首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Mixtures of perennial ryegrass ( Lolium perenne L.) and white clover ( Trifolium repens L.) sown in alternate rows or in a thoroughly mixed matrix were grazed by sheep, either continuously or during short grazing tests, and were used to investigate the influence of the vertical and horizontal components of the sward structure on defoliation by sheep.
In an experiment under continuous grazing, the defoliation intensity was greater for white clover compared with perennial ryegrass leaves (0·80 and 0·58 respectively). In spring, perennial ryegrass leaves were more defoliated than white clover leaves, whereas the reverse was observed in summer. The ratio of the proportion of white clover to perennial ryegrass leaves grazed was negatively correlated with the difference between the surface height of the perennial ryegrass and white clover rows in spring. In both spring and summer, white clover leaves of the same extended leaf length had a higher proportion of them grazed than perennial ryegrass leaves.
In another experiment, during short grazing tests with perennial ryegrass–white clover swards that were grazed at the same sward surface height and at the same white clover content as in the previous experiment, there were no significant differences in the proportion of white clover and perennial ryegrass leaves grazed between strips of the two species and thoroughly mixed structures. The proportion of white clover leaves grazed was higher than that of perennial ryegrass leaves.
These results show that the differential defoliation by sheep of perennial ryegrass and white clover leaves varies according to their vertical distribution in the mixed canopy, but is little affected by their horizontal distribution. Even small differences in sward surface height between mixed perennial ryegrass and white clover can affect diet selection by sheep to a rather large extent.  相似文献   

2.
Swards of Phalaris aquatica-Trifolium subterraneum were subjected to four defoliation treatments—zero, low (11 sheep ha−1) and high (22 sheep ha−1) stocking rates, and weekly cutting. At high stocking rate the annual grass Hordeum leporinum dominated while clover was dominant at low and zero stocking rates. Weekly cutting suppressed species other than clover and so failed to simulate grazing.
There were similarities in net herbage production between zero and lightly grazed swards and between heavily grazed and repeatedly cut swards. Net herbage production decreased in the order undisturbed sward < lightly grazed sward < heavily grazed sward < repeatedly cut sward.
When sheep grazed swards where herbage mass was low their daily consumption of herbage, and therefore liveweight change, depended on their recent grazing experience. Sheep accustomed to swards where herbage mass was low ate more because they grazed for much longer each day than unaccustomed sheep, although they selected a diet of similar digestibility.  相似文献   

3.
An experiment was conducted to examine how variation in the composition and structure of mixed grass/white clover swards affected diet selection by sheep and goats. Sward composition in a mixed perennial ryegrass/white clover sward was manipulated by continuous grazing from 28 May to 28 July (pre-experimental phase) with cattle, sheep or goats, and then from 29 July to 2 September (experimental phase) with sheep or goats in a factorial design replicated twice. Sward surface height was maintained at 6 cm by regular adjustment of stocking density. Grazing by different sequences of animal species resulted in significant differences in the proportions of white clover in the sward, and especially in the proportion of clover lamina and petiole. Grazing by goats in the pre-experimental phase led to greater proportions of clover lamina and petiole in the whole sward and the sward surface. The proportion of white clover in the diet selected by sheep in the experimental phase was consistently higher than that in the sward as a whole, but was closely related to that near to the sward surface (approximately the top 2 cm). For goats there was no significant relationship between the proportion of clover in the diet and in the whole sward, and they generally selected a diet with a lower proportion of white clover than was present in approximately the top 2 cm of the sward. It is concluded that on mixed grass/white clover swards goats do not graze as deeply into the sward as sheep and that this results in a lower proportion of white clover in their diet and therefore allows higher proportions of white clover to develop under grazing by goats than by sheep.  相似文献   

4.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

5.
Three experiments designed to investigate different facets of autumn management on white clover stolon development are described. The effects of defoliation interval (2, 4, 6 and 8 weeks during 16 weeks from 27 July) were investigated. The shortest interval resulted in the shortest length of stolon material per unit area but cutting interval had no effect on growing point density nor on hardiness of stolon tips evaluated in October, December and January.
Chemical grass suppressants were employed to reduce grass biomass during winter in two experiments to evaluate the influence of grass on white clover development. One experiment involved varying grass tiller density by spraying a perennial ryegrass/white clover sward in October with three rates of three chemical suppressants (Clout, Kerb and Checkmate). Although tiller and clover growing point density were inversely related in January, the overall relationship was not strong.
Clout at l·5kg a.i. ha−1 was sprayed in October on one of two subplots in each of twelve grazed grass/white clover plots that had been maintained at 7 or 9 cm from July to October then grazed to 3–4 cm with sheep. Sward height had no effect on clover population density but the shorter sward had a greater mean node number per secondary stolon branch. By March, suppressing grass resulted in more than double the stolon population density, a higher proportion of plants with tertiary and quaternary branches, and on marked stolons, five times more branches and 60% higher dry matter (DM) produced during winter but with shorter petioles compared with clover in untreated plots.
It is concluded that white clover has the capacity to branch during a mild winter and as stolon branch numbers can suffer a net loss as a result of the presence of the grass canopy, management that controls grass growth during winter should aid over-wintering and improve persistence of white clover.  相似文献   

