首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
The objective of this study was to estimate parameters required for genetic evaluation of Simmental carcass merit using carcass and live animal data. Carcass weight, fat thickness, longissimus muscle area, and marbling score were available from 5,750 steers and 1,504 heifers sired by Simmental bulls. Additionally, yearling ultrasound measurements of fat thickness, longissimus muscle area, and estimated percentage of intramuscular fat were available on Simmental bulls (n = 3,409) and heifers (n = 1,503). An extended pedigree was used to construct the relationship matrix (n = 23,968) linking bulls and heifers with ultrasound data to steers and heifers with carcass data. All data were obtained from the American Simmental Association. No animal had both ultrasound and carcass data. Using an animal model and treating corresponding ultrasound and carcass traits separately, genetic parameters were estimated using restricted maximum likelihood. Heritability estimates for carcass traits were 0.48 +/- 0.06, 0.35 +/- 0.05, 0.46 +/- 0.05, and 0.54 +/- 0.05 for carcass weight, fat thickness, longissimus muscle area, and marbling score, respectively. Heritability estimates for bull (heifer) ultrasound traits were 0.53 +/- 0.07 (0.69 +/- 0.09), 0.37 +/- 0.06 (0.51 +/- 0.09), and 0.47 +/- 0.06 (0.52 +/- 0.09) for fat thickness, longissimus muscle area, and intramuscular fat percentage, respectively. Heritability of weight at scan was 0.47 +/- 0.05. Using a bivariate weight model including scan weight of bulls and heifers with carcass weight of slaughter animals, a genetic correlation of 0.77 +/- 0.10 was obtained. Models for fat thickness, longissimus muscle area, and marbling score were each trivariate, including ultrasound measurements on yearling bulls and heifers, and corresponding carcass traits of slaughter animals. Genetic correlations of carcass fat thickness with bull and heifer ultrasound fat were 0.79 +/- 0.13 and 0.83 +/- 0.12, respectively. Genetic correlations of carcass longissimus muscle area with bull and heifer ultrasound longissimus muscle area were 0.80 +/- 0.11 and 0.54 +/- 0.12, respectively. Genetic correlations of carcass marbling score with bull and heifer ultrasound intramuscular fat percentage were 0.74 +/- 0.11 and 0.69 +/- 0.13, respectively. These results provide the parameter estimates necessary for genetic evaluation of Simmental carcass merit using both data from steer and heifer carcasses, and their ultrasound indicators on yearling bulls and heifers.  相似文献   

2.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

3.
We studied genetic relationships between age-constant live yearling beef bull growth and ultrasound traits and steer carcass traits with dissected steer carcass lean percentage adjusted to slaughter age-, HCW-, fat depth-, and marbling score-constant end points. Three measures of steer carcass lean percentage were used. Blue Tag lean percentage (BTLean) was predicted from HCW, fat depth, and LM area measurements. Ruler lean percentage (RulerLean) was predicted from carcass fat depth and LM depth and width measurements. Dissected lean percentage (DissLean) was based on dissection of the 10-11-12th rib section. Both BTLean (h2 = 0.30 to 0.44) and DissLean (h2 = 0.34 to 0.39) were more heritable than RulerLean (h2 = 0.05 to 0.14) at all end points. Genetic correlations among DissLean and RulerLean (rg = 0.61 to 0.70), DissLean and BTLean (rg = 0.56 to 0.72), and BTLean and RulerLean (rg = 0.59 to 0.90) indicated that these traits were not genetically identical. Adjusting Diss-Lean to different end points changed the magnitude, but generally not the direction, of genetic correlations with indicator traits. Ultrasound scan-age-constant live yearling bull lean percentage estimates were heritable (h2 = 0.26 to 0.42) and genetically correlated with each other (rg = 0.68 to 0.99) but had greater correlations with DissLean at slaughter age (rg = 0.24 to 0.48) and HCW (rg = 0.16 to 0.40) end points than at fat depth (rg = -0.08 to 0.13) and marbling score (rg = 0.02 to 0.11) end points. Scan-age-constant yearling bull ultrasound fat depth also had stronger correlations with DissLean at slaughter age (rg = -0.34) and HCW (rg = -0.25) than at fat depth (rg = -0.02) and marbling score (rg = -0.03) end points. Yearling bull scan-age-constant ultrasound LM area was positively correlated with DissLean at all endpoints (rg = 0.11 to 0.23). Genetic correlations between yearling bull LM method 1 width (rg = 0.38 to 0.56) and method 2 depth (rg = -0.17 to -0.38) measurements with DissLean suggested that LM shape may be a valuable addition to genetic improvement programs for carcass lean percentage at slaughter age, HCW, and fat depth constant end points. At all end points, steer carcass fat depth (rg = -0.60 to -0.64) and LM area (rg = 0.48 to 0.59) had stronger associations with DissLean than did corresponding live yearling bull measurements. Improved methods that combine live ultrasound and carcass traits would be beneficial for evaluating carcass lean percentage at fat depth or marbling score end points.  相似文献   

