), 5 RER horses were fed 3 isocaloric diets (28.8 Mcal/d [120.5 MJ/d]) for 3 weeks in a crossover design and exercised for 30 minutes on a treadmill 5 days/wk. On the last day of each diet, an incremental standardized exercise test (SET) was performed. The starch diet contained 40% digestible energy (DE) as starch and 5% as fat: the bicarbonate-starch diet was identical but was supplemented with sodium bicarbonate (4.2% of the pellet): and the fat diet provided 7% DE as starch and 20% as fat. Serum CK activity before the SET was similar among the diets. Serum CK activity (log transformed) after submaximal exercise differed dramatically among the diets and was greatest on the bicarbonate-starch diet (6.51 +/- 1.5) and lowest on the fat diet (5.71 +/- 0.6). Appreciable differences were observed in the severity of RER among individual horses. Postexercise plasma pH, bicarbonate concentration, and lactate concentration did not differ among the diets. Resting heart rates before the SET were markedly lower on the fat diet than on the starch diet. Muscle lactate and glycogen concentrations before and after the SET did not differ markedly among the diets. A high-fat, low-starch diet results in dramatically lower postexercise CK activity in severely affected RER horses than does a low-fat, high-starch diet without measurably altering muscle lactate and glycogen concentrations. Dietary bicarbonate supplementation at the concentration administered in this study did not prevent increased serum CK activity on a high-starch diet.  相似文献   

5.
In a switchback experiment, six mature mares were fed a control and a fat-supplemented diet while being exercised in a galloping regimen. After three weeks adaptation to each diet, horses performed an exercise test (ET) consisting of four, 600-m gallops. Muscle biopsies were obtained before and after the ET, and blood samples were taken before, during and throughout recovery from the ET. Resting glycogen concentration in the biceps femoris muscle increased (P<.05) from 15.77 mg/g wet tissue when the horses were fed the control diet to 22.89 mg/g when they were fed the fats-supplemented diet. During the ET, the amount of glycogen mobilized by the muscle increased (P<.05) from 6.99 mg/g when the horses were fed the control diet to 13.09 mg/g when they were fed the fat-supplemented diet. When the horses were fed the fat-supplemented diet, they galloped faster (P<.09), at a constant heart rate, during the last two gallops of the ET. Thus, adapting exercising horses to a fat-supplemented diet increased muscle glycogen concentrations, which appeared to enhance their performance past the anaerobic threshold.  相似文献   

6.
The effect of dietary starch and fat content on serum creatine kinase (CK) activity and substrate availability was evaluated in 4 mares of Quarter Horse-related breeds with polysaccharide storage myopathy (PSSM). Four isocaloric diets ranging in digestible energy (DE) from 21.2% (diet A), 14.8% (B), 8.4% (C), to 3.9% (D) for starch, and 7.2% DE (diet A), 9.9% (B), to 12.7% DE (diet C and D) for fat were fed for 6-week periods (4 weeks with exercise) using a 4 X 4 Latin square design. Postprandial glucose and insulin responses were measured, and 4 hours postexercise, serum CK activity, glucose, insulin, free fatty acids (FFA), and beta-hydroxybutyrate (beta-HBA) were analyzed. Glycogen, glucose-6-phosphate, citrate synthase, 3-hydroxy-acyl-CoA dehydrogenase, lactate dehydrogenase as well as abnormal polysaccharide and lipid content were measured in middle gluteal muscle samples. Postprandial insulin and glucose response was higher for diet A versus D. Log CK activity was higher with diets A, B, and C versus D. Daily insulin was higher and FFA lower on diet A versus B, C, and D, whereas glucose varied only slightly with diet. Muscle oxidative capacity and lipid stores were low in PSSM horses and muscle glycogen and abnormal polysaccharide content high on both diets A and D. Individual variation occurred in the response of PSSM horses to diets differing in starch and fat content. However, for those horses with clinical manifestations of PSSM, a diet with <5% DE starch and >12% DE fat can reduce exertional rhabdomyolysis, potentially by increasing availability of FFA for muscle metabolism.  相似文献   