6.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

7.
In two experiments with ryegrass/white clover mixtures, the proportion of clover was measured before and after cuts which removed 8-75% of above-ground biomass. Cutting was found to reduce the proportion of clover leaf area in the crop in both experiments, sometimes by as much as two-thirds, and the proportion of clover dry weight, by up to half, in one of them. That is, the harvested material contained a greater proportion of clover than did the sward before the cut. This disproportionate removal of clover was due to clover having a greater proportion of its leaf near the top of the canopy than grass. It showed that preferential removal of clover occurs as a result of the purely passive selection by a mower, not only as a result of grazing by animals which may be capable of active as well as passive selection.
Despite the disadvantage to clover of losing more of its leaf area than grass, and in some cases more of its dry weight also, when the mixture was cut, the clover content of the sward did not decrease during the growing season as a whole. This was because, where no nitrogen fertilizer was applied, clover had a greater relative growth rate (RGR) than its companion grass during the growth periods between cuts and this increased its percentage of the mixture. Even where nitrogen was applied, clover equalled the RGR of grass and maintained its proportion of the crop, except in one instance.  相似文献   

8.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

9.
Herbage characteristics were studied over years 4–6 (1988–90) in three perennial ryegrass ( Lolium perenne L.) varieties as grass-only (200 kg N ha-1) and grass/clover ( Trifolium repens L.) swards which received 75kg N ha-1 in 1988 and 0kg N ha-1 in 1989 and 1990 when continuously stocked with sheep. Mean total annual herbage production of Aurora, a very early flowering variety, was 11% more than that of late-flowering Aberystwyth S23 due to 21% higher growth as grass/clover pasture. The grass/clover sward of Meltra, a tetraploid late-flowering variety, out-yielded S23/clover by 17%. Herbage production of grass/clover was 86% of that of grass only in 1988 but only 54% of the grass-only swards averaged for 1989 and 1990.
In vitro organic matter digestibility (OMD) of Meltra was 38g kg-1 OM and 27g kg-1 OM higher than that of S23 and Aurora respectively. OMD of grass/clover was 15g kg-1 OM higher than that of grass only during the post-weaning period. Herbage intake was positively correlated with OMD of herbage.
The herbage attributes were related to lamb performance reported previously. Lamb output was positively correlated with intake of digestible organic matter.
Differences between the three varieties in herbage characteristics were greater as grass/clover than as grass-only swards, reflecting their compatibility with white clover. In this respect Meltra was the best and S23 the poorest variety.  相似文献   

10.
Three experiments were conducted to determine the association between leaf number per tiller at defoliation, water‐soluble carbohydrate (WSC) concentration and herbage mass of juvenile ryegrass plants when grown in a Mediterranean environment. Seedlings of ryegrass were grown in nursery pots arranged side‐by‐side and located outside in the open‐air to simulate a mini‐sward in Experiments 1 and 2, and a mixture of annual ryegrass and subterranean clover (Trifolium subterraneum L.) was grown in a small plot field study in Experiment 3. Swards were defoliated mechanically with the onset of defoliation commencing within 28 d of germination. Frequency of defoliation ranged from one to nine leaves per tiller, whilst defoliation height ranged from 30 mm of pseudostem height that removed all leaf laminae in Experiment 1, to 50 mm of pseudostem height with some leaf laminae remaining post‐defoliation in Experiments 2 and 3. A positive relationship between herbage mass of ryegrass, WSC concentration and leaf number per tiller at defoliation was demonstrated in all experiments. In Experiment 1, the herbage mass of leaf, pseudostem and roots of tillers defoliated at one leaf per tiller was reduced to 0·10, 0·09 and 0·06 of those tillers defoliated less frequently at six leaves per tiller. However, the reduction in herbage mass from frequent defoliation was less severe in Experiment 2 and coincided with a 0·20 reduction in WSC concentration of pseudostem compared with 0·80 measured during Experiment 1. In Experiment 3, the highest harvested herbage mass of ryegrass occurred when defoliation was nine leaves per tiller. Although the harvested herbage from this sward contained senescent herbage, the in vitro dry‐matter digestibility of the harvested herbage did not differ significantly compared with the remaining treatments that had been defoliated more frequently. Leaf numbers of newly germinated ryegrass tillers in a Mediterranean environment were positively associated with WSC concentration of pseudostem and herbage mass. A minimum period of two to three leaf appearances was required to restore WSC concentrations to levels measured prior to defoliation thereby avoiding a significant reduction in herbage mass. However, maximum herbage mass of a mixed sward containing ryegrass and subterranean clover was achieved when defoliation was delayed to nine leaves per tiller.  相似文献   

