首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective To determine the cardiopulmonary response to romifidine (RO) in the dog with or without prior or concurrent administration of glycopyrrolate. Study Design Randomized, cross‐over experimental study. Animals Six (three male, three female) cross‐bred dogs weighing 23 ± 2.4 kg. Methods Two‐dimensional guided M‐mode echocardiography was performed in conscious dogs simultaneously with measurement of systolic arterial blood pressure (SBP) and heart rate (HR). Dimensions of the left ventricle (LVID), interventricular septum (IVS), and left ventricular free wall (LVFW) were obtained in systole (S) and diastole (D). Amplitude of motion (Amp) of the IVS and LVFW were also measured. From these, measures of wall stress (WS) and fractional shortening (FS) of the left ventricle were derived. Baseline echocardiographic measurements were recorded, following which one of the five treatments was administered. Glycopyrrolate (G) 0.01 mg kg?1, or saline (S) 0.5 mL, was administered IM as pre‐medication (Gp or Sp), or G was administered concurrently (Gc) with romifidine (RO). Treatments were: T1, Sp + RO (40 μg kg?1); T2, Gp + RO (40 μg kg?1); T3, Sp + RO (120 μg kg?1); T4, Gp + RO (120 μg kg?1); and T5, Sp + Gc +RO (120 μg kg?1). Romifidine or RO + Gc was administered SC 20 minutes after pre‐medication (time 0), and further measurements were taken 10, 20, 30, 60, and 90 minutes after RO. Results Echocardiographic indices of cardiac systolic function (LVID‐S, FS, Amp‐LVFW) and HR were decreased in RO‐sedated dogs (p < 0.0001) . The magnitude of change in cardiac indices was least with low‐dose RO. At most sampling times, high‐dose RO produced significantly more alteration in cardiac indices. Systolic blood pressure increased in all treatment groups, with the greatest increases in those groups receiving G. Glycopyrrolate significantly increased HR; however, cardiac indices were further reduced. Wall stress significantly increased, with a more dramatic increase in groups receiving G. Conclusions Indices of LV systolic function were reduced in RO‐sedated dogs in a dose‐related manner. Glycopyrrolate further reduced these indices and dramatically increased measurements of wall stress in dogs sedated with RO. Clinical relevance Use of low‐dose RO minimizes cardiac dysfunction; however, it should still be used cautiously in dogs with cardiomyopathy or heart failure. The routine use of G is not recommended to alleviate the bradycardia associated with RO in conscious dogs.  相似文献   

2.
Objective To determine the electrocardiographic and cardiopulmonary effects of IM administration of romifidine with and without prior administration of glycopyrrolate in conscious dogs. Study design Prospective randomized study. Animals Twelve healthy, adult beagles. Materials and methods Dogs were assigned at random to each of three treatments with glycopyrrolate (six dogs), and to each of three treatments without glycopyrrolate (six dogs). Baseline data were recorded, and saline solution or glycopyrrolate (10 µg kg–1) was given IM. After 15 minutes, saline solution (control) or romifidine (20 or 40 µg kg–1) was given IM. An ECG, heart rate (HR), systemic blood pressures, and respiratory rate (RR) were recorded before and 2.5, 5, 10, 15, 30, 45, 60, 75, 90, 105 and 120 minutes after romifidine administration. Rectal temperature (RT), pH, PaCO2, PaO2, hematocrit and plasma protein were determined before and 15, 30, 60 and 120 minutes after romifidine administration. Data were analyzed using analysis of variance for repeated measures and Tukey multiple comparison tests. Results Without glycopyrrolate, HR (beats minute–1) decreased to minimum values (mean ± SD) of 52 ± 7 and 49 ± 12 (control 89 ± 20) 45 minutes after administration of romifidine at doses of 20 and 40 µg kg–1, respectively. Sinus bradycardia (HR < 60 beats minute–1), which persisted for up to 120 minutes, was observed in five of six and six of six dogs given romifidine at doses of 20 and 40 µg kg–1, respectively. With glycopyrrolate, decreases in HR were prevented and mean arterial pressure (mm Hg) increased to maximum values of 139 ± 25 and 173 ± 17 (control 113 ± 11) 30 minutes after administration of romifidine at doses of 20 and 40 µg kg–1, respectively. With and without glycopyrrolate, RR did not change appreciably, RT decreased, and pH, PaCO2, PaO2, hematocrit and plasma protein did not change after administration of romifidine. Conclusions and clinical relevance In healthy conscious beagles, IM administration of romifidine at doses of 20 and 40 µg kg–1 causes sinus bradycardia which persists for up to 120 minutes. Administration of glycopyrrolate 15 minutes before administration of romifidine, prevents sinus bradycardia and induces moderate increases in arterial pressure.  相似文献   

