首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The variation and distribution of virulent phenotypes ofBremia lactucae Regel, the causal agent of lettuce downy mildew, were studied during 2002–2003 in lettuce fields (Lactuca sativa) in Israel. A total of 21 isolates ofB. lactucae were collected from nine locations in three regions of Israel: Galilee, the Coastal Plain, and the Shefela. The isolates were examined for the presence of 21 virulence factors (v-factors) and their combinations with differential sets of lettuce lines/varieties. There were clear differences in v-factors, and a broad diversity of v-phenotypes among the isolates was found. Although 17 different v-phenotypes and 20 v-factors were detected, a composite of similar v-phenotypes generally occurred between isolates within the three regions. They differed mostly in the presence or absence of only a few v-factors. The Coastal Plain region averaged the highest virulence complexity (0.63), significantly different from that of the Shefela (0.45) and of Galilee (0.4). Comparison of the IsraeliB. lactucae isolates that were tested in this study with data of other countries showed that factor v18, which did not occur in the Israeli populations, was detected only in Czech and German pathogen populations. http://www.phytoparasitica.org posting Dec. 21, 2006.  相似文献   

2.
Over the past decade, extensive research on the wild-plant pathosystem, Lactuca serriola (prickly lettuce)–Bremia lactucae (lettuce downy mildew), has been conducted in the Czech Republic. Studies focused on pathogen occurrence and distribution, host range, variation in symptom expression and disease severity, interactions of B. lactucae with another fungal species (Golovinomyces cichoracearum) on L. serriola, variation in resistance within natural populations of L. serriola, the structure and dynamics of virulence within populations of B. lactucae, sexual reproduction of B. lactucae, and a comparison of virulence structure and changes in B. lactucae populations occurring in wild (L. serriola) and crop (L. sativa) pathosystems. The incidence of B. lactucae on naturally growing L. serriola and other Asteraceae was recorded. Lactuca serriola was the most commonly occurring host species, followed by Sonchus oleraceus. Over the duration of these studies, the incidence of B. lactucae in L. serriola populations varied between 45–87%. Disease incidence and disease prevalence were partly related to the size, density and different habitats of L. serriola populations. In addition to B. lactucae infection, infection by the lettuce powdery mildew fungus (Golovinomyces cichoracearum) was quite common, including co-infection. Variation in resistance to B. lactucae was studied by using ten isolates (NL and BL races with known virulence patterns) at a metapopulation level, i.e. 250 L. serriola samples representing 16 populations from the Czech Republic (CZ). Our comparisons revealed broad variation in host resistance among host populations and also intrapopulation variability. In the CZ populations, 45 resistance phenotypes were recorded, the most frequent were race-specific reaction patterns. Structural and temporal changes in virulence variation of B. lactucae populations on L. serriola were studied during 1998–2005. Altogether, 313 isolates of B. lactucae originating from the Czech Republic were examined for the presence of 32 virulence factors (v-factors), and 93 different virulence phenotypes (v-phenotypes) were recorded. A study of v-factor frequency showed that common v-factors in B. lactucae populations match some of the race-specific resistance genes/factors (Dm genes or R-factors) originating from L. serriola. The highest frequency was recorded by v-factors v7, v11, v15–17, and v24–30. In contrast, v-factors (e.g. v1–4, 6, and 10) matching Dm genes originating from L. sativa were very rare. This demonstrates the close adaptation of B. lactucae virulence to the host (L. serriola) genetic background. Temporal changes in virulence frequencies over the period were recorded. In many v-factors (v11, v14, v16, and v25–28), fluctuations were observed, some (v14 and v17) shifting to higher frequencies, and others (v5/8 and v23) decreasing. The occurrence of mating types was studied (1997–1999) in a set of 59 B. lactucae isolates. Both compatibility types (B1 and B2) were recorded; however the majority of the isolates (96%) were type B2. A comparative study of B. lactucae virulence variation between the wild (L. serriola) and crop (L. sativa) pathosystems showed major differences. Migration and gene flow between both pathosystems and the potential danger of wild B. lactucae populations for cultivated lettuce are discussed. This paper summarizes comprehensive and unique research on an oomycete pathogen (B. lactucae) that is shared between a crop (lettuce, L. sativa) and its close wild relative (prickly lettuce, L. serriola). The data demonstrate clear evidence about race-specific interactions, variation and changes in virulence, and coevolutionary relationships in the wild pathosystem L. serriolaB. lactucae. Conclusions contribute to the broadening and better understanding of gene-for-gene systems in natural host–pathogen populations and their relationships to crop pathosystems.  相似文献   