7.
8.
Fatiguing exercise substantially decreases muscle glycogen concentration in horses, impairing athletic performance in subsequent exercise bouts. Our objective was to determine the effect of ingestion of starch-rich meals after exercise on whole body glucose kinetics and muscle glycogen replenishment. In a randomized, cross-over study seven horses with exercise-induced muscle glycogen depletion were either not fed for 8 h, fed half of the daily energy requirements ( approximately 15 Mcal DE) as hay, or fed an isocaloric amount of corn 15 min and 4 h after exercise. Starch-rich meals fed after exercise, when compared to feed withholding, resulted in mild to moderate hyperglycemia (5.7+/-0.3 vs. 4.7+/-0.3 mM, P<0.01) and hyperinsulinemia (79.9+/-9.3 vs. 39.0+/-1.9 pM, P<0.001), 3-fold greater whole body glucose kinetics (15.5+/-1.4 vs. 5.3+/-0.4 micromol kg(-1)min(-1), P<0.05), but these only minimally enhanced muscle glycogen replenishment (171+/-19 vs. 170+/-56 and 260+/-45 vs. 294+/-29 mmol/kg dry weight immediately and 24 h after exercise, P>0.05). It is concluded that after substantial exercise-induced muscle glycogen depletion, feeding status only minimally affects net muscle glycogen concentrations after exercise, despite marked differences in soluble carbohydrate ingestion and availability of glucose to skeletal muscle.  相似文献   

9.
This study was conducted to examine the influence of varying dietary cation anion difference (DCAD) on nutrient intake, digestibility, ruminal characteristics, blood acid base status and in situ digestion kinetics in Nili Ravi buffalo bulls. Four iso‐nitrogenous and iso‐caloric diets having ?110, +110, +220 and +330 mEq/kg dry matter (DM) DCAD were formulated which were represented by A (anionic), LC (low cationic), MC (medium cationic) and HC (high cationic), respectively. These diets were used in four ruminally cannulated Nili Ravi buffalo bulls in a 4 × 4 Latin Square Design. Improved nutrient intake was recorded at high DCAD levels while digestibility remained unaffected. Ruminal ammonia nitrogen, rumen pH, acetate and acetate : propionate ratio were higher in buffalo bulls fed MC and HC diets than those fed A and LC diets. Blood pH and HCO3 also tended to increase as DCAD level was increased in the diet. Serum Ca and Cl concentrations were higher in bulls fed A and LC diets whereas serum Mg, P and S remained unaffected. Urine pH increased with increasing DCAD level. Nitrogen intake and blood urea nitrogen concentrations were also higher in bulls fed MC and HC diets. There was a consistent increase in ruminal DM and neutral detergent fiber degradability, rate of disappearance and extent of digestion at high DCAD levels in the diet. However, lag time decreased at high DCAD level. This study indicated that buffalo bulls fed MC and HC diets improved feed intake, ruminal characteristics and digestion kinetics.  相似文献   

10.
The effect of feeding diets with low, adequate and high sodium contents on plasma aldosterone concentrations in horses and ponies was evaluated using human immunoassay kits. The effect of moderate to high intensity exercise of up to six minutes duration on plasma aldosterone concentrations in three thoroughbred- horses was also investigated. On an adequate sodium diet plasma aldosterone concentrations increased to a peak around four hours after feeding. Little daily variation was found in the pre-feeding aldosterone concentrations over three days. Feeding additional salt resulted initially in no increase in plasma aldosterone concentrations in three out of four animals. After five days all four animals had lower pre-feeding concentrations, an increase in the magnitude of the response to feeding but a decreased rise in absolute concentration. Feeding a diet with a decreased sodium content for several months did not result in a consistent change in the pre-feeding aldosterone concentrations although there were times when all three animals showed an increase in the magnitude of the aldosterone response to feeding. No correlation between changes in the fractional electrolyte excretion values determined and alterations in aldosterone response was found. Exercise resulted in a marked increase in aldosterone concentrations. The expected biological response to feeding and exercise was demonstrated with an acceptable level of reproducibility and repeatability. Samples had similar values when assayed by either of the kits evaluated.  相似文献   