3.
ObjectiveTo evaluate clinical effects of romifidine and low doses of tiletamine‐zolazepam (TZ) in dogs.Study designRandomized “blinded” cross‐over study.AnimalsSix healthy beagle dogs (two males, four females).MethodsIn separate preliminary experiments dogs received intravenous (IV) tiletamine‐zolazepam (TZ) at 1 and 2 mg kg?1. For the main trial, dogs received romifidine (R) followed 5 minutes later by IV at six dose regimens: R40TZ1, R60TZ1, R80TZ1 (Romifidine at 40, 60, 80 μg kg?1 and TZ at 1 mg kg?1), R40TZ2, R60TZ2 and R80TZ2 (Romifidine at 40, 60, 80 μg kg?1 and TZ at 2 mg kg?1). Dogs underwent endotracheal intubation, but breathed room air. Cardiorespiratory variables were measured and arterial blood analyzed. Quality of sedation, duration of anaesthesia and time to recovery (TR) were recorded. Data were analysed by anova or Friedman test as relevant.ResultsEndotracheal intubation was possible with all romifidine/TZ combinations but not with TZ alone. Mean times (minutes) from TZ injection to return of pedal reflex were 1–3 minutes for TZ alone, and 9–17 minutes for romifidine combinations. In the main trial (romifidine combinations) mean time (minutes) to standing increased with increasing dosage (R40TZ1 13; R80TZ2 32). Five minutes after TZ administration, when compared with baseline arterial blood pressures and arterial carbon dioxide had increased, and respiratory rate, pH and arterial oxygen tensions decreased, these changes becoming statistically significant with the higher dose rates. One dog in R60TZ2 and three dogs in R80TZ2 became hypoxaemic.Conclusions and clinical relevanceRomifidine improves the quality and lengthens the duration of anaesthesia induced by TZ. The combination provides a suitable protocol for induction of or short‐term anaesthesia in healthy dogs. However, the higher doses cause cardiovascular stimulation and respiratory depression, and precautions should be taken accordingly.  相似文献   

4.
ObjectiveTo characterize the cardiorespiratory and electrocardiographic effects of the combined administration of phenylbutazone and romifidine.Study designProspective four-period, four-treatment, blinded, randomized, crossover trial.AnimalsFive, healthy, mixed breed horses.MethodsPrior to treatment administration, a catheter was introduced into the intra-thoracic cranial vena cava via the jugular vein and a subcutaneously located carotid artery was catheterised. All treatments were administered intravenously (IV) and consisted of saline placebo (PLC), phenylbutazone (PBZ, 4.4 mg kg?1) romifidine (ROM, 80 μg kg?1) and a combination of phenylbutazone (4.4 mg kg?1) and romifidine (80 μg kg?1). There was at least a 1 week washout period between treatments. Heart rate (HR), respiratory rate (fR), systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressures and central venous pressure (CVP) were recorded for baseline (prior to drug administration) and at 5 minute intervals thereafter for 30 minutes. Electrocardiographic abnormalities were recorded. Data were analyzed by anova.ResultsFor the cardiovascular variables there were no statistically significant (p > 0.05) differences between horses treated with ROM and PBZ_ROM. Statistically significant (p < 0.05) differences only occurred between treatments with romifidine (ROM and PBZ_ROM) and without romifidine (PLC and PBZ). Within treatments, for ROM, changes over time were statistically significant (p < 0.05) for HR, SAP, DAP, MAP and CVP. For PBZ_ROM, changes over time were statistically significant (p < 0.05) for CVP. Sino-atrial and atrio-ventricular blocks occurred in horses treated with ROM and PBZ_ROM.Conclusions and clinical relevanceThe combined IV administration of phenylbutazone and romifidine had no statistically significant effect on cardiorespiratory variables. These limited data suggest no evidence why both agents should not be included in a preoperative medication protocol for healthy horses but do not exclude the possibility of interactions occurring in a larger population.  相似文献   

5.
ObjectiveTo compare xylazine and romifidine constant rate infusion (CRI) protocols regarding degree of sedation, and effects on postural instability (PI), ataxia during motion (A) and reaction to different stimuli.Study designBlinded randomized experimental cross-over study.AnimalsTen adult horses.MethodsDegree of sedation was assessed by head height above ground (HHAG). Effects on PI, A and reaction to visual, tactile and acoustic stimulation were assessed by numerical rating scale (NRS) and by visual analogue scale (VAS). After baseline measurements, horses were sedated by intravenous loading doses of xylazine (1 mg kg?1) or romifidine (80 μg kg?1) administered over 3 minutes, immediately followed by a CRI of xylazine (0.69 mg kg?1 hour?1) or romifidine (30 μg kg?1 hour?1) which was administered for 120 minutes. Degree of sedation, PI, A and reaction to the different stimuli were measured at different time points before, during and for one hour after discontinuing drug administration. Data were analysed using two-way repeated measures anova, a Generalized Linear Model and a Wilcoxon Signed Rank Test (p < 0.05).ResultsSignificant changes over time were seen for all variables. With xylazine HHAG was significantly lower 10 minutes after the loading dose, and higher at 150 and 180 minutes (i.e. after CRI cessation) compared to romifidine. Reaction to acoustic stimulation was significantly more pronounced with xylazine. Reaction to visual stimulation was greater with xylazine at 145 and 175 minutes. PI was consistently but not significantly greater with xylazine during the first 30 minutes. Reaction to touch and A did not differ between treatments. Compared to romifidine, horses were more responsive to metallic noise with xylazine.ConclusionsTime to maximal sedation and to recovery were longer with romifidine than with xylazine.Clinical relevanceWith romifidine sufficient time should be allowed for complete sedation before manipulation.  相似文献   

