首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascochyta blight is a devastating disease of chickpea. Breeders have been trying to introduce resistance from wild Cicer into cultivated chickpea, however, the effort is hampered by the frequent genetic drag of undesirable traits. Therefore, this study was aimed to identify potential markers linked to plant growth habit, ascochyta blight resistance and days to flowering for marker-assisted breeding. An interspecific F2 population between chickpea and C. reticulatum was constructed to develop a genetic linkage map. F2 plants were cloned through stem cuttings for replicated assessment of ascochyta blight resistance. A closely linked marker (TA34) on linkage group (LG) 3 was identified for plant growth habit explaining 95.2% of the variation. Three quantitative trait loci (QTLs) explaining approximately 49% of the phenotypic variation were found for ascochyta blight resistance on LG 3 and LG 4. Flowering time was controlled by two QTLs on LG3 explaining 90.2% of the variation. Ascochyta blight resistance was negatively correlated with flowering time (r = −0.22, P < 0.001) but not correlated with plant growth habit.  相似文献   

2.
Resistance gene analog polymorphism (RGAP)is a targeted homology based method, which has been used in different crops to identify tightly linked markers for disease resistance genes and also to enrich the map with a different class of markers. In chickpea, using the RGA primers, which are designed based on the conserved motifs present in characterized R-genes, Bulk Segregant Analysis (BSA) was performed on a resistant bulk and a susceptible bulk along with parents for ascochyta blight resistance. Of all available RGAs and their48 different combinations, only one RGA showed polymorphism during BSA. This marker was evaluated in an F7:8 population of142 RILs from an interspecific cross ofC. arietinum (FLIP 84-92C) × C. reticulatum (PI 599072) and was mapped toCicer linkage map. The genomic location of chickpea RGA was compared with the locations of mapped chickpea R-genes. This is the first RGA marker mapped to chickpea linkage map. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
A new co-dominant molecular marker, CaETR, was developed based on allelic sequence length polymorphism in an ethylene receptor-like gene located in the genomic region of a QTL (QTLAR1) conferring ascochyta blight resistance in chickpea. This marker not only discriminated resistance and susceptible phenotypes of chickpea to ascochyta blight, but also easily detected heterozygous genotypes. Using the CaETR marker in combination with a previously developed co-dominant SCAR marker (SCY17590) linked to another QTL (QTLAR2) it was possible to detect resistance alleles in 90?% of resistant accessions in a collection of landraces, advances breeding lines and cultivars, and also detected susceptible alleles in all cases. The results of this study offer a scope for improving the efficiency of conventional chickpea breeding by carrying out negative selection for QTLAR1 and QTLAR2 in early generations without relaying directly on the phenotype. This PCR-based approach using both co-dominant markers is proposed as an efficient tool for selecting blight-resistant genotypes in breeding programs.  相似文献   

4.
The three major leaf types in chickpea are normal compound leaf, simple leaf and multipinnate. Simple leaf types are less commonly cultivated worldwide and are often reputed to be susceptible to ascochyta blight disease, whereas other leaf types range from resistant to susceptible. This study determined the association between host plant resistance to ascochyta blight and different leaf types in segregating populations derived from crosses between disease resistant and susceptible chickpea genotypes. In addition, the inheritance of disease resistance and leaf type was investigated in intraspecific progeny derived from crosses between two resistant genotypes with normal leaf type (ICC 3996 and Almaz), one susceptible simple leaf type (Kimberley Large) and one susceptible multipinnate leaf type (24 B-Isoline). Our results showed that, in these segregating populations, susceptibility to ascochyta blight was not linked to multipinnate or simple leaf types; resistance to ascochyta blight depended more on genetic background than leaf shape; leaf type was controlled by two genes with a dihybrid supplementary gene action; normal leaf type was dominant over other leaf types; and inheritance of ascochyta blight resistance was controlled by two major genes, one dominant and one recessive. Since there was no linkage between ascochyta blight susceptibility and leaf type, breeding various leaf types with ascochyta blight resistance is a clear possibility. These results have significant implications for chickpea improvement, as most current extra large seeded kabuli varieties have a simple leaf type.  相似文献   

