首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shoe types most commonly applied to horses with navicular disease or other forms of palmar heel pain are shoes with heel wedges and eggbar shoes, although their efficacy has been a matter of debate among veterinarians and farriers for centuries. To quantify the effect of these different types of “navicular” shoeing on static hoof pressure distribution, 6 warmblood horses were shod with 6° wedge, eggbar, and plain shoes. While standing square with weight evenly distributed across both forelimbs, the center of pressure and pressures at selected areas of interest (AOI: toe, medial and lateral toe, medial and lateral heel) were measured using a Footscan (RsScan International, Belgium) pressure plate in a Latin square design using the plain shoe as a reference.Wedge shoes did not provide a significant shift in the center of pressure. The application of eggbar shoes did not alter the relative position of the center of pressure under the hoof. However, the absolute distance from the toe to the center of pressure was significantly larger with eggbar shoes (77 + 12 mm) compared with plain and wedged shoes (70 ± 8 mm, P < .05) resulting in an absolute, caudal shift of the center of pressure. When pressure (N/cm2) values at the five AOIs were averaged for each shoe type, the wedge and eggbar shoe recordings showed a significantly lower mean pressure than plain shoes (P < .05).In conclusion, mean AOI pressures decreased with wedge and eggbar shoes, and eggbar shoes provided a caudal shift in the center of pressure. These effects are believed to decrease the moment of the coffin joint and reduce the pressure on the navicular bone. Thus, the findings of this study might contribute to the scientific evidence of efficacy of the use of wedge and eggbar shoes in “navicular” lame horses.  相似文献   

2.
AIM: To quantify the effect of plain, wedged and eggbar shoes on the distribution of pressure under the hoof of horses at the walk, at selected areas of interest (AOI), to find scientific evidence for the perceived efficacy of these shoes in the treatment of palmar heel pain. METHODS: Six clinically sound adult Warmblood mares weighing 551 (SD 25) kg were shod (forelegs) with either plain, eggbar or 6 degrees-wedge shoes using a latin-square experimental design. All horses were shod by the same farrier, and each balanced and aligned for its individual conformation. Data were collected on three walking strides for each foreleg using a 550 x 405-mm pressure plate to quantify the distribution of pressure under each type of shoe at five AOI. RESULTS: Landing of the hoof with all three shoes was predominantly from lateral to medial (range 7-15 msec). Irrespective of the type of shoe, the greatest pressure was found in the lateral and medial toe (lateral 39.7 (SE 0.6) N/cm2 and medial 35.0 (SE 0.5) N/cm2) and the point of the toe (33.3 (SE 0.5) N/cm2). The lowest peak pressure was in the heel (lateral 25.9 (SE 0.5) N/cm2 and medial 21.1 (SE 0.4) N/cm2; p<0.05). Eggbar and wedge shoes increased total stance time (938 (SE 8) msec and 952 (SE 6) msec, respectively) compared with plain shoes (898 (SE 14) msec) (p<0.05). The wedge shoe reduced breakover compared with the plain and eggbar shoes (13.8% vs 15.8% and 14.5%, respectively; p<0.05). The eggbar shoe had lower total shoe peak pressure (29.5 (SE 0.7) N/cm2) than plain (31.8 (SE 0.5) N/cm2) and wedge (30.9 (SE 0.6) N/cm2) shoes. CONCLUSIONS AND CLINICAL RELEVANCE: Both the eggbar and 6 degrees-wedge shoe offer advantages for palmar heel pain. In comparison to the plain shoe, the eggbar shoe had less peak pressure at the heel AOI, and across the entire shoe, due to the greater bearing surface and the effect of the longer heel. The 6 degrees-wedge shoe had greater loading on the lateral heel AOI, but promoted earlier breakover at the toe. Both shoes offer advantages for the horse with palmar heel pain, though choice of shoe will depend on clear identification of the causative factors, to provide therapeutic shoeing that maximises the individual horse's response.  相似文献   

