首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was conducted to examine the effects of dietary vitamin C and/or E and their interaction on growth and reproductive performance in yellow perch. Yellow perch juveniles were divided into four treatments with triplicate groups and fed with one of four semi-purified diets for 32 weeks. The experimental diets were formulated to contain no or high vitamin E levels (160 mg/kg) without or with vitamin C supplementation (250 mg/kg) designated as diets −C−E, −C+E, +C−E, or +C+E, respectively. The growth rates and survival of yellow perch fed with +C−E and +C+E diets were significantly higher than the fish fed with −C−E diet. Total- and dehydro-ascorbate concentrations in liver and testis increased in response to its dietary supplementation. The -tocopherol concentration in sperm was significantly affected by dietary supplementation of vitamin C. Gonadosomatic index of males was lower in the fish fed with −C−E diet compared to that of fish fed with other diets. Hatching rates of embryos obtained from testing sperm viability was significantly improved in fish fed with the diets sufficient in vitamin C (82±7%) compared to the fish fed with the −C−E diet (59±7). This study indicates that supplementation of dietary vitamin C and E increase growth rate, and semen quality can be improved by dietary vitamin C supplementation within one maturation cycle, and vitamin C may spare sperm vitamin E depending on vitamin E stores in tissues.  相似文献   

2.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

3.
Rainbow trout were fed three experimental diets with varying levels of vitamin E (α‐tocopherol) supplementation (0, 100 and 1000 mg kg?1 diet), and the effects of feeding these diets on serum spontaneous haemolytic activity and classical complement activity were investigated. Hepatic α‐tocopherol levels reflected the dietary intake of the vitamin. Fish fed the diet deficient in vitamin E showed reduced growth and increased mortality. Their hepatosomatic index and erythrocyte fragility was significantly higher than both the supplemented groups and haematocrit, and complement activity were all significantly lower. There appeared to be some enhancement of serum complement activity correlated with increased dietary supplementation with vitamin E but the benefits of supplementation at levels above those currently recommended were not established.  相似文献   

4.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

5.
A 12-week feeding trial was conducted to establish the minimum dietary vitamin E requirement of juvenile red drum by broken-line regression analysis. The semi-purified basal diet was supplemented with 10, 20, 30, 40, 60 or 80 IU vitamin E kg−1 as all-rac -α-tocopheryl acetate. Juvenile red drum were conditioned by feeding the basal diet for 8 weeks prior to the feeding trial to reduce whole-body vitamin E levels. Then, fish initially averaging 12.2 ± 0.4 g fish−1 (mean ± SD) were fed the experimental diets at a rate approaching apparent satiation for 12 weeks. Weight gain and feed efficiency responses of fish fed diets were significantly ( P  < 0.01) altered by the level of vitamin E supplementation but not strictly in a dose-dependent manner. Vitamin E concentrations in liver and plasma also were significantly ( P  < 0.001) influenced by dietary vitamin E level. Plasma ascorbic acid in fish fed the basal diet tended ( P  = 0.066) to be lower than in fish fed diets containing the various levels of vitamin E. In addition, fish fed the basal diet showed edema in the heart, while fish fed all other diets were normal. Fish fed 60 or 80 IU all-rac -α-tocopheryl acetate kg−1 diet had significantly higher respiratory burst of head kidney macrophages than fish fed all other diets, although dietary effects on hematocrit and neutrophil oxidative radical production were not significant. The minimum dietary vitamin E requirement of juvenile red drum was established based on broken-line regression of liver thiobarbituric acid reactive substances to be 31 mg all-rac -α-tocopheryl acetate kg−1 diet.  相似文献   

