首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
生物炭是生物质在限氧条件下通过高温热解得到的富碳固体,其丰富的含氧官能团、较大的比表面积、高度的芳香性结构等特性,使得生物炭对重金属具有很好的固定作用,因此,生物炭在重金属污染土壤的修复方面具有良好的前景。目前关于生物炭的研究大多集中在新制备的生物炭对重金属污染土壤的短期修复,但生物炭进入土壤后,随着时间的推移,会受到各种地球自然力的作用,逐渐发生老化,老化过程会对生物炭的物理化学性质和吸附性能产生不可忽视的影响。本文系统性地综述了国内外生物炭老化方法以及老化处理对生物炭理化性质、重金属吸附性能和生物有效性的影响等方面的研究进展,阐明当前生物炭老化研究现状,并对未来生物炭老化研究的发展方向提出建议,以期为重金属污染土壤的长期修复提供理论支撑。  相似文献   

2.
近年来,生物质炭在农业废弃物的资源化利用、固碳减排、污染土壤修复和土壤改良等领域的应用受到了人们的广泛关注。生物质炭具有多孔性和较大的比表面积,吸附性和持水性好,它能通过提高土壤pH值来降低重金属生物有效性,通过阳离子的吸附作用降低重金属离子在土壤中的移动,还可通过改善或提高土壤肥力减弱重金属对作物的毒害作用,因此生物质炭对重金属污染土壤具有很好的修复效应。从比表面积、表面官能团、表面结构和表面性质等方面阐述了生物质炭的表面特性,总结了生物质炭对改变重金属元素化学形态、降低土壤重金属生物有效性、影响作物吸收重金属含量等修复效应和其他方面如减少温室效应等作用。  相似文献   

3.
高超群 《安徽农学通报》2017,23(23):55-57,60
生物炭具有巨大的比表面积、发达的孔隙结构和丰富的表面官能团,是一种廉价易得、吸附性能良好的吸附材料,在土壤改良、增加碳汇、污染物质吸附等方面有着巨大的应用价值。该文主要介绍了生物炭的基本性质、改性方法以及其在土壤改良和土壤污染修复中的应用,分析了生物炭对土壤中有机污染物和重金属的吸附机制,为生物炭的大规模应用提供理论依据。  相似文献   

4.
生物炭因其具有多孔、比表面积较大、含氧官能团较为丰富且芳香性较强等优点而在农业面源污染控制方面具有良好的应用前景。然而,生物炭应用于土壤后难以从土壤颗粒中分离出来,从而制约了其对农业面源污染物吸附行为的预测。分子标志物技术在表征有机碳行为领域做出了重要的贡献,苯多羧酸(Benzene polycarboxylic acids,BPCAs)分子标志物方法的引入,可为表征生物炭与磷之间相互作用提供新的视角。因此,本研究采用批量吸附实验,考察了烟秆和松木及其制备的生物炭对磷的吸附行为。结果表明,随热解温度的升高,生物质及其生物炭中各BPCAs含量及苯六甲酸(Benzene hexacarboxylic acid,B6CA)对BPCA的贡献率随热解温度的升高而增加,生物炭的芳香缩合度不断增强;两类生物炭对磷的吸附量均随热解温度的升高而降低,其中400℃烟秆生物炭和200℃松木生物炭对磷的吸附量最大。表面含氧官能团的减少和静电排斥作用降低了生物炭对磷的吸附,而较大的比表面积使烟秆生物炭的吸附量高于松木生物炭。烟秆生物炭中B6CA含量高于松木生物炭,因此其对磷的吸附量较松木生物炭高。  相似文献   

5.
生物炭老化对土壤重金属的固定效应研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
生物炭作为一种环境友好、稳定性强的钝化材料,因其巨大的比表面积、丰富的含氧官能团等特点成为目前修复重金属污染土壤的有效材料.然而,生物炭(改性)对重金属的固定能力及效应除受本身特性影响外,还受到材料老化过程及环境条件等因素的影响,导致生物炭(改性)固定土壤重金属的稳定性、持久性发生变化,从而使得生物炭材料的钝化性能受到影响.本文重点综述了当前生物炭(改性)及其老化产物对土壤重金属固定效应的相关进展,分析了生物炭及其老化产物固定重金属的相关机制及影响因素,并对生物炭及其老化过程可能带来的土壤重金属固定长效性影响,以及今后以此为基础的钝化技术的研发趋势进行了展望,以期为利用生物炭钝化修复重金属污染土壤及相关辅助技术研发提供支撑.  相似文献   