3.
OBJECTIVE: To determine the mechanism that enables horses to partially counteract the shift of the center of pressure under the hoof induced by changes in hoof morphology attributable to growth and wear during a shoeing interval. ANIMALS: 18 clinically sound Warmblood horses. PROCEDURES: Horses were evaluated 2 days and 8 weeks after shoeing during trotting on a track containing pressure-force measuring plates and by use of a synchronous infrared gait analysis system set at a frequency of 240 Hz. All feet were trimmed toward straight alignment of the proximal, middle, and distal phalanges and shod with standard flat shoes. Results-Temporal characteristics such as stance time and the time between heel lift and toe off (ie, breakover duration) did not change significantly as a result of shoeing interval. Protraction and retraction angles of the limbs did not change. Compensation was achieved through an increase in the dorsal angle of the metacarpohalangeal or metarsophalangeal (fetlock) joint and a concomitant decrease of the dorsal angle of the hoof wall and fetlock. There was an additional compensatory mechanism in the hind limbs during the landing phase. CONCLUSIONS AND CLINICAL RELEVANCE: Horses compensate for changes in hoof morphology that develop during an 8-week shoeing interval such that they are able to maintain their neuromuscular pattern of movement. The compensation consists of slight alterations in the angles between the distal segments of the limb. Insight into natural compensation mechanisms for hoof imbalance will aid in the understanding and treatment of pathologic conditions in horses.  相似文献   

4.
Every equine hoof has a certain amount of distortion. This presents in various forms: flares, dished toes, under-run heels, and cracks. Several farrier texts anecdotally suggest a correlation between hoof capsule distortion and lameness. The goal of this study was to evaluate the effects of the Sigafoos Series I glue-on shoe on hoof capsule distortion, and specifically, the effect on dorsal wall deviation. Measurements of the hoof were made using the Metron hoof evaluating system by Eponatech. Comparisons were made of the following values: dorsal length, hoof angle, dorsal wall deviation, hairline angle, hairline deviation, heel/toe height, heel height, heel angle, and support length. The study group consisted of front feet of horses shod exclusively in the Sigafoos glue-on shoe for a period of 1 year, and the control group consisted of 133 front feet from horses using nailed on shoes for a similar period and with a musculoskeletal complaint. The results indicate a 48% reduction in dorsal wall deviation for the study group. This finding supports the use of this glue-on shoe as beneficial with the goal to reduce capsular distortion of the dorsal wall.  相似文献   

5.
OBJECTIVE: To determine whether kinematic changes induced by heel pressure in horses differ from those induced by toe pressure. ANIMALS: 10 adult Quarter Horses. PROCEDURE: A shoe that applied pressure on the cuneus ungulae (frog) or on the toe was used. Kinematic analyses were performed before and after 2 levels of frog pressure and after 1 level of toe pressure. Values for stride displacement and time and joint angles were determined from horses trotting on a treadmill. RESULTS: The first level of frog pressure caused decreases in metacarpophalangeal (fetlock) joint extension during stance and increases in head vertical movement and asymmetry. The second level of frog pressure caused these changes but also caused decreases in stride duration and carpal joint extension during stance as well as increases in relative stance duration. Toe pressure caused changes in these same variables but also caused maximum extension of the fetlock joint to occur before midstance, maximum hoof height to be closer to midswing, and forelimb protraction to increase. CONCLUSION AND CLINICAL RELEVANCE: Decreased fetlock joint extension during stance and increased head vertical movement and asymmetry are sensitive indicators of forelimb lameness. Decreased stride duration, increased relative stance duration, and decreased carpal joint extension during stance are general but insensitive indicators of forelimb lameness. Increased forelimb protraction, hoof flight pattern with maximum hoof height near midswing, and maximum fetlock joint extension in cranial stance may be specific indicators of lameness in the toe region. Observation of forelimb movement may enable clinicians to differentiate lameness of the heel from lameness of the toe.  相似文献   