6.
This study was conducted to evaluate the dietary α‐tocopherol (vitamin E) requirement in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.48 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semi‐purified experimental diets with average protein and crude lipid levels (dry matter) of 29.7 ± 0.36% and 4.39 ± 0.23% (mean ± SD), respectively were formulated to contain 0 (E4), 15 (E12), 30 (E23), 60 (E44), 120 (E77) and 600 (E378) mg α‐tocopherol/kg diet, supplied as dl‐α‐tocopheryl acetate. Diets were analyzed for α‐tocopherol content by HPLC and the α‐tocopherol levels were 4.01, 12.4, 23.1, 44.3, 77.4 and 378 mg α‐tocopherol/kg diet for E4, E12, E23, E44, E77 and E378 diets, respectively. Casein and defatted fish meal were used as the protein sources in the diets while wheat flour was the carbohydrate source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of the 14‐week feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of sea cucumbers fed on E23, E44, E77 and E378 diets were significantly (P < 0.05) higher than those of animals fed on E4 and E12 diets. However, there were no significant differences in WG, SGR and FE among sea cucumbers fed on E23, E44, E77 and E378 diets or among those fed on E4 and E12 diets. Survival of sea cucumbers fed on E44, E77 and E378 diets were significantly higher than those of animals fed on E4, E12 and E23 diets. However, there were no significant differences among sea cucumbers fed on E4, E12 and E23 diets or among those fed on E44 and E77 diets. Whole‐body vitamin E concentration increased with α‐tocopherol content of the diets. Broken line analysis of WG showed an optimum dietary α‐tocopherol requirement of 41 mg α‐tocopherol/kg diet in sea cucumber. These results indicated that the optimum dietary α‐tocopherol requirement in sea cucumber in the form of dl‐α‐tocopheryl acetate could be higher than 23.1 mg α‐tocopherol/kg diet but lower than 44 mg α‐tocopherol/kg diet.  相似文献   

7.
在基础饲料中分别添加维生素E(VE)(60mg/kg标为e或300mg/kg标为E)和硒(Se)(0mg/kg标为s或2.5mg/kg标为S),制成4种试验饲料(s/e,s/E,S/e,S/E)分别饲喂初始体重为38.5±0.15g的牙鲆70d,观察其对生长性能、肝脏及血清中谷胱甘肽过氧化物酶(GSH-Px)活性、非特异免疫力以及抗病力的影响。结果表明,饲喂添加高剂量VE的两组饲料(s/E,S/E),牙鲆的特定生长率和吞噬率明显地提高(P0.05)。饲喂添加硒的两组饲料(S/e,S/E),牙鲆血液和肝脏的GSH-Px活性显著升高(P0.05)。70d投喂实验结束后,利用鳗弧菌进行攻毒试验,不添加硒和低剂量VE(s/e)使牙鲆的累积死亡率明显高于其他3组。  相似文献   

8.
A feeding trial was conducted to determine the dietary vitamin C requirement of juvenile hybrid striped bass Morone chrysops × M. saxatilis . Fish were fed a semi-purified basal diet with 40% crude protein and an energy to protein ratio of 8 kcal/g for a conditioning period of 2 wk. This diet which was not supplemented with vitamin C contained approximately 6-mg vitamin C/kg. Following conditioning, fish (approximately 0.55 g initial weight) were stocked as groups of 20 in 38-L aquaria and fed the basal diet and experimental diets supplemented with 10, 20, 30, 45, 60, 75, or 150-mg vitamin C/kg as ascorbate polyphosphate for a period of 10 wk. Fish fed the basal diet and the diet supplemented with 10-mg vitamin C/kg exhibited signs of vitamin C deficiency including suppressed weight gain, reduced plasma and liver ascorbic acid levels, and abnormalities in isthmus cartilage formation. Plasma and liver ascorbic acid levels generally reflected dietary supplementation with the lowest levels occurring in fish fed the basal diet and higher levels in fish fed the supplemented diets. The minimum dietary requirement (±SE) based on non-linear least squares regression analysis of weight gain was 22 (±6) mg vitamin C/kg diet.  相似文献   

9.
A study was conducted to determine the effect of increasing dietary levels of fish oil on vitamin E requirement and their effect on growth performance, liver vitamin E status, and tissue proximate and fatty acid compositions of channel catfish. Basal purified diets (42% protein and 3,800 kcal DE/kg) supplemented with 6, 10, and 14% menhaden fish oil were each supplemented with 50, 100, and 200 mg vitamin E/kg (3 × 3 factorial experiment). Each diet was fed to juvenile channel catfish in three random aquaria to apparent satiation twice daily for 12 weeks. Weight gain, feed intake, and feed efficiency ratio were not affected by dietary levels of fish oil, vitamin E, or their interaction. Survival rate at the end of week 12 was significantly lower for fish fed diets containing 14% fish oil, regardless of vitamin E content. Whole-body moisture significantly decreased and lipid increased when dietary lipid levels were increased to 10 or 14%. Dietary vitamin E levels had no effect on body proximate composition. Lipid content of liver was not influenced by dietary levels of fish oil and vitamin E or their interaction. Hepatosomatic index significantly decreased with increasing lipid levels but was not affected by dietary levels of vitamin E. Liver vitamin E increased with increasing dietary vitamin E but decreased with increasing fish oil levels. Fatty acid composition of whole body and liver reflected that of dietary lipid but was not influenced by dietary levels of vitamin E. Whole-body saturates increased, whereas MUFA decreased with increasing dietary levels of fish oil. Liver saturates were not affected by fish oil levels, but MUFA and n-6 decreased and increased, respectively, with increasing fish oil levels. Total n-3 and n-3 HUFA in both tissues increased with increasing fish oil levels in diets, but liver stored much higher levels of these fatty acids.  相似文献   