3.
Use of resistant cultivars represent an efficient control measure for lettuce downy mildew (Bremia lactucae), although the durability of presently deployed resistance genes remains uncertain. Our objective was to document the pathogenic diversity of B. lactucae isolates in Norway. A total of 69 isolates of B. lactucae were collected between 2001 and 2006 from 65 commercial fields and four greenhouses in southeastern and southwestern Norway and tested for the presence of one or more of 19 virulence factors (v-factors). Phenotypic diversity was calculated based on presence or absence of v-factors, and as an overall comparison of v-phenotypes for each isolate. Disease severity varied over the years of the study, and epidemics were most consistently severe in southeastern Norway. The most commonly occurring v-factors, in order of frequency, were v5/8, v7, v2, v18, v4, v13, v6, v11, v12, v1 and v10. Virulence factor v17 was not found, while v36 was found in one isolate only. A total of 44 different v-phenotypes were identified within the population represented by the 69 isolates, yielding an incidence of unique virulence types of 63 %; a relatively high level of pathogen diversity. Four of the identified v-phenotypes were identical to races Bl:17, 18, 22 and 24, which have been previously reported in European populations of B. lactucae. The variability of the Norwegian B. lactucae populations verifies the genetic flexibility of this pathogen and its great ability to adapt to changes in host plants and surrounding conditions.  相似文献   

4.
Simultaneous genetic analysis of resistance in species of lettuce (Lactuca sativa and L. serriola) and a virulence in Bremia lactucae were made to characterize the genetic basis of resistance to downy mildew in 11 host cultivars and accessions. Four new downy mildew resistance genes (Dm13, Dm14, Dm15 and Dm16) were characterized. Other resistance phenotypes were conditioned by combinations of these or previously described Dm genes. New resistance genes, Dm 16 (from LSE/18), Dm14 (from Gelber Winterkonig) and Dm15 (from PIVT 1309), mapped to Dm linkage group I (Dm1, Dm2, Dm3 and Dm6) while Dm13 from Pennlake segregated independently of the three previously characterized linkage groups and therefore belongs to a fourth linkage group. Characterization of new resistance genes requires simultaneous consideration of host and pathogen genetics.  相似文献   

5.
During the winter, there is a high occurrence of downy mildew on lettuce caused by Bremia lactucae. This oomycete shows variability in virulence, so understanding the genetic structure of the pathogen population becomes essential for obtaining resistant cultivars. Thus, the objective of this study was to determine sexual compatibility in Brazilian populations of B. lactucae and investigate the occurrence of sexual reproduction of the pathogen on lettuce (Lactuca sativa) and prickly lettuce (Lactuca serriola). Leaf samples were collected in 33 municipalities in seven Brazilian states. The virulence structure of the populations was monitored using the EU-C sextet code. B. lactucae populations from the states of São Paulo, Paraná, Rio de Janeiro, and Rio Grande do Sul shared six of the 15 virulence factors evaluated. Twenty-five virulence phenotypes (v-phenotypes) were found, with the sextet codes 31-00-02, 31-16-02, 31-24-02, and 31-01-02 being more frequent. The predominance of some v- phenotypes indicates that clonal reproduction is still the main form of B. lactucae propagation. The genes and resistance factors of the cultivars Argelès (Dm38), Balesta, and Bartoli are recommended as suitable sources of lettuce resistance in Brazil. Natural occurrence of oospores was detected in most sampled locations, in lettuce and prickly lettuce plants. Virulence variability of Brazilian isolates is the result of the pathogen's ability to reproduce both sexually and asexually, with a prevalence of homothallic isolates; although the majority were of the predominant B2 mating type, there was a high incidence of predominant B1 in addition to B1 = B2.  相似文献   