4.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

5.
Feedlot and carcass characteristics of 276 steers from five closed lines of Hereford cattle and reciprocal crosses among these lines were studied. The traits studied were initial weight, final weight, 224-d gain, days on test, hot carcass weight, marbling score, longissimus muscle area, fat thickness, yield grade, dressing percentage and shear force. Year of record was a significant source of variation for most traits. Age of dam was a significant source of variation for growth traits but not carcass traits. Line of sire affected initial weight, final weight, 224-d gain, days on test, marbling score and dressing percentage. Significant heterosis was observed only for hot carcass weight. Heterosis estimates were 1.9% for initial weight, 2.2% for final weight, 2.5% for 224-d gain, -2.1% for days on test, .6% for hot carcass weight, -.6% for marbling score, 0 for carcass grade, .6% for longissimus muscle area, 2.3% for backfat thickness, .9% for yield grade, -.9% for dressing percent and -10.9% for shear force. Initial age on test affected only hot carcass weight. Hot carcass weight, dressing percentage, marbling score, longissimus muscle area and fat thickness were affected by slaughter weight. Slaughter age affected dressing percent and marbling score.  相似文献   

6.
Divergent selection for serum insulin-like growth factor-I (IGF-I) concentration began at the Eastern Ohio Resource Development Center (EORDC) in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d postweaning period. At the conclusion of the postweaning test, bulls not selected for breeding were slaughtered and carcass data were collected at a commercial abbatoir. At the time of this analysis, IGF-I measurements were available for 1,283 bull and heifer calves, and carcass data were available for 452 bulls. A set of multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML) computer programs were used for data analysis. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were .32, .59, .31, and .42, respectively. Direct heritabilities for carcass traits ranged from .27 to 1.0, .26 to 1.0, and .23 to 1.0 when the age-, fat-, and weight-constant end points, respectively, were used, with marbling score having the smallest heritability and longissimus muscle area having the highest heritability in each case. Maternal heritability and the proportion of phenotypic variance due to permanent environmental effect of dam generally were < or = .21 for IGF-I concentrations and for carcass traits other than longissimus muscle area. Additive genetic correlations of IGF-I concentrations with backfat thickness, longissimus muscle area, hot carcass weight, marbling score, quality grade, and yield grade averaged -.26, .19, -.04, -.53, -.45, and -.27, respectively, when carcass data were adjusted to an age-constant end point. Bulls with lower IGF-I concentrations had higher marbling scores and quality grades, but also had higher backfat thickness and yield grades regardless of the slaughter end point. Serum IGF-I concentration may be a useful selection criterion when efforts are directed toward improvement of marbling scores and quality grades of beef cattle.  相似文献   

7.
Carcass measurements for weight, longissimus muscle area, 12-13th-rib fat thickness, and marbling score, as well as for live animal measurements of weight at the time of ultrasound, ultrasound longissimus muscle area, ultrasound 12-13th-rib fat thickness, and ultrasound-predicted percentage ether extract were taken on 2,855 Angus steers. The average ages for steers at the time of ultrasound and at slaughter were 391 and 443 d, respectively. Genetic and environmental parameters were estimated for all eight traits in a multivariate animal model. In addition to a random animal effect, the model included a fixed effect for contemporary group and a covariate for measurement age. Heritabilities for carcass weight, carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound weight, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.48, 0.45, 0.35, 0.42, 0.55, 0.29, 0.39, and 0.51, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, carcass marbling score and ultrasound-predicted percentage ether extract, and carcass and ultrasound weight were 0.69, 0.82, 0.90, and 0.96, respectively. Additional estimates were derived from a six-trait multivariate animal model, which included all traits except those pertaining to weight. This model included a random animal effect, a fixed effect for contemporary group, as well as covariates for both measurement age and weight. Heritabilities for carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.36, 0.39, 0.40, 0.17, 0.38, and 0.49, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, and carcass marbling and ultrasound-predicted percentage ether extract were 0.58, 0.86, and 0.94, respectively. The high, positive genetic correlations between carcass and the corresponding real-time ultrasound traits indicate that real-time ultrasound imaging is an alternative to carcass data collection in carcass progeny testing programs.  相似文献   