11.
An experiment was conducted to measure the effects of differrat ryegrass companion grasses and red-clover varieties on the productivity of red-clover swards. Three silage harvests per year were taken over a 2-year period. The addition of a companion grass increased total herbage yields; S24 perennial ryegrass gave the highest herbage yield over the two years, followed by Reveille perennial ryegrass. Because of lack of persistence, Tetila Italian ryegrass yielded poorly the second year. A companion grass had little effect on red-clover yields in the mixed swards but improved percentage digestibility of the OM of the total herbage and lowered the CP percentage. Its presence also reduced the ingress of unsown species. The variety of red clover used had little effect on total herbage yields or red-clover yields in the first harvest year. In the second year, Hungaropoly and Tilo persisted better and so gave higher total herbage yields and red-clover yields than Dorset Marl or Essex. The fall in total herbage yields from the first to the second year was entirely due to a fall in red-clover yield since yields of the ‘non-red clover’ fraction of the total herbage increased. A red-clover/grass sward may have advantages over a pure red-clover sward nutritionally, for silage-making and for its effect in diluting the oestrogenic activity of a pure clover sward. A major reappraisal of the role and potential of red-clover swards in the UK is warranted because of their many valuable attributes, particularly their ability to give high herbage yields of high nutritive value without the addition of fertilizer N. The improved persistency of some of the tetraploid varieties of red clover enhances the value of the plant.  相似文献   

12.
An experiment was conducted to assess the effects of grazing a perennial ryegrass (Lolium perenne) / white clover (Trifolium repens) sward by sheep or goats on sward composition and structure and on subsequent diet selection, herbage intake and liveweight gain by weaned lambs. From mid-May to late July (phase 1), ewes with twin lambs or yearling Scottish Cashmere goats grazed continuously swards maintained at 4- or 8-cm sward surface height. From mid-August to the end of September (phase 2), weaned lambs continuously grazed the same swards maintained at 4 cm (treatment 4–4) or at 8 cm (treatment 8–8) or which had been allowed to increase from 4 cm to 8 cm (treatment 4–8). By the end of phase 1, swards grazed by goats had higher proportions of white clover in the whole sward (0.377 vs. 0.181; s.e.d 0.0382; P < 0.001) than those grazed by sheep, irrespective of sward height treatment. This resulted in phase 2 in a higher proportion of white clover selected ( P <0.001), higher herbage intakes ( P < 0.001) and higher liveweight gains ( P < 0.001) by weaned lambs grazing swards previously grazed by goats compared with those previously grazed by sheep. There were higher proportions of clover present in the swards from treatment 4–8 at the beginning of phase 2 compared with the other sward height treatments and consequently weaned lambs had, on this treatment, a higher proportion of clover in their diet ( P <0.001), higher herbage intakes ( P <0001) and higher liveweight gains ( P <0.001). It is concluded that goats can be integrated into sequential grazing systems with sheep on grass/clover swards and this can result in an increase in the proportion of clover in swards and increased sheep performance.  相似文献   

13.
Tall fescue and Italian ryegrass mixtures react differently to management in the year of sowing. The decrease in yield of tall fescue and the increase in growth of red clover, caused by the use of a cover crop, was still evident in the following year. In both the spring grazing and total yield of the first harvest year, the Italian ryegrass/ white clover mixture was better than the tall fescue/white clover mixture when a cover crop was used. The reverse trend was recorded when the grass plus clover was sown without the cereal. In general, the addition of red clover to the tall fescue/ white clover, or Italian ryegrass/white clover mixture, increased the yield, but the magnitude of the increase was modified by management during establishment. The increase in total herbage yield and the reduction of white clover growth due to nitrogen application were both related to management in the year of sowing. Consideration should thus be given to method of establishment in the assessment of herbage seeds mixtures.  相似文献   