10.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

11.
Abstract. The quantitative dietary ascorbic acid requirements of fingerling Nile tilapia, Oreochromis niloticus L., were assessed by feeding seven diets containing graded supplements of this vitamin (0, 50, 75, 100, 125, 300 and 400mg/100g dry diet) to triplicate groups of fish for 12 weeks. Fish fed the diet devoid of ascorbic acid exhibited significantly ( P < 0·01) poorer growth and higher condition factor. Food conversion and protein efficiency ratios were improved with increasing dietary ascorbic acid level up to 125mg/100g of dry diet. Protein utilization, haematocrit, haemoglobin level and tissue ascorbate concentrations were depressed in fish fed the ascorbic-acid-free diet. Tissue ascorbate concentrations, especially for liver, were highly correlated with dietary ascorbic acid level. Fish fed the ascorbic-acid-free diet exhibited deficiency signs including erratic and convulsive swimming, anorexia, lethargy, caudal fin erosion, skin haemorrhages and mortality. Based on the nutritional and pathological parameters investigated, the recommended dietary inclusion level is 125mg/100g dry diet, which is equivalent to a net requirement (after processing and storage) of 42mg/100g diet.  相似文献   

12.
Juvenile green abalone Haliotis rufescens were grown under laboratory conditions at 21±1 °C and fed formulated diets consisting of different protein:energy ratios (mg protein/kcal), 62, 74, 85, 100, 108, for 60 days. The level of crude protein ranged from approximately 26% to 44% while the energy content remained constant at about 4.1 kcal g−1. Growth ranged from 3.63 to 12.33 mg day−1. The growth of abalone fed the 100 and 108 diets was significantly greater than that of each of the other diets. Protein efficiency ratio increased as the dietary protein content increased except for the T108 diet (44% crude protein). Abalone apparently consume food to satisfy an energy requirement. Caloric expenditure due to metabolism was estimated for abalone fed diets with protein ratios of 62, 85, 100. Energy loss due to respiration did not vary appreciably among abalone fed the different diets. The proportional distribution of dietary energy into fecal, digestible, growth, and metabolic energy was estimated for abalone fed these diets. Apparent dry matter digestibility was among the lowest for abalone fed the 100 P:E diet, but growth of abalone fed this diet was significantly higher than that of each of the other treatments except the 108 diet. Unexplained energy loss to achieve balance ranged from 7% to 28.5%, some of which is probably due to differential mucus and ammonia production. Results suggest a potential for the reduction of both dietary protein and lipid without causing any adverse effects on the growth response.  相似文献   

13.
To investigate the potential synergistic effects of dietary ascorbic acid (AA), α‐tocopheryl acetate (TA) and selenium (Se) supplementation above minimum requirement levels on the growth performance and disease challenge of fingerling Nile tilapia, Oreochromis niloticus L., five experimental diets were formulated: control (150 mg AA, 100 mg TA and 0.2 mg Se per kg diet), excessive ascorbic acid (eAA) (2000 mg AA, 100 mg TA and 0.2 mg Se per kg diet), excessive α‐tocopheryl acetate (eTA) (150 mg AA, 240 mg TA and 0.2 mg Se per kg diet), excessive selenium (eSe) (150 mg AA, 100 mg TA and 0.5 mg Se per kg diet) and excessive all (eALL) (2000 mg AA, 240 mg TA and 0.5 mg Se per kg diet). Experimental fish averaging 2.9 were randomly distributed in each aquarium as a group of 40 fish with total weight 116±2.9 g (mean±SD). Each diet was fed on a dry‐matter basis to fish in three randomly selected aquaria at a rate of 4–8% of total body weight daily. After 10 weeks of the feeding trial, fish fed eAA, eTA and eALL diets had significantly higher weight gain, feed efficiency ratio, protein efficiency ratio and specific growth rate than fish fed eSe and control diets (P<0.05). There was no significant difference among fish fed five experimental diets in cumulative mortalities when fish were challenged with Edwardsiella tarda at the end of the experimental period. These results indicate that sufficient supplementation of dietary AA or TA had positive effects on growth performance, but there was no synergistic effect of excessive dietary AA, TA and Se supplementation on growth performance and disease resistance to E. tarda in fingerling Nile tilapia.  相似文献   