5.
Rubeena  P. W. J. Taylor    P. K. Ades    R. Ford 《Plant Breeding》2006,125(5):506-512
Quantitative trait locus (QTL) analysis of ascochyta blight resistance in lentil was conducted using genomic maps developed from two F2 populations, viz. ILL5588/ILL7537 and ILL7537/ILL6002. Five QTLs for ascochyta blight resistance were identified by composite interval mapping (CIM) across four linkage groups (LG) in population ILL5588/ILL7537. Three QTLs were identified by CIM in population ILL7537/ILL6002 (two in close proximity on LGI and one on LGII). Two of these coincided with regions identified using multiple interval mapping (MIM) and were shown to be conditioned by dominant and partial dominant gene action. Together, they accounted for approximately 50% of the phenotypic variance of disease severity. Comparison between the two populations revealed a potentially common QTL and several common regions that contained markers significantly associated with resistance. This study demonstrated the transferability of QTLs among populations and identified markers closely linked to the major QTL that may be useful for future marker‐assisted selection for disease resistance.  相似文献   

6.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

7.
单核苷酸多态性(SNP)在植物基因组中广泛存在,基于SNP的分子标记也正越来越广泛地应用到植物基因定位、图位克隆及分子标记辅助育种等方面。模式植物拟南芥和水稻的全基因组序列测定已经完成,拟南芥有两种生态型完成了全序列测定,水稻有两个品种完成了全序列测定。许多植物有来自不同品种或不同组织器官或生长发育阶段的大量的EST序列。这些序列是植物SNP开发的重要资源。利用生物信息学手段对全基因组序列或EST序列进行分析已经形成了许多SNP位点数据库,这些数据库的建立为基于SNP的基因功能研究及分子标记开发提供了宝贵的资源。本文对植物SNP位点开发涉及的数据库资源及已经形成的SNP位点数据库进行了总结,并讨论了将SNP位点转化成CAPS或dCAPS标记的方法和相应的工具软件。  相似文献   

8.
黄麻CAPS分子标记的开发,可以为黄麻遗传多样性分析、种质资源鉴定和分子标记辅助选择等研究提供有效方法。本试验以黄麻179和爱店野生种为材料,采用IlluminaHiSeq4000测序技术进行转录组测序,对其SNP位点进行分析,设计了与木质素合成基因4CL、COMT及转录因子MYB相兲的SNP引物,在此基础上,应用dCAPS Finder2.0软件开发了CAPS标记,幵对其有效性进行了验证。结果表明:(1)组装后的黄麻unigene序列共72,674条,序列总长度为29,705,997 bp,检测到的SNP位点总数为67,567个,平均每440 bp有1个SNP。(2)获得了39对分别与4CL、COMT和MYB相兲的SNP引物,从中筛选获得26对CAPS标记引物,开发成功率为66.7%,其中11对CAPS标记具有多态性,多态性比例为43.2%。(3)开发的CAPS标记能较好地将12份不同类型的黄麻种质区分开来,表明CAPS是适用于黄麻研究的较理想的分子标记方法,为黄麻遗传基础研究提供了可靠工具。  相似文献   