6.
ObjectiveTo determine constant rate infusion (CRI) protocols for romifidine (R) and romifidine combined with butorphanol (RB) resulting in constant sedation and romifidine plasma concentrations.Study designBlinded randomized crossover study.AnimalsTen adult research horses.MethodsPart I: After determining normal height of head above ground (HHAG = 100%), loading doses of romifidine (80 μg kg?1) with butorphanol (RB: 18 μg kg?1) or saline (R) were given intravenously (IV). Immediately afterwards, a butorphanol (RB: 25 μg kg?1 hour?1) or saline (R) CRI was administered for 2 hours. The HHAG was used as marker of sedation depth. Sedation was maintained for 2 hours by additional romifidine (20 μg kg?1) whenever HHAG > 50%. The dose rate of romifidine (μg kg?1 hour?1) required to maintain sedation was calculated for both treatments. Part II: After loading doses, the romifidine CRIs derived from part I were administered in parallel to butorphanol (RB) or saline (R). Sedation and ataxia were evaluated periodically. Romifidine plasma concentrations were measured by HPLC-MS-MS at 0, 5, 10, 15, 30, 45, 60, 90, 105, and 120 minutes. Data were analyzed using paired t-test, Fisher's exact test, Wilcoxon signed rank test, and two-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in romifidine requirements (R: 30; RB: 29 μg kg?1 hour?1). CRI protocols leading to constant sedation were developed. Time to first additional romifidine bolus was significantly longer in RB (mean ± SD, R: 38.5 ± 13.6; RB: 50.5 ± 11.7 minutes). Constant plasma concentrations of romifidine were achieved during the second hour of CRI. Ataxia was greater when butorphanol was added.ConclusionRomifidine bolus, followed by CRI, provided constant sedation assessed by HHAG. Butorphanol was ineffective in reducing romifidine requirements in unstimulated horses, but prolonged the sedation caused by the initial romifidine bolus.Clinical relevanceBoth protocols need to be tested under clinical conditions.  相似文献   

7.
Objective To evaluate the effects of a constant rate infusion (CRI) of romifidine on the requirement of isoflurane, cardiovascular performance and recovery in anaesthetized horses undergoing arthroscopic surgery. Study design Randomized blinded prospective clinical trial. Animals Thirty horses scheduled for routine arthroscopy. Methods After premedication (acepromazine 0.02 mg kg?1, romifidine 80 μg kg?1, methadone 0.1 mg kg?1) and induction (midazolam 0.06 mg kg?1 ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen. Horses were assigned randomly to receive a CRI of saline (group S) or 40 μg kg?1 hour?1 romifidine (group R). The influences of time and treatment on anaesthetic and cardiovascular parameters were evaluated using an analysis of variance. Body weight (t‐test), duration of anaesthesia (t‐test) and recovery score (Wilcoxon Rank Sum Test) were compared between groups. Significance was set at p < 0.05. Results All but one horse were positioned in the dorsal recumbent position and ventilated from the start of anaesthesia. End tidal isoflurane concentrations were similar in both groups at similar time points and over the whole anaesthetic period. Cardiac output was significantly lower in horses of the R group, but there were no significant differences between groups in cardiac index, body weight or age. All other cardiovascular parameters were similar in both groups. Quality of recovery did not differ significantly between groups, but more horses in group R stood without ataxia at the first attempt. One horse from group S had a problematic recovery. Conclusions and clinical relevance No inhalation anaesthetic sparing effect or side effects were observed by using a 40 μg kg?1 hour?1 romifidine CRI in isoflurane anaesthetized horses under clinical conditions. Cardiovascular performance remained acceptable. Further studies are needed to identify the effective dose of romifidine that will induce an inhalation anaesthetic sparing effect in anaesthetized horses.  相似文献   