6.
This study was designed as a comparative study with the intention to accumulate fundamental data on a wide variety of farriery methods. Twenty-five warmblood/crossbred horses, allocated into five groups (n = 5), underwent radiological and kinetic examination of the barefoot hoof, the shod hoof with a standard horseshoe, and finally a modified horseshoe. For radiographic measurements, a special podoblock with embedded reference points and changeable ground surfaces was used. Kinetic examinations were performed by placing one sensor between the shoe and the hoof and the second sensor between the shoe and the ground and then walking the horses on four different ground surfaces. When wedges were applied, the palmar angle increased by approximately 5° on all surfaces. However, this effect was only seen on firm surfaces combined with studs. Using a rocker shoe, the palmar angle increased on a firm surface (0.6 ± 0.3°) and decreased on a deformable surface (0.8 ± 0.3°). No consistent data were noted for the orientation of the proximal and middle phalanx in relation to the palmar angle. Pressure distribution showed wedges and studs to cause an increased pressure load on both the toe and the heels on a firm surface. Rocker shoes led to pressure peaks at the inner section of the toe, and high pressure was exerted on the quarters. In conclusion, all modified horseshoes showed unintended side effects and their influence on biomechanical parameters varied depending on the ground surface.  相似文献   

7.
Instrumented shoes were used to measure the vertical forces exerted by horses moving at a variety of gaits. Two types of shoes were used; one contained a single transducer positioned over the center of the frog and the second contained transducers located at the toe and both sides of the heel. Horses were shod with these instrumented shoes and walked and trotted over a force plate. Forces were simultaneously recorded from the transducers in the shoes and from the force plate. Comparisons were made between the amount and duration of the forces exerted on the transducers and the vertical and horizontal forces recorded from the force plate. Forces recorded from the single transducer shoes showed strong correlations with the forces recorded from the force plate for horses moving at the walk; however, at the trot only moderate correlations occurred between these forces. At both the walk and trot, forces recorded from each side of the heel and the total forces occurring on all three transducers from the front hooves of horses shod with three transducer shoes showed strong correlations to the vertical forces recorded from the force plate.Vertical forces were also recorded from the instrumented shoes as horses walked, trotted and galloped on a track straightaway. Forces recorded from normal horses shod with single transducer shoes on all four feet were greater on the forelimbs than the rear limbs at the walk and trot. At the gallop, forces were highest on the lead front followed by the nonlead front, lead rear and nonlead rearlimb, respectively. Forces recorded from a three transducer shoe on the right front hoof of a horse walking, trotting and galloping in a right lead were highest on the medial side of the heel and occurred during the middle of the support period. Peak forces on the toe occurred at or near the time of heel lift.The results of these studies indicate that these instrumented shoes have advantages over the methods previously used to measure locomotor forces. These instrumented shoes can be used to simultaneously record the temporal components and the amount and distribution of vertical forces exerted during consecutive strides of horses moving at a variety of gaits.  相似文献   

8.
In a controlled experimental study, eight sound horses were shod with a plain steel shoe on one forelimb (control limb) and with four different shoe types on the other forelimb (treated limb). The four shoe types used on the treated limb were a plain steel shoe, a rocker-toe shoe, a rolled-toe shoe, and a square-toe shoe. The selection of the treatment limb (left or right) was randomized between the horses and a replicated Latin square design was used to determine the order of application of the shoes to the treatment limb. High speed cinematography (200 frames/s) was used to film the horses trotting in hand on a concrete surface. Eight strides were analyzed for each shoeing treatment. The breakover times of both forelimbs were measured, and the breakover ratio was computed as the ratio between the breakover time of the treated limb to the breakover time of the control limb. The results of an analysis of variance, using a probability of 0.05 alpha, showed that the breakover ratio did not differ significantly between the four types of shoes (p=0.10). It is concluded that, in sound horses trotting at a slow speed on a hard surface, the application of a rocker-toe shoe, a rolled-toe shoe or a square- toe shoe did not shorten forelimb breakover duration significantly compared with a plain steel shoe.  相似文献   