8.
Data (n = 1,746) collected from 1985 through 1995 on Korean Native Cattle by the National Livestock Research Institute of Korea were used to estimate genetic parameters for marbling score, dressing percentage, and longissimus muscle area, with backfat thickness, slaughter age, or slaughter weight as covariates. Estimates were obtained with REML. Model 1 included animal genetic and residual random effects. Model 2 was extended to include an uncorrelated random effect of the dam. Model 3 was based on Model 1 but also included sire x region x year-season interaction effects. Model 4 combined Models 2 and 3. All models included fixed effects for region x year-season and age of dam x sex combinations. From single-trait analyses, estimates of heritability with covariates to adjust for backfat thickness, slaughter age, and slaughter weight from Model 4 were, respectively, .10, .08, and .01 for marbling score; .09, .12, and .16 for dressing percentage; and .18, .17, and .24 for longissimus muscle area. From three-trait analyses, estimates of genetic correlations between marbling score and dressing percentage, marbling score and longissimus muscle area, and dressing percentage and longissimus muscle area were, respectively, -.99, .20, and -.11 with backfat thickness as covariate; -.88, .47, and .01 with slaughter age as covariate; and -.03, .39, and .91 with slaughter weight as covariate. Results of this study suggest that choice of covariate (backfat thickness, slaughter age, or slaughter weight) for the model seems to be important for carcass traits for Korean Native Cattle. Including sire x region x year-season interaction effects in the model for marbling score and dressing percentage may be important because whether sire x region x year-season interaction effects were in the model affected estimates of other variance components for the three carcass traits. Whether the maternal effect was in the model had little effect on estimates of other parameters. With backfat thickness and slaughter age end points, selection for increasing marbling score would be expected to result in decreasing dressing percentage for Korean Native Cattle. With slaughter weight as a covariate for end point, increased longissimus muscle area would be associated with increased dressing percentage, and increased marbling score would be related to increased longissimus muscle area. The differences in estimates associated with choice of end point, however, need further study.  相似文献   

9.
Live weight and ultrasound measures of fat thickness and longissimus muscle area were available on 404 yearling bulls and 514 heifers, and carcass measures of weight, longissimus muscle area, and fat thickness were available on 235 steers. Breeding values were initially estimated for carcass weight, longissimus muscle area, and fat thickness using only steer carcass data. Breeding values were also estimated for weight and ultrasound muscle area and fat thickness using live animal data from bulls and heifers, with traits considered sex-specific. The combination of live animal and carcass data were also used to estimate breeding values in a full animal model. Breeding values from the carcass model were less accurate and distributed more closely around zero than those from the live data model, which could at least partially be explained by differences in relative amounts of data and in phenotypic mean and heritability. Adding live animal data to evaluation models increased the average accuracy of carcass trait breeding values 91, 75, and 51% for carcass weight, longissimus muscle area, and fat thickness, respectively. Rank correlations between breeding values estimated with carcass vs live animal data were low to moderate, ranging from 0.16 to 0.43. Significant rank changes were noted when breeding values for similar traits were estimated exclusively with live animal vs carcass data. Carcass trait breeding values estimated with both live animal and carcass data were most accurate, and rank correlations reflected the relative contribution of carcass data and their live animal indicators. The addition of live animal data to genetic evaluation of carcass traits resulted in the most significant carcass trait breeding value accuracy increases for young replacements that had not yet produced progeny with carcass data.  相似文献   