9.
10.
Botrytis grey mould (BGM) caused by Botrytis cinerea Pers. ex. Fr. is the second most important foliar disease of chickpea (Cicer arietinum L.) after ascochyta blight. An intraspecific linkage map of chickpea consisting of 144 markers assigned on 11 linkage groups was constructed from recombinant inbred lines (RILs) of a cross that involved a moderately resistant kabuli cultivar ICCV 2 and a highly susceptible desi cultivar JG 62. The length of the map obtained was 442.8 cM with an average interval length of 3.3 cM. Three quantitative trait loci (QTL) which together accounted for 43.6% of the variation for BGM resistance were identified and mapped on two linkage groups. QTL1 explained about 12.8% of the phenotypic variation for BGM resistance and was mapped on LG 6A. It was found tightly linked to markers SA14 and TS71rts36r at a LOD score of 3.7. QTL2 and QTL3 accounted for 9.5 and 48% of the phenotypic variation for BGM resistance, respectively, and were mapped on LG 3. QTL 2 was identified at LOD 2.7 and flanked by markers TA25 and TA144, positioned at 1 cM away from marker TA25. QTL3 was a strong QTL detected at LOD 17.7 and was flanked by TA159 at 12 cM distance on one side and TA118 at 4 cM distance on the other side. This is the first report on mapping of QTL for BGM resistance in chickpea. After proper validation, these QTL will be useful in marker-assisted pyramiding of BGM resistance in chickpea.  相似文献   

11.
Efficiencies of SCAR, CAPS and PCR-RF-SSCP marker production were investigated using two combinations of breeding lines in Brassica oleracea. Published EST sequences of B. oleracea, Brassica rapa, Brassica napus, and Arabidopsis thaliana and newly determined nucleotide sequences of anther cDNA clones from B. oleracea were used for designing primer pairs to amplify genes. The percentage of primer pairs yielding DNA amplification of a single gene was higher in primer pairs of B. oleracea (91%) than those of B. rapa (56%) and A. thaliana (17%). Single DNA fragments amplified by 9% of the primer pairs showed polymorphism as SCAR markers between a broccoli line and a Chinese kale line by agarose-gel electrophoresis. CAPS analysis showed different band patterns in 32% of the same-sized DNA fragments, and PCR-RF-SSCP analysis revealed DNA polymorphism in 52% of those showing no DNA polymorphism by CAPS. In total, 71% of the single DNA fragments were converted to DNA markers. The frequency of DNA polymorphism between parental lines of a cabbage F1 hybrid was lower, 5% by SCAR and 12% by CAPS. However PCR-RF-SSCP analysis revealed DNA polymorphism in 21% of the DNA fragments showing no polymorphism by CAPS. These results suggest that PCR-RF-SSCP analysis enables highly efficient DNA marker production for mapping of genes in Brassica using progeny, even progeny of closely related parents. Analysis of selfed seeds of broccoli F1 cultivars using PCR-RF-SSCP markers indicated that PCR-RF-SSCP analysis is also applicable to seed purity tests.  相似文献   

12.
This study reports the implementation of three strategies for the development of genetic markers and their evaluation in both progenitors of an F2 population used for the construction of a genetic map of Coffea arabica. The strategies were Cleaved Amplified Polymorphic Sequences (CAPS), Single Strand Conformational Polymorphism (SSCP), and sequence analysis predicted Single Nucleotide Polymorphism (SNP). The methodologies were developed from different sequence sources: For CAPS, we used 25 COS sequences derived from Hedyotis spp. and 29 COSII sequences derived from Solanaceae and Rubiaceae species; for SSCP, we used 111 coffee EST sequences, 50 COSII sequences, and 10 C. arabica BAC end sequences. A low polymorphism was identified with the CAPS and SSCP methodologies. A total of 61 SNPs were identified in silico from 5,371 ESTs of coffee and from amplified, cloned, and sequenced COSII markers. Sixteen of these SNPs were validated with Luminex technology and 2 of them were polymorphic in C. arabica genotypes. This study highlights the difficulties of finding polymorphism in the species C. arabica where SNP identification seems to be the best strategy to search for polymorphic markers for this low diversity plant.  相似文献   

