首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
BACKGROUND: Fufenozide is a novel non‐steroidal ecdysone agonist with good efficacy against diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae). At present, it is widely applied for the control of a range of lepidopterous pests in China. This study compared the activities of fufenozide and 12 other insecticides against unselected and fufenozide‐selected strains of DBM to examine potential patterns of cross‐resistance. The relative fitness of the fufenozide‐selected strain was assessed to provide information pertinent to insecticide resistance management. RESULTS: Compared with the susceptible strain (JSS), the fufenozide‐resistant strain (JSR) showed high cross‐resistance to dibenzoylhydrazines and benzoylphenylureas, low cross‐resistance to abamectin and no cross‐resistance to organophosphates, carbamates and pyrethroids. JSR had a lower reproductive ability and a relative fitness of 0.5 compared with JSS. CONCLUSION: P. xylostella has the potential to develop resistance to fufenozide, albeit at the expense of fitness. Cross‐resistance between the same and other classes of insecticides is of concern, and should be a key consideration when implementing fufenozide‐based control strategies for this species. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
小菜蛾抗多杀菌素和敏感品系耐低温能力的比较   总被引:1,自引:2,他引:1       下载免费PDF全文
通过杂交筛选得到小菜蛾对多杀菌素敏感和高抗的纯合子品系,对二个品系在适温和经低温处理后的生长发育特性进行了比较,以探明其抗性是否伴有适合度的变化以及适合度变化与温度的关系。结果发现:高抗品系的卵经6℃低温处理14 d,孵化出的幼虫仅有7.7%正常化蛹,显著低于敏感品系61.4%的正常化蛹率;经6℃低温处理28 d,高抗和敏感品系的卵孵化率分别为27%和75%,二者差异显著;高抗品系的蛹经 5℃低温处理7~14 d后,蛹的 发育历期显著延长,其子代卵的存活力也显著下降。在适温25℃下,抗性和敏感品系之间多项生物学特性均无显著差异或差异很小。这些结果表明,小菜蛾对多杀菌素的抗性伴随有耐低温能力的适合度代价。  相似文献   

3.
The two-spotted spider mite Tetranychus urticae Koch is one of the most important pests of a wide range of crops worldwide. Its control is still largely based on the use of acaricides. However, due to its short life-cycle, high fecundity and arrhenotokous reproduction, it is able to develop resistance to these compounds very rapidly. Preliminary studies for milbemectin resistance in T. urticae showed that, under laboratory conditions, such resistance was unstable in the absence of a selection pressure. The aim of this study was to evaluate the possible fitness costs associated with milbemectin resistance in T. urticae. Comparison of biological traits between resistant and susceptible strains indicated the occurrence of fitness costs associated with milbemectin resistance. The resistant strain showed a longer juvenile development period for females, lower fecundity and a higher proportion of males among the progeny. The figures for net reproductive rate (R 0), intrinsic rate of natural increase (r m) and finite rate of increase (λ) were higher in the susceptible strain. The instability of milbemectin resistance can be exploited in resistance management programmes.  相似文献   

4.
Emamectin benzoate, a semisynthetic bioinsecticide, has been used frequently for the management of lepidopteran pests of cotton worldwide. To assess the resistance risk and design strategy for resistance management, life history traits were established for emamectin benzoate-resistant, unselected and susceptible S. litura strains based on the laboratory observations. Bioassay results showed that the emamectin benzoate-selected strain developed a resistance ratio of 911-fold compared with that of the susceptible strain. The emamectin-selected strain had a relative fitness of 0.37 and lower prepupal and pupal weights, prolonged larval duration and development time, lower fecundity and hatchability compared with the susceptible strain. Mean population growth rates, such as intrinsic rate of population increase and biotic potential, were lower for the emamectin-selected strain compared with the susceptible strain. Development of resistance can cost considerable fitness for the emamectin-selected strain. The present study provided useful information for determining potential management strategies to overcome development of resistance.  相似文献   

5.

BACKGROUND

Tebufenozide is widely used to control populations of the smaller tea tortrix, Adoxophyes honmai. However, A. honmai has evolved resistance such that straightforward pesticide application is an untenable long-term approach for population control. Evaluating the fitness cost of resistance is key to devising a management strategy that slows the evolution of resistance.