10.
Angus bulls (n = 20) from three pure-bred herds in Georgia were acquired to determine the impact of selecting sires based on phenotypic yearling ultrasound intramuscular fat percentage (UIMF) or UIMF EPD on marbling score of steer progeny. Each year in each herd, pairs of bulls were selected to create large differences based on their age adjusted phenotypic yearling UIMF measurements. The average UIMF, weighted by number of progeny per sire, was 3.75% (SD = 1.10%) and 1.70% (SD = 0.53%) for high UIMF (HU) and low UIMF (LU) bulls, respectively. All available ultrasound measurements collected in the purebred co-operator herds were combined with other ultrasound records collected by the American Angus Association for the computation of genetic values for ultrasound fat thickness, ribeye area, and intramuscular fat percentage. Each year bulls were randomly mated to 14 to 30 commercial Angus females. Carcass weight, fat thickness at the 12th rib, ribeye area at the 12th rib, marbling score, yield grade, and quality-grade measurements were collected on 188 steer progeny. Carcass data were linearly adjusted to 480 d of age at slaughter. Steer progeny sired by HU bulls had higher age-adjusted marbling score and quality grade (P < 0.05), and smaller age-adjusted ribeye area (P < 0.05) than steer progeny sired by LU bulls. No significant differences between phenotypic UIMF lines were found for age-adjusted fat thickness (P = 0.84) and yield grade (P = 0.33) in the steer progeny. The regression of age-adjusted carcass marbling score and quality grade of the steer progeny on ultrasound intramuscular fat percentage EPD of the sires produced highly significant regression coefficients of 90.50 and 49.20, respectively. Thus, yearling Angus bulls selected for high-phenotypic UIMF and UIMF EPD can be expected to produce steer progeny with significantly higher amounts of marbling and quality grade. It also appears that marbling can be increased without corresponding increases in external fat thickness and yield grade.  相似文献   

11.
Data collected from steer and bull progeny, fed to a constant final feedlot weight over 11 yr, were used to estimate heterosis in post-weaning feedlot growth and carcass traits in two-way and three-way rotational crossing systems and a breed composite from crossing Hereford, Angus and Charolais breeds. Steer and bull progeny from matings of beef x Brown Swiss-cross sires and dams also were compared with the straight beef breeds and beef crosses. Growth traits evaluated were initial weight on test, 112-d weight, total feedlot average daily gain and total days from initial to final weight. Carcass traits included hot carcass weight, dressing percentage, rib eye area, 12th-rib fat thickness, kidney, pelvic and heart fat, yield grade and marbling score. Heterosis estimates for calves of all crossing systems were significant for initial and 112-d weight and for saving of days in the feedlot, but not for average daily feedlot gain. Heterosis estimates were small and nonsignificant for most carcass traits except for fat traits in specific crosses. Males from Hereford and Angus sires mated to Angus x Hereford dams had higher (P less than .10) backfat than did the parental average. Male progeny from Charolais ranked higher (P less than .10 to P less than .01) than calves from Hereford and Angus sires for most growth traits. Progeny from Charolais sires were more desirable (P less than .10 to P less than .01) for traits related to cutability, but they had less (P less than .05 to P less than .01) marbling than calves of Angus sires.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The objective of this study was to estimate genetic parameters for real-time ultrasound measurements of longissimus muscle area (LMA), 12th rib backfat thickness (FT), percent intramuscular fat (IMF), and yearling weight (YW) for 1,299 yearling Brangus bulls and heifers. A single ultrasound technician performed all measurements. The number of observations was 1,298, 1,298, 1,215, and 1,170 for LMA, FT, IMF, and YW, respectively. Genetic parameters were estimated for each trait using single- and multiple-trait derivative-free restricted maximal likelihood. Fixed effects were contemporary group (defined as same sex, same age within six months, and same environment), and days of age as a covariate. Correlations were estimated from two-trait models. Heritabilities for LMA, FT, IMF, and YW were 0.31, 0.26, 0.16, and 0.53, respectively. Genetic correlations between LMA and FT, LMA and IMF, LMA and YW, FT and IMF, FT and YW, and IMF and YW were 0.09, 0.25, 0.44, 0.36, 0.42, and 0.31, respectively. Yearling live animal ultrasonic measurements can be used as a selection tool in breeding cattle for the improvement of carcass traits.  相似文献   