11.
OBJECTIVE: To determine effects of dexamethasone on insulin sensitivity, serum creatine kinase (CK) activity 4 hours after exercise, and muscle glycogen concentration in Quarter Horses with polysaccharide storage myopathy (PSSM). ANIMALS: 4 adult Quarter Horses with PSSM. PROCEDURE: A 2 x 2 crossover design was used with dexamethasone (0.08 mg/kg) or saline (0.9% NaCl) solution administered IV every 48 hours. Horses were exercised on a treadmill daily for 3 wk/treatment with a 2-week washout period between treatments. Serum CK activity was measured daily 4 hours after exercise. At the end of each treatment period, serum cortisol concentrations were measured, a hyperinsulinemic euglycemic clamp (HEC) technique was performed, and muscle glycogen content was determined. RESULTS: Mean +/- SEM serum cortisol concentration was significantly lower after 48 hours for the dexamethasone treatment (0.38 +/- 0.08 mg/dL), compared with the saline treatment (4.15 +/- 0.40 mg/dL). Dexamethasone significantly decreased the rate of glucose infusion necessary to maintain euglycemia during the HEC technique, compared with the saline treatment. Muscle glycogen concentrations and mean CK activity after exercise were not altered by dexamethasone treatment, compared with the saline treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone significantly reduced whole-body insulin-stimulated glucose uptake in Quarter Horses with PSSM after a 3-week period but did not diminish serum CK response to exercise or muscle glycogen concentrations in these 4 horses. Therefore, a decrease in glucose uptake for 3 weeks did not appear to alleviate exertional rhabdomyolysis in these horses. It is possible that long-term treatment may yield other results.  相似文献   

12.
为了研究长期饲喂高精料日粮对泌乳期山羊血液生化指标和糖代谢的影响,选择8只安装永久性瘤胃瘘管的健康经产泌乳中期山羊,分别饲喂精粗比为40∶60 (low concentrate, LC,n=4) 和60∶40 (high concentrate, HC,n=4)的日粮。实验期共8周,实验期间采集瘤胃液,血液;实验结束时采集肝脏,肌肉,脂肪组织置于液氮速冻后于-70℃保存待测。结果显示,饲喂高精料日粮2周后山羊瘤胃液pH显著降低,采食后瘤胃液pH持续低于5.8超过3 h,8周后瘤胃液pH升高维持在6.0以上,但仍低于LC组山羊。与LC组山羊相比较,HC组山羊血液中葡萄糖、游离脂肪酸含量均升高(P<0.05,P=0.071),谷草转氨酶含量有上升的趋势(0.05相似文献   

13.
To find a new parameter indicating muscle fitness in Thoroughbred horses, we examined time-dependent recovery of glycogen content and sarcoplasmic reticulum (SR) Ca2+-ATPase activity of skeletal muscle after intensive treadmill running. Two repeated 50-sec running sessions (13 m/sec) were performed on a flat treadmill (approximately 90%VO2max). Muscle samples of the middle gluteal muscle were taken before exercise (pre) and 1 min, 20 min, 60 min, and 24 hr after exercise. Muscle fiber type composition was determined in the pre muscle samples by immunohistochemical staining with monoclonal antibody to myosin heavy chain. SR Ca2+-ATPase activity of the muscle and glycogen content of each muscle fiber type were determined with biochemical analysis and quantitative histochemical staining, respectively. As compared to the pre value, the glycogen content of each muscle fiber type was reduced by 15–27% at 1 min, 20 min, and 60 min after the exercise and recovered to the pre value at 24 hr after exercise test. These results indicate that 24 hr is enough time to recover glycogen content after short-term intensive exercise. The mean value of the SR Ca2+-ATPase activity showed a slight decrease (not significant) immediately after exercise, and complete recovery at 60 min after exercise. There were no significant relationship between the changes in glycogen content of each muscle fiber type and SR Ca2+-ATPase. Although further studies are needed, SR Ca2+-ATPase is not a useful parameter to detect muscle fitness, at least in Thoroughbred horses.  相似文献   