8.
Objective To identify the incidence of adverse effects caused by morphine 100–170 µg kg?1 administration during surgery in horses. Design Retrospective case record analysis (1996–2000). Animals Eighty‐four healthy (ASA 1 or 2) horses, mean age 5.5 ± 3.1 (SD) years (2 months to 16 years), mean weight 524 ± 14 kg (100–950). Methods Physiological data and evidence of complications were collected from the anaesthetic records of all animals anaesthetized with romifidine, ketamine, diazepam and halothane and undergoing laryngeal surgery or orchiectomy at the Royal (Dick) School of Veterinary Studies. Cases were divided into those receiving (group M+; n = 18) and those not receiving morphine (M?; n = 29), and the data compared. Values for heart and respiratory rate and mean arterial pressure were compared at 15‐minute intervals between 30 and 120 minutes after induction using anova for repeated measures. The incidence of intraoperative problems was compared using Fisher's exact test. Recovery scores were compared using Student's unpaired t‐test. The records of a further 37 horses undergoing umbilical herniorrhaphy (n = 5), arthroscopy (n = 29) or tarsal arthrodesis (n = 3) were also studied but not analysed statistically due to disparate treatment distribution. Results There were no significant differences between the M+ and M? groups. The incidence of post‐operative complications such as box‐walking and colic were similar in each group. Conclusions Morphine doses of 100–170 µg kg?1 do not increase the risk of problems when used to provide perioperative analgesia in horses anaesthetized with romifidine, ketamine, diazepam and halothane. Clinical relevance Morphine provides an acceptable and relatively inexpensive way to provide perioperative analgesia in horses.  相似文献   

9.
The purpose of this study was to determine the cardiovascular, analgesic, and sedative effects of IV medetomidine (M, 20 µg kg?1), medetomidine–hydromorphone (MH, 20 µg kg?1 ? 0.1 mg kg?1), and medetomidine–butorphanol (MB, 20 µg kg?1 ? 0.2 mg kg?1) in dogs. Using a randomized cross‐over design and allowing 1 week between treatments, six healthy, mixed‐breed dogs (five males and one female) weighing 20 ± 3 kg, were induced to anesthesia by face‐mask administration of 2.9% ET sevoflurane to facilitate instrumentation prior to administration of the treatment combinations. Dogs were intubated and instrumented to enable measurement of heart rate (HR), systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), mean pulmonary arterial pressure (PAP), pulmonary arterial occlusion pressure (PAOP), central venous pressure (CVP), pulmonary arterial temperature (TEMP), and cardiac output via thermodilution using 5 mL of 5% dextrose, and recording the average of the three replicate measurements. Cardiac index (CI) and systemic (SVR) and pulmonary vascular resistances were calculated. After instrumentation was completed, administration of sevoflurane was discontinued, and the dogs were allowed to recover for 30 minutes prior to administration of the treatment drugs. After collection of the baseline samples for blood gas analysis and recording the baseline cardiovascular variables, the test agents were administered IV over 10 seconds and the CV variables recorded at 5, 10, 15, 30, 45, and 60 minutes post‐injection. In addition, arterial blood was sampled for blood gas analysis at 15 and 45 minutes following injection. Intensity and duration of analgesia (assessed by toe‐pinch response using a hemostat) and level of sedation were evaluated at the above time points and at 75 and 90 minutes post‐injection. Data were analyzed using anova for repeated measures with posthoc differences between means identified using Bonferroni's method (p < 0.05). Administration of M, MH, or MB was associated with increases in SAP, MAP, DAP, PAP, PAOP, CVP, SVR, and TEMP and with decreases in HR and CI. No differences in CV variables between treatment groups were identified at any time. PaO2 increased over time in all groups and was significantly higher when MH was compared with M. At 45 minutes, PaO2 tended to decrease over time and was significantly lower when MH and MB were compared with M at 15 minutes. Analgesia scores for MH and MB were significantly higher compared with M through 45 minutes, while analgesia scores for MH were significantly higher compared with M through 90 minutes. Sedation scores were higher for MH and MB compared with M throughout 90 minutes. Durations of lateral recumbency were 108 ± 10.8, 172 ± 15.5, and 145 ± 9.9 minutes for M, MH, and MB, respectively. We conclude that MH and MB are associated with improved analgesia and sedation and have similar CV effects when compared with M.  相似文献   