13.
A divergent selection experiment for serum IGF-I concentration began at the Eastern Ohio Resource Development Center in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d period. Real-time ultrasound measurements of backfat thickness and longissimus muscle area were taken on d 56 and 140 of the postweaning test. Only ultrasound data from calves born from fall 1995 through spring 1999 were included in the analysis. At the time of this study, IGF-I measurements were available for 1,521 bull and heifer calves, and ultrasound data were available for 636 bull and heifer calves. Data were analyzed by multiple-trait, derivative-free, restricted maximum likelihood methods. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were 0.26 +/- 0.07, 0.32 +/- 0.08, 0.26 +/- 0.07, and 0.32 +/- 0.08, respectively. Direct heritabilities for ultrasound estimates of backfat thickness ranged from 0.17 +/- 0.11 to 0.28 +/- 0.12, whereas direct heritabilities for longissimus muscle area ranged from 0.20 +/- 0.10 to 0.36 +/- 0.12, depending on the time of measurement and the covariate used for adjustment (age vs. weight). Direct genetic correlations of IGF-I concentrations with backfat thickness at d 56 and 140 and with longissiumus muscle area at d 56 and 140 averaged 0.02, 0.20, -0.08, and 0.23, respectively, when age was used as the covariate for both IGF-I and ultrasound measurements. Corresponding genetic correlations when age was used as the covariate for IGF-I and weight was used as the covariate for ultrasound measurements were 0.05, -0.07, -0.22, and -0.04, respectively. Therefore, the positive associations of serum IGF-I concentration with backfat thickness and longissimus muscle area at d 140 seem to have been partially mediated by weight. Results of this study do not indicate strong associations of serum IGF-I concentration with fat thickness or muscling of bulls and heifers during the postweaning feedlot period.  相似文献   

14.
This study was conducted to compare carcass EPD predicted using yearling live animal data and/or progeny carcass data, and to quantify the association between the carcass phenotype of progeny and the sire EPD. The live data model (L) included scan weight, ultrasound fat thickness, longissimus muscle area, and percentage of intramuscular fat from yearling (369 d of age) Simmental bulls and heifers. The carcass data model (C) included hot carcass weight, fat thickness, longissimus muscle area, and marbling score from Simmental-sired steers and cull heifers (453 d of age). The combined data model (F) included live animal and carcass data as separate but correlated traits. All data and pedigree information on 39,566 animals were obtained from the American Simmental Association, and all EPD were predicted using animal model procedures. The genetic model included fixed effects of contemporary group and a linear covariate for age at measurement, and a random animal genetic effect. The EPD from L had smaller variance and range than those from either C or F. Further, EPD from F had highest average accuracy. Correlations indicated that evaluations from C and F were most similar, and L would significantly (P < 0.05) re-rank sires compared with models including carcass data. Progeny (n = 824) with carcass data collected subsequent to evaluation were used to quantify the association between progeny phenotype and sire EPD using a model including contemporary group, and linear regressions for age at slaughter and the appropriate sire EPD. The regression coefficient was generally improved for sire EPD from L when genetic regression was used to scale EPD to the appropriate carcass trait basis. The EPD from C and F had similar linear associations with progeny phenotype, although EPD from F may be considered optimal because of increased accuracy. These data suggest that carcass EPD based on a combination of live and carcass data predict differences in progeny phenotype at or near theoretical expectation.  相似文献   

15.
Partial carcass dissection data from 1,031 finished crossbred beef steers were used to calculate heritabilities and genetic correlations among subcutaneous, intermuscular, and body cavity fat percentage and marbling score adjusted to slaughter age-, HCW-, fat depth-, and marbling score-constant endpoints. Genetic correlations were also calculated among these fat partitions with live growth and ultrasound traits evaluated in yearling beef bulls (n = 2,172) and steer carcass measurements. Heritabilities of the different fat partitions ranged from 0.22 (marbling score-constant body cavity fat) to 0.46 (HCW-constant marbling score). Genetic correlations between subcutaneous fat and intermuscular fat (rg = 0.16 to 0.32) and between intermuscular fat and body cavity fat (rg = 0.38 to 0.50) were more highly associated than subcutaneous fat and body cavity fat (rg = -0.08 to 0.05), indicating that fat depots are not under identical genetic control. Adjusting fat depots to different end points affected the magnitude but usually not the sign of the genetic correlations. Bull postweaning gain was associated with intermuscular (-0.24 to -0.35), body cavity (-0.24 to -0.29), and marbling fat (-0.24 to -0.39) in steers. Bull hip height was associated with body cavity (-0.20 to -0.29) and marbling fat (-0.20 to -0.47) in steers. Bull ultrasound fat depth was associated with subcutaneous (0.11 to 0.29), intermuscular (0.05 to 0.36), body cavity (0.27 to 0.49), and marbling fat (0.27 to 0.73) in steers. Bull ultrasound intramuscular fat percentage was associated with subcutaneous (-0.22 to -0.44) and intermuscular fat (-0.06 to 0.31) in steers. Bull ultrasound LM area was associated with body cavity (-0.25 to -0.31) and marbling fat (-0.25 to -0.30) in steers. Ultrasound LM width measurements were negatively correlated with subcutaneous fat (rg = -0.09 to -0.18), intermuscular fat (rg = -0.53 to -0.61), body cavity fat (rg = -0.63 to -0.69), and marbling score (rg = -0.75 to -0.87) at slaughter age-, HCW-, and fat depth-constant endpoints; correlations were generally lower at a marbling score-constant end point (rg = 0.07 to -0.49). Ultrasound indicator traits measured in seedstock may be useful in altering fat partitioning in commercial beef carcasses.  相似文献   