RESULTS

We used three approaches to assess the life-history cost of tebufenozide resistance with two strains of A. honmai: a tebufenozide-resistant strain recently collected from the field in Japan and a susceptible strain that has been maintained in the laboratory for decades. First, we found that the resistant strain with standing genetic variation did not decline in resistance in the absence of insecticide over four generations. Second, we found that genetic lines that spanned a range of resistance profiles did not show a negative correlation between their LD50, the dosage at which 50 % of individuals died, and life-history traits that are correlates of fitness. Third, we found that the resistant strain did not manifest life-history costs under food limitation. Our crossing experiments indicate that the allele at an ecdysone receptor locus known to confer resistance explained much of the variance in resistance profiles across genetic lines.

CONCLUSION

Our results indicate that the point mutation in the ecdysone receptor, which is widespread in tea plantations in Japan, does not carry a fitness cost in the tested laboratory conditions. The absence of a cost of resistance and the mode of inheritance have implications for which strategies may be effective in future resistance management efforts. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

6.
BACKGROUND: B‐biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross‐resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study. RESULTS: A 66.3‐fold thiamethoxam‐resistant B. tabaci strain (TH‐R) was established after selection for 36 generations. Compared with the susceptible strain (TH‐S), the selected TH‐R strain showed obvious cross‐resistance to imidacloprid (47.3‐fold), acetamiprid (35.8‐fold), nitenpyram (9.99‐fold), abamectin (5.33‐fold) and carbosulfan (4.43‐fold). No cross‐resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH‐R strain (3.14‐ and 2.37‐fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21‐ and 1.68‐fold respectively, and carboxylesterase activity increased 2.96‐fold in the TH‐R strain. However, no difference was observed for glutathione S‐transferase between the two strains. CONCLUSION: B‐biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross‐resistance insecticides may delay the development of resistance to thiamethoxam in this species. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
敏感和抗阿维菌素小菜蛾的生物适合度   总被引:10,自引:3,他引:7  
阿维菌素汰选的小菜蛾抗性种群(ABM-R)与相对敏感种群(ABM-S)相比不表现繁殖不利性。ABM-R种群的交配率、有效产卵指数和孵化率均显著大于ABM-S种群 ,ABM-R种群的内禀增长率为0.139,是ABM-S种群的1.19倍 ,相对适合度为ABM-S种群的1.49倍。建立了ABM-S和ABM-R种群的生命表 ,并对抗性治理进行了讨论。  相似文献   

8.
Pyriproxyfen, a juvenile hormone (JH) mimic, is a biorational insecticide that disrupts insect development. It is one of the principal insecticides being used to control Bemisia tabaci (Gennadius) on cotton, and has many environmentally positive attributes that make it compatible with integrated pest management (IPM) programs. In Israel, a high level of resistance to pyriproxyfen has been observed in several isolated regions. Here, tests were conducted to establish whether temporal refuges from exposure to pyriproxyfen could be useful for restoring the effectiveness of the compound. Resistance was found to decrease by a factor of 8 when exposure to pyriproxyfen was ceased for 13 generations. Reversal of resistance was accompanied with increased biotic fitness of the revertant colony. By incorporating experimental estimates of nymph survival, sex ratio, fecundity, egg hatching rate and developmental time, the seasonal cost per generation for resistant insects was estimated to be 25%. A genetic simulation model, optimized by empirical data from bioassays, predicted fitness cost per generation of 19% for resistant homozygous (RR) females and hemizygous (R) males, and produced rates of reversal similar to the experimental results. The model also predicted that, even after 5 years ( approximately 55 generations) without pyriproxyfen treatments, the frequency of the resistance allele (R) will still remain high (0.02). It is therefore concluded, on the basis of experimental and modeling results, that the effectiveness of temporal refuges for reversing development of resistance to pyriproxyfen in B. tabaci may be limited.  相似文献   