10.
Acepromazine, a phenothiazine tranquilizer, causes hypotension in standing horses ( Parry et al. 1982 ). However, a retrospective study ( Taylor & Young 1993 ) showed that acepromazine pre‐anesthetic medication did not affect arterial blood pressure (MAP) in anaesthetized horses. This study examined the effects of acepromazine on MAP during romifidine–ketamine–halothane anaesthesia in horses anaesthetized for various surgical procedures. Forty‐four horses were allocated by block randomization to groups A and B. Group A received acepromazine 0.05 mg kg?1 IM 30 minutes before induction of anaesthesia, group B did not. All horses received romifidine 0.1 mg kg?1 IV 5 minutes before anaesthesia was induced with diazepam 0.05 mg kg?1 and 2.2 mg kg?1 ketamine IV. The horses' trachea were intubated and horses breathed 50% oxygen and 50% nitrous oxide plus halothane (concentration adjusted as required clinically) from a circle breathing system. Nitrous oxide was discontinued after 10 minutes and analgesics, flunixin 1.1 mg kg?1 and either morphine 0.1 mg kg?1 or butorphanol 0.05 mg kg?1 (matched for horses undergoing the same procedure) administered IV. The facial or dorsal metatarsal artery was catheterized for direct measurement of MAP (every 10 min) and withdrawal of blood for gas analysis (every 30 min). The electrocardiogram (ECG) was monitored continuously with a 10 seconds printout obtained every 10 minutes. Intermittent positive pressure ventilation (IPPV) was instigated if PaCO2 exceeded 9.3 kPa (70 mm Hg). Dobutamine was infused (1.0–5.0 kg?1minute?1) if MAP < 58 mm Hg and was continued until MAP > 70 mm Hg. Mean age, weight and duration of anaesthesia were compared between the groups using a t‐test for independent samples. Gender distribution and numbers of horses requiring IPPV or dobutamine were compared between groups using a chi‐squared test (with Yates correction). To compare MAP over time, the area under the curve (MAPAUC) was calculated and compared between groups using a t‐test. Horses receiving dobutamine were excluded from MAPAUC and MAP comparisons. The ECG printouts were examined for arrhythmias. There were no significant differences between groups (p > 0.05). Group A contained three stallions, 10 geldings and nine mares, aged 6.3 years (range 0.75–18). Group B comprised eight stallions, 11 geldings and three mares aged 7.3(1–16) years. Duration of anaesthesia was group A 97 (50–140) minutes, group B 99 (50–160) minutes. Eight horses in group A and three in group B required IPPV. Nine horses in group A and four in group B received dobutamine. Mean arterial pressure ranged from 60 to 128 mm Hg in group A and 58–96 mm Hg in group B. Mean MAPAUC was 5941 mm Hg minute?1 in group A, in B 6000 mm Hg minute?1. Atrial pre‐mature complexes were recorded from one horse in group B. No other arrhythmias were detected. Although MAP was lower in the acepromazine group, this appeared unlikely to cause a clinical problem. The incidence of arrhythmias was too low to determine the influence of acepromazine in this study.  相似文献   

11.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

12.
ObjectiveTo evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses.Study designProspective, blinded, randomized cross-over study.AnimalsTen healthy adult horses weighing 527–645 kg and aged 11–21 years old.MethodsElectrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg?1, romifidine 0.08 mg kg?1, or xylazine, 1 mg kg?1, was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation.ResultsThe administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively.Conclusions and clinical relevanceDetomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was comparable, while the duration of action was drug-specific.  相似文献   

13.
ObjectiveTo compare pulmonary function and gas exchange in ponies during maintenance of anaesthesia with isoflurane or by a total intravenous anaesthesia (TIVA) technique.Study designExperimental, cross–over study.AnimalsSix healthy ponies weighing mean 286 (range 233–388) ± SD 61 kg, age 13 (9-16) ± 3 years.MethodsThe ponies were anaesthetized twice, a minimum of two weeks apart. Following sedation with romifidine [80 μg kg?1 intravenously (IV)], anaesthesia was induced IV with midazolam (0.06 mg kg?1) and ketamine (2.5 mg kg?1), then maintained either with inhaled isoflurane (Fe’Iso = 1.1 vol%) (T-ISO) or an IV infusion of romifidine (120 μg kg?1 hour?1), midazolam (0.09 mg kg?1 hour?1 IV) and ketamine (3.3 mg kg?1 hour?1) (T-TIVA). Ponies were placed in lateral recumbency. Breathing was spontaneous and Fi’O2 60%. After an instrumentation/stabilisation period of 30 minutes, arterial and mixed venous blood samples were taken simultaneously every 10 minutes for 60 minutes and analysed immediately. Oxygen extraction ratio (O2ER) and venous admixture were calculated. Tidal volume (TV), minute volume (MV), respiratory rate (fR), packed cell volume (PCV), arterial blood pressure and heart rate (HR) were measured and recorded. Data were analysed with mixed model anova (a = 0.05). Treatments were compared overall and at two selected time points (T30 and T60) using Bonferroni correction.ResultsArterial and mixed venous partial pressures of O2 and CO2, and TV were significantly lower and MV and fR were higher in T-TIVA compared to T-ISO. Venous admixture did not differ between treatments. O2ER was significantly higher in T-TIVA. Mean arterial pressure was higher and HR was lower in T-TIVA compared to T-ISO.Conclusions and clinical relevanceWhilst arterial CO2 was within an acceptable range during both protocols, the impairment of oxygenation was more pronounced with the T-TIVA evidenced by lower arterial and venous oxygen partial pressures.  相似文献   