13.
RAPD and SCAR markers for resistance to acochyta blight in lentil   总被引:3,自引:0,他引:3  
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral 2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral 2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral 2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Summary Chickpea is a cool season grain legume of exceptionally high nutritive value and most versatile food use. It is mostly grown under rain fed conditions in arid and semi-arid areas around the world. Despite growing demand and high yield potential, chickpea yield is unstable and productivity is stagnant at unacceptably low levels. Major yield increases could be achieved by development and use of cultivars that resist/tolerate abiotic and biotic stresses. In recent years the wide use of early maturing cultivars that escape drought stress led to significant increases in chickpea productivity. In the Mediterranean region, yield could be increased by shifting the sowing date from spring to winter. However, this is hampered by the sensitivity of the crop to low temperatures and the fungal pathogen Ascochyta rabiei. Drought, pod borer (Helicoverpa spp.) and the fungus Fusarium oxysporum additionally reduce harvests there and in other parts of the world. Tolerance to rising salinity will be a future advantage in many regions. Therefore, chickpea breeding focuses on increasing yield by pyramiding genes for resistance/tolerance to the fungi, to pod borer, salinity, cold and drought into elite germplasm. Progress in breeding necessitates a better understanding of the genetics underlying these traits. Marker-assisted selection (MAS) would allow a better targeting of the desired genes. Genetic mapping in chickpea, for a long time hampered by the little variability in chickpea’s genome, is today facilitated by highly polymorphic, co-dominant microsatellite-based markers. Their application for the genetic mapping of traits led to inter-laboratory comparable maps. This paper reviews the current situation of chickpea genome mapping, tagging of genes for ascochyta blight, fusarium wilt resistance and other traits, and requirements for MAS. Conventional breeding strategies to tolerate/avoid drought and chilling effects at flowering time, essential for changing from spring to winter sowing, are described. Recent approaches and future prospects for functional genomics of chickpea are discussed.  相似文献   

15.
大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发   总被引:4,自引:0,他引:4  
采用生物信息学方法将大豆EST序列联配到大豆基因组序列上,挖掘到大豆EST-SNP位点537个。对其靶向基因进行功能注释分析,发现他们主要参与亚细胞定位、蛋白质结合与催化以及代谢等与大豆重要农艺性状形成相关的生物过程。同时开发了简便易行的SNP检测方法,利用EMBOSS软件筛选导致酶切位点改变的EST-SNP,分别以大豆绥农14、合丰25、Acher、Evans、Peking、PI209332、固新野生大豆、科丰1号、南农1138-2的DNA及其混合的DNA为模板,设计引物进行PCR扩增,发现44个PCR产物中有36个测序峰图在预期的EST-SNP位点表现出多态性。酶切分析发现26个PCR产物具有酶切多态性,可以作为CAPS标记。结果表明该EST-SNP挖掘体系及其CAPS标记转化系统具有高效率、低成本等优点,有利于促进大豆的遗传育种研究。  相似文献   

16.
Fusarium wilt (FW; caused by Fusarium oxysporum f. sp. ciceris) and Ascochyta blight (AB; caused by Ascochyta rabiei) are two major biotic stresses that cause significant yield losses in chickpea (Cicer arietinum L.). In order to identify the genomic regions responsible for resistance to FW and AB, 188 recombinant inbred lines derived from a cross JG 62 × ICCV 05530 were phenotyped for reaction to FW and AB under both controlled environment and field conditions. Significant variation in response to FW and AB was detected at all the locations. A genetic map comprising of 111 markers including 84 simple sequence repeats and 27 single nucleotide polymorphism (SNP) loci spanning 261.60 cM was constructed. Five quantitative trait loci (QTLs) were detected for resistance to FW with phenotypic variance explained from 6.63 to 31.55%. Of the five QTLs, three QTLs including a major QTL on CaLG02 and a minor QTL each on CaLG04 and CaLG06 were identified for resistance to race 1 of FW. For race 3, a major QTL each on CaLG02 and CaLG04 were identified. In the case of AB, one QTL for seedling resistance (SR) against ‘Hisar race’ and a minor QTL each for SR and adult plant resistance against isolate 8 of race 6 (3968) were identified. The QTLs and linked markers identified in this study can be utilized for enhancing the FW and AB resistance in elite cultivars using marker-assisted backcrossing.  相似文献   