14.
An examination was made of the effects of different spring treatments on the growth of white clover in a ryegrass/white clover sward. Plots were either cut once (in February, March or April) or twice (in February and April) or left uncut. Nitrogen was applied to half of the plots in each instance. The clover was sampled at intervals of approximately 3 weeks from February to June to determine numbers of leaves and growing points and weights of plant parts. Rates of leaf appearance were also observed and estimates were made of total herbage mass from ground-level cuts.
Percentages of white clover in the herbage were higher in unfertilized than in fertilized plots and in defoliated than in undefoliated plots. The percentage increases that followed defoliation were usually maintained into later regrowth, showing that clover content was not automatically reduced as herbage mass increased. Increases in growing points were recorded after the beginning of April in defoliated unfertilized plots but not in undefoliated fertilized plots or in plots fertilized and defoliated twice during the spring period, in which numbers fell substantially.
Inverse relationships were found between rates of leaf appearance, or the number of green leaves retained per stolon, and herbage mass, whereas heights of clover and grass leaves and the percentage of dry matter allocated to petiole rather than leaf in the clover increased with increasing herbage mass.
We suggest that the observed differences between spring treatments in clover percentage result primarily from their differential effects on the formation and death of tillers and growing points in the early stages of regrowth.  相似文献   

15.
Continuous stocking with sheep at high stocking rates may reduce the content of white clover (Trifolium repens) in mixed grass-clover swards. The present experiment was carried out to investigate the effects on sward production and composition of resting a perennial ryegrass (Lolium perenne)- white clover sward from grazing and taking a cut for conservation. Swards were set-stocked with 25 and 45 yearling wethers ha?1 either throughout a grazing season, or on swards that were rested for a 6-week period and then cut in early, mid- or late season. In an additional treatment swards were cut only and not grazed. Net herbage accumulation was higher at the lower of the two stocking rates and was marginally increased by the inclusion of a rest period at the high but not the low stocking rate. Clover content was higher at the lower stocking rate and was increased by the inclusion of a rest period by 30% at 45 sheep ha?1and by 11% at 25 sheep ha?1 The effect was most marked at the end of the rest period before cutting. When rested from grazing the tiller density of ryegrass decreased although tiller length increased, and clover stolon length, petiole length and leaflet diameter increased though leaf and node number per unit length of stolon decreased; the reverse applied when the sward was returned to grazing after cutting. At the high stocking rate, rest periods in mid-season or later maintained the greatest clover content and marginally increased total net herbage accumulation. At the low stocking rate the timing of the rest period had no significant effect on total net herbage accumulation or on clover content. These results show that the combination of grazing and cutting is of benefit where the stocking rate is high enough to threaten clover survival and limit sheep performance. However, at such a stocking rate, feed reserves are at a minimum throughout the grazing season and so opportunities for resting the sward are probably low.  相似文献   

16.
An experiment was conducted over 3 years (1983-85) to assess the performance of Holcus lanatus German Commercial and cv. Massey Basyn compared with Lolium perenne cv. Perma on a gley soil under sheep grazing in the Scottish uplands. All grasses were sown together with Trifolium repens cv. Grasslands Huia. The swards were rotationally grazed at similar herbage allowances. During the first harvest year, the swards were grazed hard to a low mass (500 kg DM ha−1). In the second harvest year, post-grazing herbage masses of 500 and 1000 kg DM ha−1 were compared.
Perma ryegrass had a higher level of herbage production than both H. lanatus cultivars in the first and second harvest years after sowing and hence had a greater number of sheep grazing days. The ryegrass sward consisted of 25% more green sown grass (85 cf. 60%) but 12% less white clover (4 cf. 16%) compared with both H. lanatus cultivars in the establishment and first harvest years. The persistence of all three grasses was poor although ryegrass had a higher presence (36%) than either Massey Basyn (22%) or German Commercial (13%) at the end of the. second harvest year.
At a similar herbage allowance, there were no significant differences in the herbage intake and liveweight gain of sheep. Ryegrass had a higher organic matter digestibility and lower neutral and acid detergent fibre and lignin contents than either of the H. lanatus cultivars.
In the second harvest year, although herbage production was greater at the higher herbage mass, there was no difference in the proportion of sown grass.
It was concluded that ryegrass is a superior grass to H. lanatus on upland soils with high N status, moderate P status and a high pH.  相似文献   