9.
BACKGROUND: Nucleotide polymorphisms in the VKORC1 gene can be linked to anticoagulant rodenticide resistance in Norway rats (Rattus norvegicus Berkenhout). This provides a fitness advantage to rats exposed to anticoagulant actives, but may also cause fitness costs. The vitamin K requirement and reproductive parameters of bromadiolone‐resistant rats (Westphalian resistant strain; VKOR variant Tyr139Cys) and bromadiolone‐susceptible Norway rats were compared. RESULTS: At vitamin K deficiency, blood clotting times increased in all homozygous resistant males within 8 days and in 80% of homozygous resistant females within 15 days. There was little effect on blood clotting in heterozygous males and no effect in heterozygous females and VKOR wild‐type individuals. Litter size was about 20% higher in sensitive pairs compared with resistant pairs. Testes growth, male gonad weight, sperm motility and testis cell concentration were unaffected by the mutation. CONCLUSIONS: The VKOR variant Tyr139Cys causes considerable physiological cost in Norway rats in terms of vitamin K requirement and reproduction. This may affect the distribution and spread of resistant individuals in the wild. Decreased litter size of resistant parents seems to be due to lowered female reproductive performance, as there was no significant effect of the mutation on any aspects of male reproduction considered, but this requires further study. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Despite frequent use for the past 25 years, resistance to glyphosate has evolved in few weed biotypes. The propensity for evolution of resistance is not the same for all herbicides, and glyphosate has a relatively low resistance risk. The reasons for these differences are not entirely understood. A previously published two‐herbicide resistance model has been modified to explore biological and management factors that account for observed rates of evolution of glyphosate resistance. Resistance to a post‐emergence herbicide was predicted to evolve more rapidly than it did to glyphosate, even when both were applied every year and had the same control efficacy. Glyphosate is applied earlier in the growing season when fewer weeds have emerged and hence exerts less selection pressure on populations. The evolution of glyphosate resistance was predicted to arise more rapidly when glyphosate applications were later in the growing season. In simulations that assumed resistance to the post‐emergence herbicide did not evolve, the evolution of glyphosate resistance was less rapid, because post‐emergence herbicides were effectively controlling rare glyphosate‐resistant individuals. On their own, these management‐related factors could not entirely account for rates of evolution of resistance to glyphosate observed in the field. In subsequent analyses, population genetic parameter values (initial allele frequency, dominance and fitness) were selected on the basis of empirical data from a glyphosate‐resistant Lolium rigidum population. Predicted rates of evolution of resistance were similar to those observed in the field. Together, the timing of glyphosate applications, the rarity of glyphosate‐resistant mutants, the incomplete dominance of glyphosate‐resistant alleles and pleiotropic fitness costs associated with glyphosate resistance, all contribute to its relatively slow evolution in the field.  相似文献   

11.
BACKGROUND: Development of pyriproxyfen and neonicotinoid resistance in the B-biotype whitefly and recent introduction of the Q biotype have the potential to threaten current whitefly management programs in Arizona. The possibility of integrating the novel anthranilic diamides chlorantraniliprole and cyantraniliprole into the current program to tackle these threats largely depends on whether these compounds have cross-resistance with pyriproxyfen and neonicotinoids in whiteflies. To address this question, the authors bioassayed a susceptible B-biotype strain, a pyriproxyfen-resistant B-biotype strain, four multiply resistant Q-biotype strains and 16 B-biotype field populations from Arizona with a systemic uptake bioassay developed in the present study. RESULTS: The magnitude of variations in LC50 and LC99 among the B-biotype populations or the Q-biotype strains was less than fivefold and tenfold, respectively, for both chlorantraniliprole and cyantraniliprole. The Q-biotype strains were relatively more tolerant than the B-biotype populations. No correlations were observed between the LC50 (or LC99) values of the two diamides against the B- and Q-biotype populations tested and their survival rates at a discriminating dose of pyriproxyfen or imidacloprid. CONCLUSION: These results indicate the absence of cross-resistance between the two anthranilic diamides and the currently used neonicotinoids and pyriproxyfen. Future variation in susceptibility of field populations to chlorantraniliprole and cyantraniliprole could be documented according to the baseline susceptibility range of the populations tested in this study. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Auxinic herbicides are widely used for selective control of many broadleaf weeds, e.g. wild mustard. An auxinic‐herbicide‐resistant wild mustard biotype may offer an excellent model system to elucidate the mechanism of action of these herbicides. Classical genetic analyses demonstrate that the wild mustard auxinic herbicide resistance is determined by a single dominant gene. Availability of near‐isogenic lines (NILs) of wild mustard with auxinic herbicide resistance (R) and herbicide susceptibility (S) will help to study the fitness penalty as well as the precise characterization of this gene. RESULTS: Eight generations of backcrosses were performed, and homozygous auxinic‐herbicide‐resistant and auxinic‐herbicide‐susceptible NILs were identified from BC8F3 families. S plants produced significantly more biomass and seed compared with R plants, suggesting that wild mustard auxinic herbicide resistance may result in fitness reduction. It was also found that the serrated margin of the first true leaf was closely linked to auxinic herbicide resistance. Using the introgressed progeny, molecular markers linked to auxinic herbicide resistance were identified, and a genetic map was constructed. CONCLUSION: The fitness penalty associated with the auxinic herbicide resistance gene may explain the relatively slow occurrence and spread of auxinic‐herbicide‐resistant weeds. The detection of the closely linked markers should hasten the identification and characterization of this gene. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
构建了小菜蛾抗阿维菌素(A)、抗高效氯氰菊酯(B)和抗杀虫双(D)3个抗性品系及其6个杂交F1代(抗性品系分别两两杂交)以及1个敏感品系(S)的种群生命表,并计算了相对生物适合度。结果表明:A、B和D 3个抗性品系的相对生物适合度均比敏感品系S(生物适合度为1.0)低,分别为0.60、0.77和0.53;6个杂交F1代A♀+B♂、A♂+B♀、A♀+D♂、A♂+D♀、B♂+D♀和B♀+D♂的生物适合度分别为0.67、0.53、0.67、0.74、0.73和0.80,也比敏感品系的低,但和抗性品系的适合度相近或高于抗性品系。  相似文献   