16.
Carcass traits have been successfully used to determine body composition of steers. Body composition, in turn, has been used to predict energy content of ADG to compute feed requirements of individual animals fed in groups. This information is used in the Cornell value discovery system (CVDS) to predict DM required (DMR) for the observed animal performance. In this experiment, the prediction of individual DMR for the observed performance of group-fed yearling bulls was evaluated using energy content of gain, which was based on ultrasound measurements to estimate carcass traits and energy content of ADG. One hundred eighteen spring-born purebred and crossbred bulls (BW = 288 +/- 4.3 kg) were sorted visually into 3 marketing groups based on estimated days to reach USDA low Choice quality grade. The bulls were fed a common high-concentrate diet in 12 slatted-floor pens (9 to 10 head/pen). Ultrasound measurements including back-fat (uBF), rump fat, LM area (uLMA), and intramuscular fat were taken at approximately 1 yr of age. Carcass measurements including HCW, backfat over the 12th to 13th rib (BF), marbling score (MRB), and LM area (LMA) were collected for comparison with ultrasound data for predicting carcass composition. The 9th to 11th-rib section was removed and dissected into soft tissue and bone for determination of chemical composition, which was used to predict carcass fat and empty body fat (EBF). The predicted EBF averaged 23.7 +/- 4.0%. Multiple regression analysis indicated that carcass traits explained 72% of the variation in predicted EBF (EBF = 16.0583 + 5.6352 x BF + 0.01781 x HCW + 1.0486 x MRB - 0.1239 x LMA). Because carcass traits are not available on bulls intended for use as herd sires, another equation using predicted HCW (pHCW) and ultrasound measurements was developed (EBF = 39.9535 x uBF - 0.1384 x uLMA + 0.0867 x pHCW - 0.0897 x uBF x pHCW - 1.3690). This equation accounted for 62% of the variation in EBF. The use of an equation to predict EBF developed with steer composition data overpredicted the EBF predicted in these experiments (28.7 vs. 23.7%, respectively). In a validation study with 37 individually fed bulls, the use of the ultrasound-based equation in the CVDS to predict energy content of gain accounted for 60% of the variation in the observed efficiency of gain, with 1.5% bias, and identified 3 of the 4 most efficient bulls.  相似文献   

17.
Fine mapping of quantitative trait loci (QTL) for 16 ultrasound measurements and carcass merit traits that were collected from 418 hybrid steers was conducted using 1207 SNP markers covering the entire genome. These SNP markers were evaluated using a Bayesian shrinkage estimation method and the empirical critical significant thresholds (α = 0.05 and α = 0.01) were determined by permutation based on 3500 permuted datasets for each trait to control the genome-wide type I error rates. The analyses identified a total of 105 QTLs (p < 0.05) for seven ultrasound measure traits including ultrasound backfat, ultrasound marbling and ultrasound ribeye area and 113 QTLs for seven carcass merit traits of carcass weight, grade fat, average backfat, ribeye area, lean meat yield, marbling and yield grade. Proportion of phenotypic variance accounted for by a single QTL ranged from 0.06% for mean ultrasound backfat to 4.83% for carcass marbling (CMAR) score, while proportion of the phenotypic variance accounted for by all significant (p < 0.05) QTL identified for a single trait ranged from 4.54% for carcass weight to 23.87% for CMAR.  相似文献   