14.
OBJECTIVE: To measure pH, volatile fatty acid (VFA) concentrations, and lactate concentrations in stomach contents and determine number and severity of gastric lesions in horses fed bromegrass hay and alfalfa hay-grain diets. ANIMALS: Six 7-year-old horses. PROCEDURE: A gastric cannula was inserted in each horse. Horses were fed each diet, using a randomized crossover design. Stomach contents were collected immediately after feeding and 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, and 24 hours after feeding on day 14. The pH and VFA and lactate concentrations were measured in gastric juice Number and severity of gastric lesions were scored during endoscopic examinations. RESULTS: The alfalfa hay-grain diet caused significantly higher pH in gastric juice during the first 5 hours after feeding, compared with that for bromegrass hay. Concentrations of acetic, propionic, and isovaleric acid were significantly higher in gastric juice, and number and severity of nonglandular squamous gastric lesions were significantly lower in horses fed alfalfa hay-grain. Valeric acid, butyric acid, and propionic acid concentrations and pH were useful in predicting severity of nonglandular squamous gastric lesions in horses fed alfalfa hay-grain, whereas valeric acid concentrations and butyric acid were useful in predicting severity of those lesions in horses fed bromegrass hay. CONCLUSIONS AND CLINICAL RELEVANCE: An alfalfa hay-grain diet induced significantly higher pH and VFA concentrations in gastric juice than did bromegrass hay. However, number and severity of nonglandular squamous gastric lesions were significantly lower in horses fed alfalfa hay-grain. An alfalfa hay-grain diet may buffer stomach acid in horses.  相似文献   

15.
OBJECTIVE: To evaluate the diagnostic value of serum concentrations of total magnesium (tMg) and ionized magnesium (iMg), concentrations of magnesium (Mg) in muscle, intracellular Mg (icMg) concentrations, urinary Mg excretion (EMg), Mg clearance (CMg), and fractional clearance of Mg (FCMg) in horses fed diets with Mg content above and below National Research Council recommendations. ANIMALS: 9 young female horses. PROCEDURES: 6 horses were fed a reduced-Mg diet for 29 days followed by an Mg-supplemented diet for 24 days. Control horses (n = 3) were fed grass hay exclusively. Blood, urine, and tissue samples were collected, and an Mg retention test was performed before and after restriction and supplementation of Mg intake. Serum tMg, serum iMg, muscle Mg, icMg, and urine Mg concentrations were measured, and 24-hour EMg, CMg, and FCMg were calculated. RESULTS: Reductions in urinary 24-hour EMg, CMg, and FCMg were evident after 13 days of feeding a reduced-Mg diet. Serum tMg and iMg concentrations, muscle Mg content, and results of the Mg retention test were not affected by feeding the Mg-deficient diet. Spot urine sample FCMg accurately reflected FCMg calculated from 6- and 24-hour pooled urine samples. Mean +/- SD FCtMg of horses eating grass hay was 29 +/- 8%, whereas mean FCtMg for horses fed a reduced-Mg diet for 29 days was 6 +/- 3%. CONCLUSIONS AND CLINICAL RELEVANCE: The 24-hour EMg was the most sensitive indicator of reduced Mg intake in horses. Spot sample FCMg can be conveniently used to identify horses consuming a diet deficient in Mg.  相似文献   

16.
The aim of this study was to investigate the effect of the addition of a purified soluble (pectin) and insoluble (lignocellulose) fibre to a starchy meal on post‐prandial glucose and insulin responses in healthy horses. Four horses were fed in a randomized order three different diets: (i) cracked corn, (ii) cracked corn mixed with purified lignocellulose, and (iii) cracked corn mixed with purified pectin. Each diet was adjusted to a starch intake of 2 g/kg bodyweight (BW). Lignocellulose was aligned to an intake of 0.2 g/kg BW, and pectin was fed in a dosage of 0.1 g/kg BW. Each period consisted of a 10‐day acclimatization to the diet (fed once per day); during this time, the horses were fed 1.2 kg hay/100 kg BW/day. Blood was collected after each acclimatization period before and after the test meal was fed, without any hay. The increase in plasma glucose and insulin, peak values, and area under the curves were similar for all diets. The present findings suggest that adding purified soluble or insoluble fibre to a corn meal does not affect post‐prandial glucose and insulin responses in healthy horses. Feeding strategies for horses with a high energy requirement should include a starch reduction per meal, rather than the addition of purified fibre.  相似文献   

17.
Twenty-four yearlings were used to evaluate the efficacy of feeding feed-grade fat to growing horses. All horses were started on trial at 13-months-of-age and were fed for 112 days. The experimental diets, containing similar nutrient-to-calorie ratios, were: 1) control (no added fat; 2) 5% added fat and; 3) 10% added fat. There was a trend for yearlings fed the 10% added fat diet to grow faster and eat less feed than those on the control diet. Data from this study indicate that feed-grade fat can be safely fed to growing horses. Feeding fat to yearlings stimulated growth and efficiency of feed utilization initially, but these effects were not maintained as the yearlings grew toward maturity.  相似文献   