9.
REASONS FOR PERFORMING STUDY: Comprehensive understanding of the 3-dimensional (3D) kinematics of the distal forelimb and precise knowledge of alterations induced by dorsopalmar foot imbalance remains incomplete because in vivo studies performed with skin markers do not measure the actual movements of the 3 digital joints. OBJECTIVE: To quantify the effects of 6 degree heel or toe wedges on the 3D movements of the 4 distal segments of the forelimb in horses trotting on a treadmill. METHODS: Three healthy horses were equipped with ultrasonic markers fixed surgically to the 4 distal segments of the left forelimb. The 3D movements of these segments were recorded while horses were trotting on a treadmill. Rotations of the digital joints were calculated by use of a joint coordinate system. Data obtained with 6 degree heel or toe wedges were compared to those obtained with flat standard shoes. RESULTS: Use of heel wedges significantly increased maximal flexion and decreased maximal extension of the proximal (PIPJ) and distal (DIPJ) interphalangeal joints. Inverse effects (except for PIPJ maximal extension) were observed with the toe wedges. In both cases, neither flexion-extension of the metacarpophalangeal joint nor extrasagittal motions of the digital joints were statistically different between conditions. CONCLUSIONS: At a slow trot on a treadmill, heel and toe wedges affect the sagittal plane kinematics of the interphalangeal joints. POTENTIAL RELEVANCE: Better understanding of the actual effects of toe and heel wedges on the 3D kinematics of the 3 digital joints may help to improve clinical use of sagittal alteration of hoof balance in the treatment of distal forelimb injuries.  相似文献   

10.
REASONS FOR PERFORMING STUDY: Collapsed heels conformation has been implicated as causing radical biomechanical alterations, predisposing horses to navicular disease. However, the correlation between hoof conformation and the forces exerted on the navicular bone has not been documented. HYPOTHESIS: The angle of the distal phalanx in relation to the ground is correlated to the degree of heel collapse and foot conformation is correlated to the compressive force exerted by the deep digital flexor tendon on the navicular bone. METHODS: Thirty-one shod Irish Draught-cross type horses in routine work and farriery care were trotted over a forceplate, with 3-dimensional (3D) motion analysis system. A lateromedial radiograph of the right fore foot was obtained for each horse, and various measurements taken. Correlation coefficients were determined between hoof conformation measurements and between each of these and the force parameters at the beginning (15%) of stance phase, the middle of stance (50%) and at the beginning of breakover (86% of stance phase). Significance was defined as P<0.05. RESULTS: The force exerted on the navicular bone was negatively correlated (P<0.05) to the angle of the distal phalanx to the ground and to the ratio between heel and toe height. This was attributed to a smaller extending moment at the distal interphalangeal joint. There was not a significant correlation between the angle of the distal phalanx and the degree of heel collapse, and heel collapse was not significantly correlated to any of the force parameters. CONCLUSIONS: Hoof conformation has a marked correlation to the forces applied to the equine foot. Heel collapse, as defined by the change in heel angle in relation to toe angle, appears to be an inaccurate parameter. The forces applied on the foot are well correlated to the changes in the ratio of heel to toe heights and the angles of the distal phalanx. POTENTIAL RELEVANCE: Assessment of hoof conformation should be judged based on these parameters, as they may have clinical significance, whereas parallelism of the heel and toe is of less importance.  相似文献   

11.
OBJECTIVE: To determine whether a shoe with an axialcontoured lateral branch would induce greater lateral roll of the forelimb hoof during the time between heel and toe lift-off at end of the stance phase (breakover). Animals-10 adult horses. PROCEDURE: A gyroscopic transducer was placed on the hoof of the right forelimb and connected to a transmitter. Data on hoof angular velocity were collected as each horse walked and trotted on a treadmill before (treatment 1, no trim-no shoe) and after 2 treatments by a farrier (treatment 2, trim-standard shoe; and treatment 3, trim-contoured shoe). Data were converted to hoof angles by mathematical integration. Breakover duration was divided into 4 segments, and hoof angles in 3 planes (pitch, roll, and yaw) were calculated at the end of each segment. Multivariable ANOVA was performed to detect differences among treatments and gaits. RESULTS: Trimming and shoeing with a shoe with contoured lateral branches induced greater mean lateral roll to the hoof of 3.2 degrees and 2.5 degrees during the first half of breakover when trotting, compared with values for no trim-no shoe and trim-standard shoe, respectively. This effect dissipated during the second half of breakover. When horses walked, lateral roll during breakover was not significantly enhanced by use of this shoe. CONCLUSIONS AND CLINICAL RELEVANCE: A shoe with an axial-contoured lateral branch induced greater lateral roll during breakover in trotting horses, but change in orientation of the hoof was small and limited to the first half of breakover.  相似文献   