18.
Carcass and live-animal measures from 1,029 cattle were collected at the Iowa State University Rhodes and McNay research farms over a 6-yr period. Data were from bull, heifer, and steer progeny of composite, Angus, and Simmental sires mated to three composite lines of dams. The objectives of this study were to estimate genetic parameters for carcass traits, to evaluate effects of sex and breed of sire on growth models (curves), and to suggest a strategy to adjust serially measured data to a constant age end point. Estimation of genetic parameters using a three-trait mixed model showed differences between bulls and steers in estimates of h2 and genetic correlations. Heritability for carcass weight, percentage of retail product, retail product weight, fat thickness, and longissimus muscle area from bull data were .43, .04, .46, .05, and .21, respectively. The corresponding values for steer data were in order of .32, .24, .40, .42, and .07, respectively. Analysis of serially measured fat thickness, longissimus muscle area, body weight, hip height, and ultrasound percentage of intramuscular fat using a repeated measures model showed a limitation in the use of growth models based on pooled data. In further evaluation of regression parameters using a linear mixed model analysis, sex and breed of sire showed an important (P < .05) effect on intercept and slope values. Regression of serially measured traits on age within animal showed a relatively larger R2 (62 to 98%) and a smaller root mean square error (RMSE, .09 to 8.85) as compared with R2 (0 to 58%) and RMSE (.31 to 67.9) values when the same model was used on pooled data. We concluded that regression parameters from a within-animal regression of a serially measured trait on age, averaged by sex and breed, are the best choice in describing growth and adjusting data to a constant age end point.  相似文献   

19.
To assess the effects of slaughter weight and sex on APGS (Animal Products Grading Service) quality and APGS yield grade of Korean Hanwoo (n = 20,881) cattle, data were collected from cow, bull, and steer carcasses during a 1-yr period. Factors used to determine quality grade (marbling, meat color, fat color, texture, and overall maturity score) and yield grade (cold carcass weight, adjusted fat thickness, and longissimus muscle area) by the Korean grading system were recorded. Both yield and quality grades were improved (P < 0.01) with heavier slaughter weight, but there was no difference in yield grade for Hanwoo cattle classes heavier than 551 kg (P > 0.01). Longissimus muscle area, adjusted fat thickness, and marbling score increased (P < 0.01) with carcass weight. Bull carcasses showed higher yield but lower quality than those of cows or steers (P < 0.01). The quality grade of steer carcasses was higher (P < 0.01) than that of cow carcasses due to higher marbling scores, lower maturity scores, and heavier carcass weights. Hanwoo carcasses with larger longissimus muscle areas in relation to their carcass weight had lower APGS quality grades. The APGS quality grades were different between yield grade A and B carcasses (P < 0.01), but quality grade was not improved by increased fat thickness beyond the point of yield grade B. Adjusted fat thickness and marbling score showed significant (P < 0.01) differences among all yield grade classes, and this resulted in increased quality grade as yield grade decreased. Adjusted fat thickness showed the strongest correlation (r = -0.63) with yield grade, whereas marbling score had the strongest correlation (r = 0.81) with quality grade. Results showed a negative effect of castration on yield but a positive effect on quality. Also, data showed that Hanwoo carcasses with heavier weights had higher quality grades than those of lighter weight.  相似文献   

20.
Data from 1170 records of fattening calves were collected on growth and carcass traits from a Japanese Black cattle herd located in Miyagi prefecture, Japan. The objective was to determine direct and maternal heritabilities, direct and maternal genetic correlations and phenotypic correlations between bodyweight at the beginning of the fattening period (BWS), bodyweight at the end of the fattening period (BWF), carcass weight (CW), average daily gain during the fattening period (ADG), rib eye area (REA), rib thickness, subcutaneous backfat thickness (SFT), yield estimate (YE) and beef marbling score (BMS). Direct heritability estimates of 0.16 (SFT) and 0.07 (BMS) were low, whereas estimates of the other traits were medium to high and ranged between 0.44 (REA) and 0.78 (CW). Direct genetic correlations were all positive, except those that were between BWS and SFT, and between BWS and YE (?0.49 and ?0.14, respectively). The lowest positive genetic correlation was between BWS and BMS (0.04) and the highest was between BWF and CW (0.99). The phenotypic correlation coefficients ranged between ?0.41 (between SFT and YE) and 0.96 (between BWF and CW). Maternal heritability estimates were generally low and ranged between 0.00 for BMS and 0.08 for BWS, CW and ADG. Selection programs comprising information on growth and carcass traits of calves and maternal traits of dams were suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号