14.
Objective To compare behavioral characteristics of induction and recovery in horses anesthetized with eight anesthetic drug protocols. Study design Randomized prospective experimental study. Animals Eight horses, 5.5 ± 2.4 years (mean ± SD) of age, and weighing 505 ± 31 kg. Methods After xylazine pre‐medication, each of eight horses was anesthetized on four occasions using one of eight different anesthetic induction protocols which incorporated various combinations of ketamine (KET), propofol (PRO), and thiopental (THIO): THIO 8 mg kg?1; THIO 6 mg kg?1 + PRO 0.5 mg kg?1; THIO 4 mg kg?1 + PRO 1 mg kg?1; THIO 2 mg kg?1 + PRO 1.5 mg kg?1; KET 2 mg kg?1; KET 1.5 mg kg?1 + PRO 0.5 mg kg?1; KET 1 mg kg?1 + PRO 1 mg kg?1; KET 0.5 mg kg?1 + PRO 1.5 mg kg?1. Quality of induction and recovery were scored from 1 (poor) to 5 (excellent), and time taken to achieve lateral recumbency, first movement, sternal recumbency, and standing were evaluated. Results Time taken to achieve lateral recumbency after drug administration differed significantly (p < 0.0001) among the various combinations, being shortest in horses receiving THIO‐8 (mean ± SD, 0.5 ± 0.3 minutes) and longest in horses receiving KET‐2 (1.4 ± 0.2 minutes). The best scores for induction quality were associated with KET‐1.5 + PRO‐0.5, and the worst scores for induction quality were associated with KET‐2, although the difference was not significant. Time to first movement varied significantly among drug protocols (p = 0.0133), being shortest in horses receiving KET‐2 (12.7 ± 3.6 minutes) and longest in horses receiving THIO‐8 (29.9 ± 1.5 minutes). Horses receiving THIO‐8 made the greatest number of attempts to attain sternal posture (6.5 ± 4.7) and to stand (1.6 ± 0.8). Horses in the THIO‐8 treatment also received the poorest recovery scores (3.3 ± 1.0 and 3.0 ± 0.7 for sternal and standing postures, respectively). The best recovery scores were associated with combinations comprised mainly of propofol. Conclusions Combining propofol with either ketamine or thiopental modifies behaviors associated with use of the individual drugs. Clinical relevance Quality of early anesthesia recovery in horses may be improved by some combinations of propofol with either thiopental or ketamine.  相似文献   

15.
Objective To measure the effects of dobutamine infusion on fetal oxygenation during isoflurane anaesthesia in pregnant ewes. Study design Prospective randomized experimental study. Animals Seven clinically normal adult pregnant Rambouillet‐Dorset cross ewes with fetuses of 117–122 days gestational age. Methods The ewes were anaesthetized with ketamine (2 mg kg?1) IM, and isoflurane (FE′ISO 2.0%) in oxygen. After instrumentation and stabilization, dobutamine was infused at 4 µg kg?1minute?1 for 60 minutes and 10 µg kg?1minute?1 for 60 minutes in random order, separated by a 20‐minute washout period. Catheters were placed in the maternal and fetal carotid arteries; these were used for continuous blood pressure measurement and intermittent blood sampling. Results Maternal mean systemic carotid arterial pressure was 60 mm Hg prior to dobutamine infusion. After 5 minutes of dobutamine infusion, fetal oxygen saturation increased (p < 0.05) from 0.62 (0.17–0.71, minimum–maximum) to 0.72 (0.28–0.78) at a dose of 4 µg kg?1minute?1 and to 0.70 (0.20–0.73) at a dose of 10 µg kg?1minute?1. These increases were maintained during the infusion and were not significantly different between doses. Maternal oxygen saturation remained constant at 1.0 before and during all infusions. Although maternal heart rate and blood pressure increased (p < 0.05) by 90% and 25%, respectively, with dobutamine, this stimulant effect was not evident in the corresponding fetal variables. Maternal haemoglobin concentration increased 30% (p < 0.05) with each infusion. Conclusions Dobutamine at 4 µg kg?1minute?1 increases fetal oxygenation that is not improved by a dose of 10 µg kg?1minute?1. This increase is largely due to an increase in maternal haemoglobin concentration that, in turn, increases oxygen delivery to the placenta. Clinical relevance The use of dobutamine to treat hypotension in pregnant sheep during isoflurane anaesthesia improves fetal oxygenation. This may be true in other species.  相似文献   