12.
Retrospective management and owner-reported injury data, and measurement of forelimb hoof conformation, were collected via a cross-sectional survey from a convenience sample of 96 registered show jumping (n = 67) and dressage (n = 29) horses. Most of the horses were medium- to upper-level performers, aged 9 (interquartile range [IQR] 7–12) years, and in the current rider's ownership for 28 (IQR 12–60) months. The horses were trained 45 (IQR 35–60) minutes, 6 days per week, on a sand or sand mix arena. Failure to train for ≥7 days was reported in 26 of 96 horses, generally associated with lameness diagnosed by a veterinarian (16/29), with a median time-off of 26 (IQR 14–93) days. During the preceding 12 months, 33% of the riders had been working with the farrier on hoof-related issues, 30% of which had involved ≤2 issues. This remedial work often involved a veterinarian (14/30) or allied health practitioner (6/30). Most horses were hot shod (67/89) with conventional fullered shoes. Uneven feet were identified in 16 of 89 horses but were not positively associated with inability to train, possibly reflecting the minor variation between feet. Uneven feet were associated with variation in heel length and angle measurements and a greater sole length and reduced sole width, rather than smaller and boxy. Multiple correspondence plots identified an association of uneven feet with the dressage horses rather than show jumping horses.  相似文献   

13.
Racehorses in New Zealand predominantly train counter clockwise. This training pattern has been associated with between forelimb differences in bone mineral density profile and asymmetrical limb loading after training. At present, there is limited data on the hoof conformation of these racehorses. Distal forelimb and digital hoof conformation data were collected from 75 Thoroughbred racehorses (2–5 years old) from two training yards. Digital conformation was subjectively graded, and multiple hoof measurements were made with a modified tire gauge (sole and sulci depth) and from digital photographs. All the horses were shod by two registered master farriers within a median of 15 (interquartile range [IQR], 1–25) days before measurement. There were few distal limb conformation abnormalities scored. Most (62/75) horses presented with some deviation from normal hoof parameters, with 2 (IQR, 1–3) abnormalities reported per horse. The most common hoof abnormality was uneven sulci, which was identified in 43 horses and 59 affected hooves, followed by higher medial hoof wall height in 38 horses and 53 affected hooves. Many of the linear and hoof angle measurements and their ratios were within the bounds reported within the literature and indicative of a balanced foot. The length and width measurements increased with horse age. The dorsal hoof wall (DHW) length:heel length ratios were consistently less than 3:1, and the absolute difference between toe and heel angle was generally greater than 5°. Between limb hoof variation was identified for a number of the morphologic measurements including frog length and sole length and the ratio of sole width:sole length. Flat feet (lack of concave solar surface) were identified in 21/75 (28%) horses and in 28/150 (19%) forelimb hoofs. More horses had a flat left foot (10/75) than right foot (4/75), but seven horses had both feet classified as being flat. Flat feet had 2.4 (1.1–5.6, P = .036) greater odds of presenting with uneven sulci. These data indicate that uneven sulci depth and flatter hooves with may be a typical presentation of Thoroughbred feet. Asymmetry in measurements between limb may reflect the greater loading of the left forelimb when race training counter clockwise.  相似文献   