18.
OBJECTIVE: To determine concentrations of proglycogen (PG), macroglycogen (MG), glucose, and glucose-6-phosphate (G-6-P) in skeletal muscle of horses with polysaccharide storage myopathy (PSSM) before and after performing light submaximal exercise. ANIMALS: 6 horses with PSSM and 4 control horses. PROCEDURES: Horses with PSSM completed repeated intervals of 2 minutes of walking followed by 2 minutes of trotting on a treadmill until muscle cramping developed. Four untrained control horses performed a similar exercise test for up to 20 minutes. Serum creatine kinase (CK) activity was measured before and 4 hours after exercise. Concentrations of total glycogen (G(t)), PG, MG, G-6-P, free glucose, and lactate were measured in biopsy specimens of gluteal muscle obtained before and after exercise. RESULTS: Mean serum CK activity was 26 times higher in PSSM horses than in control horses after exercise. Before exercise, muscle glycogen concentrations were 1.5, 2.2, and 1.7 times higher for PG, MG, and G(t), respectively, in PSSM horses, compared with concentrations in control horses. No significant changes in G(t), PG, MG, G-6-P, and lactate concentrations were detected after exercise. However, free glucose concentrations in skeletal muscle increased significantly in PSSM horses after exercise. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of the results suggests that glucose uptake in skeletal muscle is augmented in horses with PSSM after light exercise. There is excessive storage of PG and MG in horses with PSSM, and high concentrations of the 2 glycogen fractions may affect functional interactions between glycogenolytic and glycogen synthetic enzymes and glycosomes.  相似文献   

19.
The aim of the present study was to investigate whether muscle glycogen stores in slaughter pigs could be decreased through strategic finishing feeding before slaughter. Moreover, preliminary meat quality traits were measured to see whether such a regulation of muscle glycogen stores affected ultimate pH, color, and tenderness in the meat. The strategic finishing feeding was carried out the last 3 wk prior to slaughter. Seven experimental groups with eight animals per group were fed diets low in digestible carbohydrates. A control group with four animals was fed a traditional grower-finishing diet. The muscle glycogen stores were reduced in longissimus muscle (LM) 11 to 26% at the time of slaughter in pigs that were fed the experimental diets compared with the control group. Meat quality measured as ultimate pH and color on LM muscle in half the pigs 24 h postmortem showed that ultimate pH in LM was not affected by the reduction in glycogen stores in the muscles from pigs fed any of the experimental diets. However, the meat from pigs fed the experimental diets was darker than the meat from pigs that were fed the control diet with two of the experimental diets, resulting in significantly lower L* values. Activities of key enzymes in the glycolytic pathway, glycogen phoshorylase a and b, phosphofructokinase, and the fatty acid oxidative pathway, beta-hydrozyacyl-CoA-dehydrogenase, were not affected by the strategic feeding. In contrast, the activity of the proteolytic enzyme calpain as well as its inhibitor calpastatin was influenced by the strategic feeding. Lower activity of mu-calpain and greater activity of calpastatin in the muscle samples from the strategically fed pigs indicate a lesser muscle protein degradation in the muscles compared with muscles of control animals. The present study showed that the muscle glycogen stores in slaughter pigs can be reduced at the time of slaughter through strategic finishing feeding with diets low in digestible carbohydrate without compromising growth rate.  相似文献   

20.
Feeding fat-supplemented diets to horses has drawn considerable interest. One of the advantages of such diets is that the energy density is increased, so that less feed is needed to meet energy requirements. In addition, adding fat to the diet enhances the contribution of fat oxidation to energy production, thus sparing muscle glycogen. The 'spared' glycogen is available for energy metabolism when the acutely exercising horse reaches a point of oxygen deficit and must rely on anaerobic metabolism. This appears to be beneficial for both aerobic and anaerobic performance. Fats are readily digested by the horse. Vegetable oils are more palatable to horses than animal fats, but the palatability of fat-rich diets may decrease in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号