16.
ObjectiveTo study the anaesthetic and cardiorespiratory effects of intramuscular (IM) administration of different combinations of romifidine and ketamine in cats.Study designProspective, randomized, cross-over experiment.AnimalsSeven healthy adult cats weighing (mean ± SD) 3.4 ± 0.7 kg and aged 4.6 ± 3.2 years.MethodsAnimals received romifidine 100 μg kg?1 with ketamine 7.5 (R100/K7.5) and 10 mg kg?1 (R100/K10), romifidine 200 μg kg?1 with ketamine 5 (R200/K5), 7.5 (R200/K7.5) and 10 mg kg?1 (R200/K10) by IM injection. The time required to perform orotracheal intubation (IT) was measured and the ease of intubation assessed. The onset of anaesthesia (OA), duration of anaesthesia (DA) and anaesthesia recovery times (AR) were measured. Analgesia and muscle relaxation scores were recorded every 5 minutes for 60 minutes after OA. Heart rate, systolic arterial pressure, arterial haemoglobin saturation, respiratory rate, end-tidal carbon dioxide and oesophageal temperature were also measured.ResultsThe IT, OA and DA were not significantly different between the treatments. The analgesia and muscle relaxation scores were similar between all treatments at most time points. The cardiorespiratory variables were not significantly different between the treatments in most cases. The adverse effects were dose dependent and similar to those previously described for other combinations of α2-agonists and ketamine.Conclusions and clinical relevanceAnaesthesia produced by the studied combinations of romifidine and ketamine may only be reliable when conducting brief and noninvasive procedures in cats. The OA times were slower and the DA shorter than those reported for other alpha-2 agonists combined with ketamine. A dose-related increase in the intensity of the anaesthetic effects could not be demonstrated in this study.  相似文献   

17.
ObjectiveTo investigate the cardiovascular effects of epidural romifidine in isoflurane-anaesthetized dogs.Study designProspective, randomized, blinded experiment.AnimalsA total of six healthy adult female Beagles aged 1.25 ± 0.08 years and weighing 12.46 ± 1.48 (10.25–14.50) kg.MethodsAnaesthesia was induced with propofol (6–9 mg kg?1) and maintained with 1.8–1.9% end-tidal isoflurane in oxygen. End-tidal CO2 was kept between 35 and 45 mmHg (4.7–6.0 kPa) using intermittent positive pressure ventilation. Heart rate (HR), arterial blood pressure and cardiac output (CO) were monitored. Cardiac output was determined using a LiDCO monitor and the derived parameters were calculated. After baseline measurements, either 10 μg kg?1 romifidine or saline (total volume 1 mL 4.5 kg?1) was injected into the lumbosacral epidural space. Data were recorded for 1 hour after epidural injection. A minimum of 1 week elapsed between treatments.ResultsAfter epidural injection, the overall means (± standard deviation, SD) of HR (95 ± 20 bpm), mean arterial blood pressure (MAP) (81 ± 19 mmHg), CO (1.63 ± 0.66 L minute?1), cardiac index (CI) (2.97 ± 1.1 L minute?1 m?2) and stroke volume index (SI) (1.38 ± 0.21 mL beat?1 kg?1) were significantly lower in the romifidine treatment compared with the overall means in the saline treatment [HR (129 ± 24 bpm), MAP (89 ± 17 mmHg), CO (3.35 ± 0.86 L minute?1), CI (6.17 ± 1.4 L minute?1 m?2) and SI (2.21 ± 0.21 mL beat?1 kg?1)]. The overall mean of systemic vascular resistance index (SVRI) (7202 ± 2656 dynes seconds cm?5 m?2) after epidural romifidine injection was significantly higher than the overall mean of SVRI (3315 ± 1167 dynes seconds cm?5 m?2) after epidural saline injection.ConclusionEpidural romifidine in isoflurane-anaesthetized dogs caused significant cardiovascular effects similar to those reportedly produced by systemic romifidine administration.Clinical relevanceSimilar cardiovascular monitoring is required after epidural and systemically administered romifidine. Further studies are required to evaluate the analgesic effects of epidural romifidine.  相似文献   

18.
ObjectiveTo compare the sedative effects of three doses of romifidine with one dose of medetomidine.Study designProspective blinded experimental cross-over.AnimalsFive adult Domestic Short Hair cats.MethodsCats were administered romifidine at 80, 120 and 160 μg kg?1 or medetomidine at 20 μg kg?1 (M20) intramuscularly (IM). Sedative effects were assessed for 3 hours by summing the scores given to posture, auditory response, resistance to positioning, muscular relaxation, and response to noxious stimuli, giving a total sedation score (TS). The area under the curve (AUC) of TS ≥7 (the score considered as clinically useful sedation) was calculated. Times to stages of sedation were determined. Some physiological parameters were measured. Data to compare treatments were analysed by anova or Kruskal–Wallis test as relevant.ResultsAll treatments gave a TS considered clinically useful. There were no significant differences between treatments for times to onset of sedation, maximum TS reached, or AUC. Differences between romifidine treatments for other sedation parameters were not significant but the time to maximum TS and to recovery was shortest in M20. Heart rate (HR) fell significantly with all treatments and, although with M20 it recovered at 65 minutes, it remained significantly depressed for 3 hours after all romifidine treatments. Most cats vomited, and/or hypersalivated after all treatments.ConclusionsDoses of 80, 120 and 160 μg kg?1 romifidine IM produce sedation in cats which is similar to that following medetomidine 20 μg kg?1. Recovery from sedation and of physiological parameters was quickest after M20.Clinical relevanceDoses of romifidine considerably lower than those investigated by previous authors give a clinically useful level of sedation, and their use might result in less side effects and a quicker recovery.  相似文献   