14.
OBJECTIVE: To characterize the normal ultrasonographic appearance of the podotrochlear apparatus in horses by use of standardized measurements and identify soft tissue changes associated with navicular syndrome. DESIGN: Prospective study. ANIMALS: 7 clinically normal horses and 28 horses with navicular syndrome. PROCEDURE: The feasibility of identifying and measuring the soft tissue structures of the podotrochlear apparatus ultrasonographically via the transcuneal approach was assessed in 2 additional horses without navicular syndrome; both horses were euthanatized, and the structures identified ultrasonographically were confirmed at necropsy. Ultrasonographs were obtained in the study horses. Objective and subjective data were obtained to characterize ultrasonographic changes associated with navicular syndrome. RESULTS: Abnormalities of the flexor surface of the distal sesamoid (navicular) bone, the impar ligament, the distal digital annular ligament, deep digital flexor tendon (DDFT), and the podotrochlear (navicular) bursa were assessed via the transcuneal ultrasonographic approach. No significant differences were found between the measurements of the podotrochlear apparatus in normal horses and those with navicular syndrome; however, important subjective differences were detected ultrasonographically in horses with navicular syndrome. In horses with navicular syndrome, ultrasonographic findings were indicative of navicular bursitis, dystrophic mineralization of the DDFT and impar ligament, tendonitis and insertional tenopathy of the DDFT, desmitis of the impar ligament, and cortical changes in the flexor surface of the navicular bone. CONCLUSIONS AND CLINICAL RELEVANCE: Findings of ultrasonographic evaluation of the hoof appear to be useful in determining the cause of caudal heel pain and characterizing the components of navicular syndrome in horses.  相似文献   

15.
This study assesses the biomechanical effects on the phalangeal alignment, the pressure force distribution, and the footing pattern on different grounds created by different horseshoes modified in the dorsopalmar surface. Twenty-five warmblood horses were divided into five groups (n = 5). In each group, radiographic and kinetic examinations were carried out for each barefoot hoof, standard, and modified horseshoe. For radiographic measurements, a modified podoblock, simulating firm and penetrable ground, was used. For kinetic examinations, hoof and horseshoe were simultaneously equipped with sensor foils and horses were walked on different grounds (concrete, rubber, firm, and deep sand). None of the horseshoes showed an effect on the bone alignment on firm ground. On penetrable ground, the bar shoes caused a steeper palmar angle (P3), whereas with a wide toe shoe, a flatter orientation of the distal phalanx was observable. The influence on the alignment of the middle and proximal phalanx showed no constant data. On penetrable ground, pressure peaks occurred at the heels after the application of bar shoes. Moreover, pressure peaks were observable beneath the ends of the branches of the open toe shoe, and the toe and thin branches of the wide toe shoe. The footing pattern was only affected by the open toe shoe. In conclusion, the biomechanical effects of the examined modified horseshoes are mainly influenced by different ground conditions. Moreover, unintended side effects such as unexpected pressure peaks or an enhanced mediolateral sink in of the hoof occur in addition to the required impacts during a therapeutical treatment.  相似文献   

16.
Navicular disease results in a chronic, progressiveforelimb lameness that is usually bilateral. Although many different horse breeds can be affected, Quarter Horses and Warmbloods appear particularly susceptible. The peak age incidence appears to be in horses aged 6–10 years. The condition has been recognized for many years and has been the source of debate and conflict for at least the last 50 years. Much of the confusion has been caused by different criteria used to establish a diagnosis. In a large series of cases examined at the University of Sydney, only 30 percent of horses that were eventually diagnosed as having navicular disease showed a positive response to hoof testers applied across the middle third of the frog. In contrast, more than 80 percent of horses with navicular disease showed a marked increase in lameness following pastern and fetlock flexion. All horses diagnosed became sound following a palmar digital nerve block and all had positive findings on radiography. However, radiography could not be utilized as a sole diagnostic technique because some horses with radiographic abnormalities of the navicular bone did not show clinical signs of navicular disease.To establish a diagnosis of navicular disease, the following criteria should be met: 1) A chronic progressive unilateral or bilateral forelimb lameness, 2) Pain in areas proximal to the foot has been excluded as a possible cause of the lameness, 3) Other conditions that could cause pain in the palmar heel region are excluded, 4) The lameness is eliminated or substantially improved following a palmar digital nerve block, and 5) There are radiographic abnormalities on upright pedal and/or skyline views of the navicular bone.Treatment of navicular disease has usually fallen into categories of a) pain alleviation, b) drugs with vascular or hemodynamic effects, or c) changing biomechanics either by corrective trimming or corrective shoeing. None of these treatments have been universally accepted and debate about their efficacy is allied to theories about the etiology.  相似文献   