6.
炭化温度对牛粪生物炭结构性质的影响   总被引:2,自引:0,他引:2  
以牛粪为原料,在不同炭化温度下(200、300、400、500、600、700 ℃)采用热裂解法制备生物炭,借助扫描电子显微镜、元素分析仪、比表面积分析仪,结合Boehm滴定法、碘吸附及亚甲蓝吸附等,对所制得的牛粪生物炭的形貌特征、元素组成、比表面积、孔径、表面官能团和吸附性能等进行分析。结果表明:随着炭化温度升高,产率和挥发分含量降低,灰分和固定碳含量升高,pH值增加,制得生物炭的形貌特征更有规则且孔隙更加紧密。适当的升高炭化温度有利于孔隙的形成及微孔数量的增多,比表面积和孔容逐渐变大,而孔径逐渐减小。随炭化温度升高,牛粪生物炭的C含量增加,而H、O含量减小,N含量先增加后减小,H/C、(O+N)/C和O/C均下降,说明制得生物炭的芳香性和结构稳定性增强,但极性和亲水性减弱。表面官能团中羧基含量随炭化温度升高先增加后降低,羰基含量持续增加,而内酯基、酚羟基含量、酸总量和表面含氧官能团总量逐渐降低。碘吸附值和亚甲基蓝吸附值随炭化温度升高先增加后减小,在600 ℃下吸附值最大。  相似文献   

7.
生物质炭材料来源广泛,制备工艺相对简单,且具备丰富的含氧官能团、发达的孔隙结构和表面电荷,对有机污染物和各类无机污染物(重金属、氮磷、放射性元素)均具有良好的潜在吸附能力,被认为是一种低成本、高效的新型环境功能吸附材料.本文针对重金属、氮磷等土壤无机物,在介绍生物质炭基本性质的基础上,综述了生物质炭吸附无机污染物的机制,探讨了应用于无机污染土壤缓解和修复的可行性,并指出了相应的发展趋势.生物质炭的基本特性受来源材料性质、裂解温度等主要因子的影响,其碳含量和结构、H/C比值、孔隙结构、pH等性质有较大差异,这也导致生物质炭对重金属、氮磷等无机污染物的吸附机制包含了表面物理吸附、络合作用、静电引力、阳离子交换、共沉淀、碘-碳特殊作用等多种机制.然而,受土壤复杂理化性质和生物活性、生物质炭迁移性和稳定性等因素影响,生物质炭在无机污染土壤缓解和修复中的应用有很大潜力,但尚存在不确定性、调控性差等问题,甚至反而会活化土壤中的污染物.因此,在应用生物质炭缓解和修复重金属污染土壤时,应充分考虑土壤性质、污染程度和类型与生物质炭性质的匹配度.生物质炭更适合pH和有机质含量较低的镉、铅、铜、锌等重金属污染土壤;与低温生物质炭相比,高温生物质炭的适用范围更广.  相似文献   

8.
[目的]生物炭对土壤中的重金属具有较强的吸附固定能力,能够降低重金属的植物可累积性。生物炭进入土壤后,在各种生物及非生物氧化作用下发生老化,而老化后的生物炭对土壤重金属的有效性以及对植物累积重金属的影响等方面的研究较少。[方法]本研究以氧化剂-干湿-冻融交替循环的方法对新鲜制备的生物炭(原始炭)进行老化,比较生物炭老化前后的阳离子交换量(CEC)、元素含量和表面官能团等参数的变化,并通过盆栽实验,探究生物炭老化前后对小白菜积累重金属(Pb、Cu、Cd)的影响。[结果]结果显示:与原始炭相比,老化作用能够增加生物炭的CEC、O/C值以及生物炭表面羟基和羰基的数量。相比未添加炭处理(对照组),老化炭的施用显著增加了土壤pH值和有机质含量(P0.05)。而老化炭对土壤重金属有效态含量表现为显著降低,且施加量越大,效果越明显。即相比对照,5%老化炭处理下土壤中Pb、Cu、Cd的减少率分别为12.42%、11.67%、11.21%。相应地,老化炭的添加显著降低了小白菜体内重金属累积量(P0.05),即未添加炭处理中小白菜体内Pb、Cu、Cd的含量分别为24.33 mg·kg~(-1)、28.8mg·kg~(-1)、0.2mg·kg~(-1),而在5%老化炭处理下小白菜体内Pb、Cu、Cd的含量各减少至3.33 mg·kg~(-1)、7.23mg·kg~(-1)、0.03mg·kg~(-1)。[结论]因此,老化生物炭依然能有效降低土壤重金属的生物有效性,说明生物炭对重金属污染土壤的修复具有一定的长期稳定性。  相似文献   