17.
Three small plot experiments were conducted to investigate the effects of species of grass and forbs, defoliation regime, inclusion of white clover and forb blend on the herbage dry matter (DM) yield, botanical composition and mineral content of swards managed with zero fertilizer inputs. The results of all three experiments were characterized by decline in herbage production and large variations in treatment effects over the harvest period.
When sown singly with a standard grass mix the species that competed well with grasses and produced annual forb herbage yields greater than 20 t DM ha−1 were black knapweed, oxeye daisy, ribwort plantain, burnet, birdsfoot trefoil, chicory, kidney vetch, red clover and white clover. When sown singly with a standard forb mix, grass species significantly affected the annual yield of total ( P <005). grass ( P <001) and forb ( P <0.001) herbage. The species that most surpressed the yield of forbs were common bent, Yorkshire fog and perennial ryegrass. Those that allowed for the highest yield of forbs were rough meadow grass, sweet vernal grass and crested dogstail. Averaged over the three harvest years, defoliation regime did not significantly affect herbage production, but the inclusion of white clover in mixtures increased the yield of grasses ( P <0.01) The use of rosette-type forb blends increased forb yield ( P <0.01), compared with erect-type blends.
The effects of treatments on herbage N and mineral contents and yields were inconsistent. However, there was some evidence to support the view that the presence of forb species in swards can result in greater contents of minerals in herbage, compared with grass-only swards.  相似文献   

18.
Diet selection from ryegass-and prairie grass-white clover swards, vertically stratified into three horizons (A > 6 cm, B 3–6 cm, C > 3 cm), was studied using oesophageally fistulated sheep during summer and autumn. Animals grazed for 3-day periods. Apparent herbage intake was calculated from total herbage disappearance. The composition of each horizon and of the diet selected was measured daily.
Herbage mass (DM ha-1) and sward height (cm) prior to grazing were not significantly different between swards in each season, and were 2·0 and 20 in summer and 1·6 and 10 in autumn. In summer, 36% and 5% of the green grass leaf (GGL) for prairie grass and ryegrass, respectively, was distributed in horizons A and B. In autumn 39% and 29% of GGL occurred above 3 cm for prairie grass and ryegrass, respectively. GGL distribution determined which sward horizons were grazed. Sheep grazed horizon C (0–3 cm) of summer ryegrass pasture, and the surface canopy (>3 cm) of all other swards.
In summer, apparent intake achieved by sheep grazing prairie grass swards was 87% higher than that achieved on ryegrass swards. In autumn a greater GGL distribution above 3 cm with prairie  相似文献   

19.
Ninety-six plots (3 × 2 m) of well-established perennial rye grass/white clover pasture were mown to heights of 2·7 (Low) or 3·96 (High) cm (rising plate meter) at 14-, 28-, 84- or 112-d intervals in autumn-winter. A 7-, 14- and 28-d mowing interval was superimposed in spring on each autumn–winter mowing interval treatment with the low and high mowing heights altered to 2·92 and 4·80 cm, respectively.
With the low cutting height, accumulated herbage DM was more than doubled (1806 ± 79 kg DM ha-1) compared to a 'high' (754 ± 49 kg DM ha-1) cutting height in autumn–winter and this was due to increased harvesting efficiency rather than growth as estimated by leaf extension. Although defoliation interval had no effect on DM yield, the grass component increased and clover decreased. The composition effect carried over into spring. On average, 3·5 tillers were produced over winter for each ryegrass tiller present in autumn and tiller densities were higher in spring. Tillers produced over autumn–winter contributed more than 60% of ryegrass growth by early spring.
In early spring (16–30 September), the low cutting height increased herbage DM yield, in mid-spring (1–14 October) it reduced DM yields particularly in combination with short defoliation intervals, while in late spring (14 October to 11 November) cutting height had no effect on DM yields.
Over the entire spring period there was a very marked effect of defoliation interval on DM yields.  相似文献   

20.
A series of twenty-four swards containing different proportions of white clover (0·20-0·25) and perennial ryegrass were created by using different seed mixtures, herbicide applications and previous cutting Frequencies. These swards were used to study the diet of oesophageally-fistulated wether sheep which grazed the various swards for a 30-min period after 1, 2 and 3 weeks of regrowth.
The proportion of white clover in the diet was generally greater than that in the sward. Fifty-seven percent of the variation in the proportion of white clover in the diet could be attributed to the proportion of white clover in the sward. White clover and perennial ryegrass leaf and stem were grazed to the same height and the proportion of white clover in the grazed horizon of the sward explained 83% of the variation in the proportion of white clover in the diet. The proportion of white clover in the diet was greater than the proportion in the grazed horizon of the sward in week 3 of regrowth, but not in weeks 1 and 2, and greater when the proportion of white clover in the grazed horizon was lower than 0·20. Both these observations were interpreted as indicating selection for white clover by the sheep within the grazed horizon.
There was a positive and linear relationship between the depth of the grazed horizon and sward height which, together with the relationship between the proportion of white clover in the grazed horizon and in the diet, would allow the prediction of the proportion of white clover of the diet from the height and the white clover content of the grazed horizon of the sward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号