17.
Resistance of chickpea against the disease caused by the ascomycete Ascochyta rabiei is encoded by two or three quantitative trait loci, QTL1, QTL2 and QTL3. A total of 94 recombinant inbred lines developed from a wide cross between a resistant chickpea line and a susceptible accession of Cicer reticulatum, a close relative of cultivated chickpea, was used to identify markers closely linked to QTL1 by DNA amplification fingerprinting in combination with bulked segregant analysis. Of 312 random 10mer oligonucleotides, 3 produced five polymorphic bands between the parents and bulks. Two of them were transferred to the population on which the recent genetic map of chickpea is based, and mapped to linkage group 4. These markers, OPS06-1 and OPS03-1, were linked at LOD-scores above 5 to markers UBC733B and UBC181A flanking the major ascochyta resistance locus. OPS06-1 mapped at the peak of the QTL between markers UBC733B (distance 4.1 cM) and UBC181A (distance 9.6 cM), while OPS03-1 mapped 25.1 cM away from marker UBC733B on the other flank of the resistance locus. STMS markers localised on this linkage group were transferred to the population segregating for ascochyta resistance. Three of these markers were closely linked to QTL1. Twelve of 14 STMS markers could be used in both populations. The order of STMS markers was essentially similar in both populations, with differences in map distances between them. The availability of flanking STMS markers for the major resistance locus QTL1 will help to elucidate the complex resistance against different Ascochyta pathotypes in future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Lipoxygenase-2 (Lx 2) in soybean seed is mainly responsible for generation of grassy-beany and bitter flavors. Genetic elimination of this flavor can be accelerated by the development of single nucleotide polymorphism (SNP) markers linked to Lx 2. A frame map based on simple sequence repeat (SSR) markers was constructed first using a recombinant inbred line (RIL) population of Pureunkong × Jinpumkong 2. Sixty-five SSR markers were incorporated into 13 linkage groups (LGs) spanning a total of 737 cM. Among five primer pairs designed from the Lx 2 gene sequence, one produced an amplicon with sequence variations between Pureunkong and Jinpumkong 2. Three SNPs, T/C, G/A and C/A, were identified at 251,367 and 420 bp, respectively, in the intron region of the 804 bp amplified product. Using single base chain extension based on the capture probe sequence in the 5' region of the T/C SNP, the 90 RILs were genotyped for each allele of Lx 2. The allelic segregation for the SNP linked toLx 2 was in accordance with the expected ratio of 1:1 in the RIL population. Based on the results of linkage analysis between Lx 2 and the SSR markers, Lx 2 was found to be positioned on one end of LG F in the frame map, flanked by the SSR markers Satt522 and Sat074. This study demonstrates that SNP markers closely linked to Lx 2can be developed to facilitate marker-assisted selection and fine mapping of the region around this locus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A consensus genetic map of chickpea (Cicer arietinum L.) was constructed by merging linkage maps from 10 different populations, using STMS (Sequence-tagged Microsatellite Sites) as bridging markers. These populations derived from five wide crosses (C. arietinum × Cicer reticulatum) and five narrow crosses (Desi × Kabuli types) were previously used for mapping genes for several agronomic traits such as ascochyta blight, fusarium wilt, rust resistance, seed weight, flowering time and days to flower. The integrated map obtained from wide crosses consists of 555 loci including, among other markers, 135 STMSs and 33 cross-genome markers distributed on eight linkage groups and covers 652.67 cM. The map obtained from narrow crosses comprises 99 STMSs, 3 SCARs, 1 ASAP, fusarium resistance gene, 5 morphological traits as well as RAPD and ISSR markers distributed on eight linkage groups covering 426.99 cM. Comparison between maps from wide and narrow crosses reflects a general coincidence, although some discrepancies are discussed. Medicago truncatula cross-genome markers were BLASTed against the M. truncatula pseudogenome permitting assignments of chickpea linkage groups LGI, II, III, IV, V and VI on Medicago chromosomes 2, 5, 7, 1, 3 and 4, respectively. A marker detectable on Medicago chromosome 4 were also located on LGVIII, This consensus map is an important progress to assist breeders for selecting suitable markers to be used in marker-assisted selection (MAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号