17.
REASONS FOR PERFORMING STUDY: Understanding of the biomechanical effects of heel elevation remains incomplete because in vivo studies performed with skin markers do not measure the actual movements of the 3 digital joints. OBJECTIVE: To quantify the effects of 6 degree heel wedge on the 3-dimensional movements of the 4 distal segments of the forelimb in the walking horse. METHODS: Four healthy horses were used. Kinematics of the distal segments was measured invasively with a system based on ultrasonic triangulation. Three-dimensional rotations of the digital joints were calculated by use of a 'joint coordinate system' (JCS). Data obtained with heel wedges were compared to those obtained with standard shoes during the stance phase of the stride. RESULTS: Heel wedges significantly increased maximal flexion of the proximal (PIPJ) and distal (DIPJ) interphalangeal joints and maximal extension (mean +/- s.d. +0.8 +/- 0.3 degrees) of the metacarpophalangeal joint (MPJ). Extension of the PIPJ and DIPJ was decreased at heel-off. Few effects were observed in extrasagittal planes of movement. CONCLUSIONS: Heel wedges affect the sagittal plane kinematics of the 3 digital joints. POTENTIAL RELEVANCE: Controversial effects previously observed on the MPJ may be explained by the substantial involvement of the PIPJ, which was wrongly neglected in previous studies performed on the moving horse.  相似文献   

18.
A 12-year-old Quarterhorse stallion was presented with a severe lameness in the left forefoot. There was a 3 cm diameter cavity in the sole that extended to the solar surface of the distal phalanx. Radiographs revealed an osteomyelitis and a sequestrum which probably developed following the prolonged topical application of 10 percent formalin. The sequestrum was removed and the infected bone curetted under general anaesthesia. The horse was shod with heart bar shoes on both front feet 7 days after the surgery. Eight months later, radiographs showed marked rotation of the distal phalanx despite continual shoeing with heart bar shoes. Surgical resection of the dorsal wall of the hoof at the toe removed the pressure applied by the laminar wedge, and combined with the stabilising and supporting action of the heart bar shoe, permitted realignment of the distal phalanx approximately 30 degrees closer to the normal skeletal axis by 26 days post-operatively. This case highlights some of the recent developments in the treatment of laminitis and suggests that effective treatment is possible if the value of the animal warrants the time and investment.  相似文献   

19.
Reasons for performing study: Inadequate track surfaces are believed to be a risk factor in the occurrence of musculoskeletal injuries, but quantification of the shocks and vibrations provoked by hoof impact on different ground surfaces (including new synthetic tracks) has been insufficiently documented in trotters under high‐speed training conditions. Objectives: To test the reliability and sensitivity of an accelerometric device to discriminate between the biomechanical effects of 2 different tracks at high speed. Methods: Three French Trotters were used and their right front hooves were equipped with one triaxial accelerometer. Two different track surfaces (crushed sand track: S and all‐weather waxed track: W) were tested when horses were trotting in a straight line. For each session of measurements, trials were repeated 3 times in a Latin square design. The speed of the runs was set at 10 m/s, controlled by the driver and recorded synchronously. Sample rate was set at 6 kHz. Acceleration of the hoof (resultant vector and 3D components), power spectral density at impact and variability (between strides, trials, sessions and horses) were analysed. Statistical differences were tested using a GLM procedure (SAS). Least square mean differences were used for comparisons between tracks (P<0.05). Results: Results showed that the deceleration of the hoof (magnitude of the resultant vector) was statistically different between the 2 tracks with an attenuation of the shock of about 50% on the all‐weather waxed track. Magnitude of the power spectral density was reduced at higher frequencies on W. Conclusions and clinical relevance: These preliminary results demonstrate the sensitivity of the tool to discriminate between the different behaviours of the hoof on the different track surfaces at high speed. Deceleration and vibration of the hoof at impact were reduced on W compared to S, suggesting a better shock‐absorbing quality of this track.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号