9.
为研究老化秸秆生物炭的性质及对水中诺氟沙星的吸附特性,本研究将新鲜生物炭进行自然老化、冻融循环老化和高温老化,通过元素分析、扫描电镜和红外光谱分析老化前后生物炭的组成和结构特性变化,研究老化生物炭对诺氟沙星的吸附机理以及pH、离子类型和离子浓度对吸附效果的影响。结果表明:不同老化方式均使生物炭的C元素含量降低,O元素含量显著增加,极性增加,芳香性降低,其中高温老化影响最大。高温老化使生物炭表面的—OH和C=C明显减少,冻融循环老化使—OH数量增加,自然老化对生物炭表面官能团影响较小。老化使生物炭表面破损、孔道塌陷,生物炭上的吸附点位被阻塞,不利于对诺氟沙星的吸附。老化前后生物炭对诺氟沙星的吸附更符合准二级动力学模型,等温吸附拟合发现,Langmuir模型能更好地拟合诺氟沙星在生物炭上的吸附过程。自然老化、冻融循环老化和高温老化分别使生物炭的吸附量降低了5.50%、7.70%、14.80%;在背景液pH 3.0~11.0范围内,老化前后生物炭对诺氟沙星的吸附量随pH增大先升高再降低,当pH为7.0时,吸附量达到最大值。阳离子价态越高,离子浓度越大,老化后生物炭对诺氟沙星的吸附量越小。研究表明,老化对生物炭的理化性质和吸附抗生素的能力均有影响,因此在使用生物炭去除目标污染物时需要考虑环境因素的影响。  相似文献   

10.
生物炭施入对农田土壤及作物生长影响的研究进展   总被引:2,自引:0,他引:2  
在高温条件下(通常700℃),通过限氧或完全缺氧对生物质原料进行热裂解和炭化所产生的一类含碳丰富的固态稳定物质称为生物炭。生物炭因其灰分中含有一定比例的矿质元素如钾、钙、钠、镁、硅等,它们以氧化物或碳酸盐形式存在,溶于水后呈碱性,所以生物炭普遍呈碱性;生物炭表面含有大量的—COOH、—COH、—OH等含氧官能团,丰富的含氧官能团易使生物炭表面产生大量负电荷,进而提高阳离子交换量(CEC);生物炭巨大的比表面积和丰富的孔隙结构有助于增强土壤持水、透气、保肥的能力,提高土壤对于易淋失养分元素和重金属污染物的吸附能力,具有提高肥料利用率、修复污染土壤的作用;生物炭还有助于促进土壤团聚体的形成,增加土壤水稳性团聚体数量;生物炭发达的多孔结构有助于降低土壤体积、质量,具有改善土壤物理性状的作用,同时对促进作物根系的生长发育、为土壤微生物提供栖息环境和生存空间、提高作物产量均有一定的效果。从生物炭的特性及制备影响因素、对土壤理化性质的影响、作物的生长发育及养分的吸收利用以及对污染土壤的修复和改良等方面进行阐述,并提出未来生物炭在农业等方面的应用,以期为相关领域学者提供借鉴和参考。  相似文献   

11.
两种生物炭对Pb的吸附特性研究   总被引:2,自引:2,他引:0  
以木子壳、米糠为前驱体,650℃制备生物炭,通过扫描电子显微镜、X射线粉末衍射仪和比表面积分析仪等手段表征其物理化学性质,探究粒径、矿物组分、初始浓度及时间等因素对生物炭吸附Pb~(2+)效果的影响。结果表明,木子壳生物炭比表面积虽远小于米糠生物炭,但对溶液中Pb~(2+)有很强的吸附效果,等温吸附曲线符合Langmuir吸附模型,最大吸附量达165.62 mg·g~(-1),明显高于米糠生物炭(58.92 mg·g~(-1))。同时XRD分析显示木子壳生物炭含大量矿物组分且吸附Pb~(2+)后有沉淀生成。  相似文献   