14.
BACKGROUND: Laodelphax striatellus (Fallén) is a major pest of cultivated rice and is commonly controlled in China with the organophosphate insecticides. To develop a better resistance management strategy, a chlorpyrifos‐resistant strain of L. striatellus was selected in the laboratory, and its cross‐resistance to other insecticides and possible mechanisms of the chlorpyrifos resistance were investigated. RESULTS: After 25 generations of selection with chlorpyrifos, the selected strain of L. striatellus developed 188‐fold resistance to chlorpyrifos in comparison with the susceptible strain, and showed 14‐ and 1.6‐fold cross‐resistance to dichlorvos and thiamethoxam respectively. There was no apparent cross‐resistance to abamectin. Chlorpyrifos was synergised by the inhibitor triphenyl phosphate; the carboxylesterase synergistic ratio was 3.8 for the selected strain, but only 0.92 for the susceptible strain. The carboxylesterase activity of the selected strain was approximately 4 times that of the susceptible strain, whereas there was no significant change in the activities of alkaline phosphatase, acid phosphatase, glutathione S‐transferase and cytochrome P450 monooxygenase between the strains. The Michaelis constant of acetylcholinesterase, maximum velocity of acetylcholinesterase and median inhibitory concentration of chlorpyrifos‐oxon on acetylcholinesterase were 1.7, 2.5 and 5 times higher respectively in the selected strain. CONCLUSION: The high cross‐resistance to the organophosphate dichlorvos in the chlorpyrifos‐resistant strain suggests that other non‐organophosphate insecticides would be necessary to counter resistance, should it arise in the field. Enhanced activities of carboxylesterase and the acetylcholinesterase insensitivity appear to be important mechanisms for chlorpyrifos resistance in L. striatellus. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
The dynamics of pyriproxyfen resistance in Bemisia tabaci (Gennadius) have been studied intensively in cotton fields and greenhouses in Israel. High resistance to pyriproxyfen evolved one year after its introduction for use on flowers in greenhouses, after three successive applications. After ten years of pyriproxyfen use in cotton fields, with only one application per season, a high level of resistance was observed, but its rate of development differed among localities. It is hypothesized that these differences reflect temporal and spatial variations in the availability of alternative host plants for B tabaci, and that pyriproxyfen resistance evolved most readily in geographically isolated areas. It is also likely that the occurrence and development of resistance is partially biotype-related. Pyriproxyfen use has ceased in high-resistance localities, but in areas with low frequencies of resistance, cotton growers have continued to achieve acceptable control of B tabaci with pyriproxyfen. Due to the absence of applications of pyriproxyfen in some cotton fields, resistance levels tended to decline between 1998 and 2001. Laboratory experiments support the hypothesis that this decline reflects, in part, fitness costs associated with pyriproxyfen resistance.  相似文献   

16.

BACKGROUND

Fitness costs associated with insecticide resistance in pest insects have mainly been studied under optimal laboratory conditions. However, resistant insects face more stressors than just insecticides in the field, and how the resistant population reacts to these stressors is of practical importance for the control of pest insects such as the brown planthopper Nilaparvata lugens. The aim of the present study was to explore the impact of population density on the competitiveness of resistant and susceptible individuals.

RESULTS

Two isogenic N. lugens populations, a highly imidacloprid‐resistant population (HZ‐R) with a resistance ratio (RR) of 227.10 and a relatively susceptible population (HZ‐S) with an RR of 2.99, were created from a field‐resistant population (HZ; RR 62.51). The high resistance levels of HZ‐R and HZ were mainly attributable to the overexpression of multiple cytochrome P450 (CYP) genes such as CYP6ER1, CYP6AY1, CYP6CW1 and CYP4CE1 compared with HZ‐S, this being supported by piperonyl butoxide synergism. HZ‐R was observed to be more resistant to thiacloprid and etofenprox compared with HZ and HZ‐S. Most interestingly, in high population density treatments, HZ‐S individuals were much more competitive than HZ‐R individuals.