14.
The objective of this experiment was to determine the effects of two levels of vitamin E (100 and 300 mg/kg diet) along with two levels of lipid (9 and 14%) and their interaction on growth performance of Indian white shrimp and consequently to evaluate the fatty acid composition and lipid stability of its muscle tissue during frozen storage. Growth of juvenile Indian white shrimp was not significantly affected by dietary vitamin E and lipid levels. Muscle lipid content of shrimp fed diets with 14% lipid was significantly higher than that of with 9% lipid. Obvious effects of the increase in dietary lipid level on muscle fatty acid composition were significant decrease in proportion of 16:0 and increase in proportion of 20:5n-3. The content of vitamin E concentration in shrimp muscle reflected dietary vitamin E concentration and ranged from 6.68 to 14.8 mg/kg muscle corresponding to two (100 and 300 mg/kg) levels of vitamin E in fish diet, respectively. Subsequently, results showed that by increasing the concentration of vitamin E from 100 to 300 mg/kg in diet, the rate of lipid oxidation in the muscle tissue during frozen storage was reduced and, as a result, caused higher HUFA retention in muscle of shrimp fed diet with high lipid level.  相似文献   

15.
Groups of rainbow trout (mean initial weight 14 g) were given diets containing 10% of fatty acids derived from a white fish offal oil together with graded levels of vitamin E (2–10 mg/100 g) for 16 weeks. Fish increased in weight by eight-fold over the course of the experiment but there were no differences in weight gain between treatments, food conversion was similar in all treatments, no pathologies were observed and few mortalities occurred. In trout given the lowest dietary vitamin E intake, tissue levels of vitamin E were lowest in skeletal muscle, concentrations in most other soft tissues were about threefold that in muscle but higher levels were found in brain. Increased erythrocyte fragility occurred in those fish given diets low in vitamin E, and ascorbic acid-Fe3+-stimulated lipid peroxidation in liver microsomes decreased with increasing dietary vitamin E. Little or no malonaldehyde was formed in microsomes from trout fed diets containing 5 mg vitamin E/100 g or more. This was taken to be an adequate or safe concentration under the dietary conditions employed. Microsomes prepared from the muscle of trout given low levels (2 mg/100 g diet) of vitamin E were more susceptible to peroxidation in vitro than those obtained from gill, heart or liver. Microsomal susceptibility to peroxidation is determined by the ratio of vitamin E: peroxidizable unsaturated fatty acids in the microsomal membrane. Some of these ratios were measured and the results are discussed.  相似文献   

16.
Abstract. The interactions of astaxanthin and vitamin A on the growth and survival of Atlantic salmon, Salmo salar L., during the first-feeding period were examined using semi-purified diets. Alevins, with a mean initial weight of 0.18g, were fed diets supplemented with 0, 20 and 40 mg astaxanthin/kg dry diet and 0, 750 and 1500 μg vitamin A/kg dry diet for 20 weeks. The weights of the fish were recorded throughout the experimental period and carcasses were collected for proximate composition, vitamin A and astaxanthin analyses at the beginning and end of the experiment. The feeds were analysed for proximate composition, vitamin A and astaxanthin levels.
No interaction between astaxanthin and vitamin A was found in relation to the growth, survival or vitamin A content of the fry. Astaxanthin was found to strongly influence the growth, survival and vitamin A concentration in the fish. Poor growth and low survival rates were observed in groups fed diets without astaxanthin, including the group fed a diet with sufficient vitamin A. The results indicate both a provitamin A function of astaxanthin and a specific function of astaxanthin. Astaxanthin was found to be essential to alevins during the first-feeding period.  相似文献   

17.
Rainbow trout (Oncorhynchus mykiss) maintained in crowded (100 kg m− 3) and uncrowded (20 kg m− 3) conditions were fed 42 days with five experimental diets having different levels of vitamin E (25.6 and 275.6 mg kg diet− 1), C (0 and 1000 mg kg diet− 1) and HUFA (highly unsaturated fatty acids, 12.5 and 320.5 g kg diet− 1): −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA. Cortisol, plasma metabolites, tissue glycogen, fish composition, and tissue fatty-acid profile were evaluated at the end of the experimental period. In general, no changes in cortisol levels were associated with crowding, although +E+HUFA and −C+E+HUFA fish showed higher levels (mean ± SE, 55.5 ± 11.1 and 78.0 ± 11.3 ng ml− 1) as a consequence of a possible interaction between chronic crowding and diet composition. Protein and glucose con-centration in plasma displayed no effect of crowding, but liver glycogen showed a general tendency to decrease in −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA crowded groups (70.2 ± 2.1, 52.1 ± 2.5, 73.4 ± 7.4, 91.7 ± 3.3, 74.2 ± 8.4 mg g− 1 tissue, respectively) compared to uncrowded groups (108.9 ± 14.2, 82.7 ± 8.8, 92.4 ± 10.7, 99.1 ± 10.0, 103.5 ± 15.6 mg g− 1 tissue, respectively), thus proving significant in −E+HUFA fish. Variations in total lipids, triglycerides, total cholesterol and HDL as well as LDL cholesterol in plasma were manifested under crowding conditions, displaying a certain influence of vitamin E and HUFA dietary content. Final body composition, in general, showed no change attributable to fish density, but some differences associated with diet composition were found in lipid and moisture percentages of crowded fish. Liver and muscle fatty-acid profile revealed a clear effect of the dietary lipid source that was more evident in muscle than in liver at normal fish density, and in some cases this effect was modulated by dietary vitamin E and C content and fish-culture conditions.  相似文献   