12.
水中镉和芘在核桃壳生物炭上的吸附行为及其交互作用   总被引:4,自引:3,他引:1  
以核桃壳在600℃热解所得生物炭(WSBC)为吸附剂,通过扫描电子显微镜(SEM)和傅立叶变换红外光谱仪(FTIR)对WSBC进行表征,用批平衡吸附实验研究了WSBC对水体中两种典型污染物Cd(Ⅱ)和芘的吸附特性,考察了吸附时间、Cd(Ⅱ)和芘初始浓度、pH值、WSBC粒径等对吸附的影响,以及Cd(Ⅱ)和芘在WSBC上吸附的交互作用。结果表明:WSBC表面粗糙,孔隙结构明显,富含羟基、羧基、羰基等含氧官能团,具有高度芳香和杂环结构;在25℃时,WSBC对Cd(Ⅱ)和芘的吸附分别在20 h和16h时达到平衡,饱和吸附量分别为23.79、0.17 mg·g-1;pH=5时,WSBC对Cd(Ⅱ)的吸附量最大,而pH在3~11范围内,WSBC对芘的吸附量随着pH的减小而增加。通过对吸附实验数据进行动力学、等温吸附特性分析,发现WSBC对Cd(Ⅱ)和芘的吸附动力学规律均符合准二级动力学方程,等温吸附可以用Langmuir方程很好地描述;Cd(Ⅱ)和芘在WSBC上吸附时存在明显的竞争吸附。  相似文献   

13.
生物炭对土壤-植物体系中铅镉迁移累积的影响   总被引:6,自引:1,他引:5  
为探讨不同特性生物炭对土壤-植物体系中典型重金属铅(Pb)和镉(Cd)迁移累积的影响,分别选择花生壳、水稻壳、小麦秸秆、椰壳及生物燃气副产物5种材料制备的生物炭及不同粒径椰壳生物炭作为土壤调理剂,进行多茬蔬菜盆栽试验,研究各茬蔬菜可食用部位生物量及Pb和Cd累积量,土壤理化性质及土壤有效态Pb和Cd含量变化规律。结果显示,生物炭的施加均可不同程度提升土壤pH、土壤有机碳含量及阳离子交换量(CEC)。除小麦秸秆生物炭外,其余4种生物炭均可显著降低土壤有效态Pb和Cd及蔬菜可食用部位Pb和Cd累积量,并对蔬菜有明显促生长效果。生物炭粒径越小对土壤有效态Pb和Cd含量的降低、蔬菜生长的促进及蔬菜Pb和Cd累积量的降低作用越显著。蔬菜生长与土壤pH、有机碳含量及CEC水平均呈显著正相关关系,而蔬菜Pb和Cd累积量及土壤有效态Pb和Cd含量则与土壤pH、有机碳及CEC含量呈显著负相关关系。连续3茬蔬菜轮作后,80~120目椰壳生物炭、花生壳生物炭、水稻壳生物炭及生物燃气副产物生物炭仍对Pb和Cd复合污染酸性土壤具有明显的修复效果。结果表明,生物炭可通过改变土壤pH、CEC、有机碳等基本理化性质,对土壤重金属产生钝化作用,显著促进蔬菜的生长并可消减蔬菜对土壤重金属元素的累积效应。  相似文献   

14.
花生壳生物炭对硝态氮的吸附机制研究   总被引:9,自引:3,他引:6  
以花生壳为原料,300℃热解条件下制得生物炭。通过批量平衡吸附试验,结合吸附前后FTIR、XPS图谱表征分析探索硝态氮(NO-3-N)在生物炭表面的吸附机制。结果表明,生物炭对NO-3-N的吸附显著受溶液pH值影响,当pH6时有利于吸附的进行。随溶液初始NO-3-N浓度增加,生物炭对其吸附量逐渐增加,在初始浓度800 mg·L-1的吸附体系中,最大吸附量达40 mg·g-1,Freundlich方程可较好地拟合(R2=0.975)生物炭对NO-3-N等温吸附过程,吸附为非均一的多分子层吸附;生物炭对NO-3-N的吸附可在30 min达到平衡,伪二级动力学方程能够较好地描述吸附动力学过程,表明吸附以化学吸附为主。FTIR、XPS图谱分析表明,生物炭表面分布的羟基(-OH)、芳香环羰基(-C=O)及脂肪族醚类(-O-)等官能团参与了吸附过程,且与之相连的C原子结合能均增加。结合生物炭表面金属离子分布状况,综合分析认为,通过氢键形成和金属桥键作用是生物炭对NO-3-N吸附的主要机制。  相似文献   