19.
ObjectiveTo evaluate the cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs.Study designExperimental, blinded, randomized, crossover study.AnimalsSix mixed breed dogs (two males and four females) weighing 10 ± 4 kg.MethodsThe animals were randomly divided into four treatments: D (10 μg kg?1 of dexmedetomidine), DM (dexmedetomidine 10 μg kg?1 and methadone 0.5 mg kg?1); DMO (dexmedetomidine 10 μg kg?1 and morphine 0.5 mg kg?1), and DT (dexmedetomidine 10 μg kg?1 and tramadol 2 mg kg?1). The combinations were administered intramuscularly in all treatments. The variables evaluated were heart rate (HR), respiratory rate (fR), rectal temperature (RT), systolic arterial pressure (SAP), sedation scale and pedal withdrawal reflex. These variables were measured at T0 (immediately before the administration of the protocol) and every 15 minutes thereafter until T105.ResultsA decrease in HR and fR occurred in all the treatments compared with T0, but no significant difference was observed between the treatments. The RT decreased from T45 onward in all the treatments. The SAP did not show a difference between the treatments, but in the DT treatment, the SAP was lower at T30 and T45 compared with T0. The D treatment had lower scores of sedation at T15 to T75 compared with the other treatments, and the DMO and DM treatments showed higher scores at T60 and T75 compared with DT.Conclusions and clinical relevanceThe treatments with morphine and methadone added to the dexmedetomidine showed higher sedation scores than the control treatment and the treatment with tramadol added to the dexmedetomidine showed no relevant differences in any of the variables evaluated in the study.  相似文献   

20.
Studies evaluating the effects of dobutamine in horses do not consistently report increases in cardiac output despite increases in arterial blood pressure. The concurrent administration of the α2 agonist clonidine, in people, inhibited the chronotropic effects of dobutamine and increased left ventricular stroke work ( Zimpfer et al. 1982 ). Our study was performed to determine if pre‐medication with an α2 agonist affects the response to dobutamine in anaesthetized horses. Eleven horses were anaesthetized on four separate occasions for one of four randomly assigned treatments; (I) no xylazine, no dobutamine (II) xylazine, no dobutamine (III) no xylazine, dobutamine, and (IV) xylazine, dobutamine. Horses received 0.02 mg kg?1 of butorphanol IV 10 minutes prior to anesthetic induction. Two minutes prior to induction, groups II and IV received 0.5 mg kg?1 of IV xylazine. Anaesthesia was induced with 6–7 mg kg?1 of thiopental and maintained with halothane. End‐tidal halothane concentrations were maintained between 1.1 and 1.2% in groups I and III, and 0.9–1.0% for groups II and IV. Heart rate, cardiac output, right atrial pressure, and systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were recorded 30 minutes after beginning halothane anaesthesia (T10). Cardiac output was estimated using Lithium dilution ( Linton et al. 2000 ). Baseline measurements were repeated twice, at 5‐minute intervals (T5 and T0). At time 0 (T0), an IV infusion of either saline (100 mL hour?1) or dobutamine (0.001 mg kg?1 minute?1) was started and data recorded at 5‐minute intervals for 30 minutes (T5 – T30). Stroke volume and systemic vascular resistance (SVR) were calculated. Data were analysed using repeated measures anova (p < 0.01 significant) and Newman–Keuls for multiple comparisons. Cardiac output and stroke volume increased over time in groups III and IV. Cardiac index was higher in groups III and IV than in groups I and II from T10 until completion of the study. Estimates of cardiac index at T30 for groups I–IV were 45 ± 9, 46 ± 11, 71 ± 11, and 78 ± 19 mL kg?1 minute?1, respectively (mean ± SD). Stroke index was higher in groups III and IV than in groups I and II from T15 to T30. Values for stroke index at T30 for groups I–IV were 0.98 ± 0.19, 1.11 ± 0.18, 1.46 ± 0.21, 1.74 ± 0.33 mL kg?1. Heart rate decreased from T10–T30 in groups I and II. Heart rate was greater in groups I and III than in groups II and IV at T5 and T0. Values for heart rate at T0 for groups I–IV were 48 ± 5, 42 ± 5, 50 ± 4, 43 ± 4 beats minute?1. Systolic arterial pressure, DAP and MAP were higher in groups III and IV than in groups I and II from T5 to T30. There were no differences in SVR between groups. Dobutamine at 0.001 mg kg?1 minute?1 increased cardiac output, blood pressure, and stroke volume. Premedication with xylazine at 0.5 mg kg?1 did not appear to affect the response to dobutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号