18.
A 56‐day experiment was carried out to investigate the effects of dietary vitamin C and vitamin E on the growth, antioxidant status and digestive enzyme activities of discus fish (Symphysodon haraldi; initial body weight: 7.96 ± 0.61 g and body length: 5.45 ± 0.65 cm). Animals were fed with 13 different diets including one control diet and 12 treatment diets containing four levels of vitamin C (magnesium‐L‐ascorbyl‐2‐phosphate; 40, 80, 120 and 160 mg/kg) crossed with three levels of vitamin E (DL‐α‐tocopheryl acetate; 40, 80 and 120 mg/kg). The results showed that the fish fed diets containing additional vitamin C (40 mg/kg) and vitamin E (80 mg/kg) showed higher specific growth rate, length growth rate, total antioxidant capacity and protease activity but had lower feed conversion ratio and total superoxide dismutase activity than those fed the control diet. Collectively, these findings suggest that the inclusion of additional 40 mg/kg of vitamin C and 80 mg/kg of vitamin E in the basal diet could have beneficial effect on the growth, antioxidant defence and digestion of S. haraldi.  相似文献   

19.
A feeding trial was conducted to evaluate the dietary copper requirement of red drum (Sciaenops ocellatus) and compare the bioavailability of copper sulphate (CuSO4) and copper‐ethanolamine. A basal diet was formulated using semi‐purified ingredients and analysed to contain 3 mg Cu/kg. Both copper sources were supplemented to the basal diet at either 5, 10 or 20 mg Cu/kg of dry diet. No significant differences were observed in growth performance of fish fed the various diets. However, red drum fed all copper‐supplemented diets retained more copper in liver and whole‐body tissues compared to fish fed the basal diet. Within both inorganic and organic copper treatments, the highest tissue copper concentrations were observed in fish fed diets supplemented with 10 mg Cu/kg. No significant differences were detected in net copper retention regardless of the nature of the copper source; hence, the bioavailability of copper sulphate and copper‐ethanolamine complex was not different in the diets for juvenile red drum. Furthermore, the minimum copper requirement for growth performance of juvenile red drum appeared to be satisfied when fish were fed the basal diet containing 3 mg Cu/kg diet, and no detrimental effects were observed in red drum fed diets supplemented with 20 mg Cu/kg.  相似文献   

20.
Juvenile African catfish, Clarias gariepinus (Burchell), of mean initial weight 15 g, were fed practical diets containing fresh or rancid oil (1:1 cod liver:corn oil) supplemented with either 20 or 100 mg all-rac-α-tocopheryl acetate per kg dry diet, at 0.03 × body weight per day for 8 weeks. After this time, catfish had grown by at least four times in body weight. Significant ( P < 0.05) inter-treatment differences in final body weight were noted. Clarias fed low-tocopherol: oxidized-oil diets performed least well with regard to growth, though elevated dietary vitamin E partially abrogated this effect. Growth of fish fed fresh-oil diets did not benefit from increased dietary α-tocopherol content. Muscle, liver, plasma, heart and spleen all responded significantly ( P < 0.05) to dietary vitamin E dose. Inclusion of oxidized oil in catfish diets decreased tissue α-tocopherol concentration. Hepatic α-tocopherol concentration (μg α-tocopherol per g liver) was observed to be lowered by 90% by the rancid oil diets. When fish previously fed fresh-oil diets were switched to oxidized: low-tocopherol diets, hepatic α-tocopherol concentration was significantly ( P < 0.05) lowered within 2 weeks. The results highlight the importance of dietary oil quality in modulating tissue α-tocopherol concentrations in African catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号