CONCLUSION

Imidacloprid‐resistant individuals of N. lugens are less competitive than their susceptible counterparts under density pressure. © 2017 Society of Chemical Industry  相似文献   

17.
禾谷丝核菌对戊唑醇的抗性及抗药性菌系生物学特性   总被引:14,自引:5,他引:14       下载免费PDF全文
在含戊唑醇PDA平板培养基上,对禾谷丝核菌进行逐代处理,以诱导其抗药性菌系;比较抗性和敏感菌系的生物学特性,测定抗性菌系对其它杀菌剂的交互抗性。结果表明,选育至35代,对戊唑醇抗性达33.4倍。抗戊唑醇菌系与敏感亲本菌系相比,其菌丝生长速率、菌丝干重、菌核产生速率、菌核数及干重均存在差异。抗性菌系较敏感菌系对冬小麦幼苗的致病力减弱,但小麦返青后抗性菌系引起的发病率和严重度均较敏感菌系增强。戊唑醇抗性菌系对三唑酮、丙环唑、井冈霉素、福美双、噁醚唑和咯菌腈6种药剂分别产生了31.2、22.8、16.9、15.8、15.5和1.6倍的交互抗性。  相似文献   

18.
The fitness cost of spinosad resistance was investigated in the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Laboratory experiments were conducted to compare relative fitness of H. armigera between the spinosad-susceptible and -resistant strains. During the experiments, the average development periods of the resistant strain were lengthened by 4–5 days, reflected in a prolongation of egg, larval and pupal periods. Furthermore, pupal survival, pupal weight, the mean life span of emerged adults, eggs laid and hatched decreased greatly in the resistant strain in comparison with the susceptible strain. Other life-cycle parameters such as larval survival, larval wet weights, prepupal periods, pupation ratio, and sex ratio did not change significantly. As a result, both net replacement rate (R 0) and intrinsic rate of increase (r m) were reduced for the resistant strain. Our results clearly indicated that relative fitness of resistant individuals was reduced in the absence of spinosad. Rational measures including pesticide rotations should be expected to delay development of resistance to spinosad in H. armigera field populations from China.  相似文献   

19.
The maize armyworm, Mythimna separata is a polyphagous insect pest of sporadic occurrence. Thiamethoxam is a neonicotinoid insecticide used for the management of many pests in many parts of the world. To develop a resistance management strategy, selection for resistance, the larval fitness parameters and the biochemical mechanisms of resistance to thiamethoxam were studied for thiamethoxam-selected and susceptible M. separata strains based on laboratory observations. The results of our bioassay showed that the thiamethoxam-selected strain was 17.03-fold more resistant than the susceptible strain. The thiamethoxam-selected strain had prolonged larval durations, lower pre-pupal weight of males, and a longer development time from egg to adult than the susceptible strain. The biochemical analyses showed that the GST, CarE and cytochrome P450 enzymes are associated with the development of thiamethoxam resistance in the thiamethoxam-selected strain of M. separata. In this study, the occurrence of resistance may cost developmental fitness for the thiamethoxam-selected strain and provide useful information for designing management strategies to delay resistance.  相似文献   

20.
BACKGROUND: The pyrethroid resistance of the diamondback moth Plutella xylostella (L.) is conferred by increased gene expression of cytochrome P450 to detoxify the insecticide and/or through gene mutation of the sodium channel, which makes the individual insensitive to pyrethroids. However, no information is available about the correlation between the increased metabolic detoxification and the target insensitivity in pyrethroid resistance. RESULTS: Frequencies of pyrethroid‐resistant alleles (L1014F, T929I and M918I) and two resistance‐related mutations (A1101T and P1879S) at the sodium channel and expression levels of the cytochrome P450 gene CYP6BG1 were examined individually using laboratory and field strains of P. xylostella. Real‐time quantitative PCR analysis using the laboratory strains revealed that levels of larval expression of the resistant strain, homozygous for the pyrethroid‐resistant alleles other than the M918I, are significantly higher than those of the susceptible strain. In the field strains, the expression levels in insects having the same resistant alleles as those of the resistant strains varied greatly among individuals. The expression levels were not significantly higher than those in the heterozygotes. CONCLUSION: Significant correlation between the target insensitivity and the increased metabolic detoxification in pyrethroid resistance of P. xylostella was observed in the laboratory but not in the field. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号