15.
铁改性生物炭对磷的吸附及磷形态的变化特征   总被引:17,自引:5,他引:12  
利用农作物残体小麦秸秆为原料制备生物炭,并用氯化铁溶液改性,考察了改性后生物炭元素组成和表面官能团的变化、改性和吸附后生物炭中磷形态变化特征以及溶液初始pH的影响,分析了铁改性生物炭对磷的吸附机理。结果表明,生物炭经氯化铁溶液改性后C的质量分数大幅下降,O和Fe的质量分数大幅上升;表面的羧基含量增加,碱性官能团含量显著降低。铁改性使生物炭对磷的吸附平衡时间由改性前的60 min增至120 min;铁改性后,生物炭的理论最大吸附量为10.1 mg·g-1,是改性前的19.4倍。改性前生物炭对磷的吸附主要是物理吸附,表现为交换态磷含量大幅增加,占吸附总量的82.1%;而铁改性生物炭主要是化学吸附,表现为铁结合态磷的增幅最大,占吸附总量的66.7%,交换态磷仅占26.6%。随溶液初始pH的增加,铁改性生物炭对磷的去除率先增加后下降,pH=7时去除率最高,去除率随pH的变化与交换态磷含量密切相关;随着pH升高,铁结合态磷有向闭蓄态磷转化的趋势。  相似文献   

16.
为探究温度条件对生物炭吸附重金属离子特性的影响,采用吸附试验研究25、45和65 ℃ 3种温度条件下生物炭对单一重金属离子溶液和多种重金属离子混合溶液的吸附能力变化。结果表明:生物炭对4种重金属的吸附均可采用Langmuir和Freundlich方程进行描述;温度是影响生物炭吸附重金属的重要因素,生物炭对Cu的吸附能力随温度的升高而减小,在25 ℃时吸附量最大,为5.27 mg·g-1,去除率达到36.17%;生物炭对Zn的吸附能力随温度的升高而增加,在65 ℃时吸附量最大,为4.94 mg·g-1,去除率达到45.36%;生物炭对Cd的吸附能力随温度的升高呈现先增加后降低的趋势,在45 ℃时吸附量最大,为5.82 mg·g-1,去除率达到53.85%;生物炭对Pb的吸附能力随温度的升高而增加,在65 ℃时吸附量最大,为21.35 mg·g-1,去除率达到98.61%。混合溶液中,生物炭对4种重金属的吸附强弱顺序为:Pb>Cu>Zn>Cd。温度升高能促进竞争吸附中生物炭对各重金属离子的吸附,对混合重金属离子的总吸附量也增大。  相似文献   

17.
不同生物质来源生物炭对Pb(Ⅱ)的吸附特性   总被引:10,自引:5,他引:5  
以水稻秸秆、小麦秸秆、荔枝树枝为原料,在300、400、500、600℃下制备生物炭,并表征其理化性质,考察热解温度、初始p H、矿物组分等因素对生物炭吸附Pb(Ⅱ)的影响。结果表明,不同热解温度对水稻和小麦秸秆炭吸附Pb(Ⅱ)的影响很小,而荔枝树枝生物炭对Pb(Ⅱ)的吸附量随热解温度升高而显著增大。在p H3.0~6.0的范围内,三种生物炭对溶液中Pb(Ⅱ)的吸附量呈上升趋势;在25℃时,三种生物炭的等温吸附曲线符合Freundlich吸附模型,荔枝树枝生物炭对Pb(Ⅱ)的吸附效果最佳。三种生物炭吸附Pb(Ⅱ)的主导机制可能是其与矿物组分的共沉淀作用,而荔枝树枝生物炭还可能存在Pb(Ⅱ)与-OH、-COOH之间的离子交换作用,C=C键中的π电子在吸附过程中也有一定的贡献。  相似文献   

18.
磁性生物质炭对水体中芘的去除效果研究   总被引:2,自引:2,他引:0  
以柳树枝为原料,于600℃制备原始生物质炭LZ,再通过化学沉淀法制备两种磁性强度不同的生物质炭LZ1.5和LZ2.5。利用静态氮吸附(BET-N2)、傅里叶红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)等分析手段对生物质炭的表面结构和化学组成等理化性质进行表征,并研究生物质炭对水体中芘的吸附行为。结果表明:原始生物质炭在24 h吸附即达到表观吸附平衡,磁性生物质炭在72 h吸附达到表观吸附平衡;LZ1.5的吸附效果最佳,其最大吸附容量Qm=2 758.6μg·g-1,其次是LZ2.5和LZ,Qm分别为833.3、322.6μg·g-1;LZ1.5投加量在375 mg·L~(-1)时,芘的去除率达到90%以上。三种生物质炭的吸附行为均符合Freundlich模型和Langmuir模型。磁性生物质炭对芘吸附较多的原因一方面在于其保留了原有的芳香性官能团,另一方面是Fe3O4的存在造成了磁性炭表面微孔化以及表面羟基化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号