6.
Control of lettuce downy mildew (Bremia lactucae) with phenylamide fungicides has failed in some intensive lettuce-producing areas in Northern Italy since Spring 1993. Before then, these chemicals and particularly metalaxyl, provided the best disease control. The sensitivity of Bremia lactucae isolates collected in such areas to metalaxyl was evaluated in the laboratory. These strains grew and sporulated profusely on lettuce seedlings treated with 100 and 200 ppm of metalaxyl, whereas sensitive control strains were completely inhibited when treated with fungicide concentrations ranging from 0.5–1 ppm. Thus in Italy occurrence of resistance to phenylamide fungicides in Bremia lactucae has also been demonstrated, as in almost all the countries where these chemicals were previously authorised. Subsequently, a demonstration of occurrence of resistance was made and the virulence pattern of several strains (resistant and sensitive to metalaxyl) was characterised using differential NL series containing the 13 DM resistant genes or R factors. The results suggest the occurrence of a new pathotype in Italy different from all the 16 NL Bremia lactucae races studied.  相似文献   

7.
The inheritance of virulence in Bremia lactucae to match specific resistance factors in lettuce was studied by crossing heterothallic isolates of B. lactucae. Avirulence seemed to be dominant to virulence. Although virulence to some R-factors was inherited at a single locus, thus supporting the hypothesis of a gene-for-gene interaction between B. lactucae and L. sativa , inheritance of virulence to other R-factors was more complex. Two loci seemed to determine virulence to R11; the determinants of virulence to R5, R8 and R10 were either closely linked or allelic; virulence to these loci appeared to be epistatic to virulence to match R9. Virulence to R4 probably involved the interaction of two loci, one of which inhibited avirulence. Determinants of fitness of B. lactucae and possibly genes of minor effect modifying specific virulence factors also segregated. These studies emphasized the potential variability in B. lactucae and implied that isolates should not be assigned to distinct races.  相似文献   

8.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

9.
10.
In 1995, Fusarium root rot of crisp head lettuce, caused by Fusarium oxysporum f. sp. lactucae, was simultaneously found in the Shiojiri and Kawakami areas of Nagano Prefecture, Japan. The Shiojiri and Kawakami isolates differed in pathogenicity to lettuce cultivars. Because of this distinct physiological specialization, these Shiojiri and Kawakami isolates should be designated as race 1 and race 2, respectively, using lines VP1010 (highly resistant to race 1), VP1013 (highly resistant to race 2) and variety Patriot (highly susceptible to both races) as differential varieties. This is the first report of races of Fusarium oxysporum f. sp. lactucae, Received 21 September 2000/ Accepted in revised form 21 March 2001  相似文献   

11.
The structure and temporal dynamics of the virulence of Pseudoperonospora cubensis (causal agent of cucurbit downy mildew) were studied in pathogen populations in the Czech Republic from 2001 to 2010. A total of 398 P. cubensis isolates collected from Cucumis (Cm.sativus, Cm. melo, Cucurbita (Cr.maxima, Cr. pepo, Cr. moschata and Citrullus lanatus were analysed for variation in virulence (pathotypes). Virulence was evaluated on a differential set of 12 genotypes of cucurbitaceous plants. All isolates of P. cubensis were characterized by their level of virulence (classified according the number of virulence factors, VF; low VF = 1–4, medium VF = 5–8, high VF = 9–12): high (75%), medium (24%) and low (1%). The structure and dynamics of virulence in the pathogen populations were expressed by pathotypes using tetrad numerical codes and a total of 67 different pathotypes of P. cubensis were determined. The most susceptible group of differentials was Cucumis spp., while the lowest frequency of virulence was recorded on Cr. pepo ssp. pepo, Ci. lanatus and Luffa cylindrica. A high proportion (c. 90%) of isolates was able to infect cucurbit species Benincasa hispida and Lagenaria siceraria, which are not commonly cultivated in the Czech Republic or elsewhere in central Europe. In the recent pathogen populations (2008–2010) there was prevailing frequency (70–100%) of isolates with high numbers (9–12) of virulence factors. ‘Super pathotype’ 15.15.15 was often observed in the study within the pathogen populations and was one of the four most frequently recorded pathotypes. Pseudoperonospora cubensis populations shifted to a higher virulence over time. From 2009 the pathogen population changed dramatically and new pathotypes appeared able to establish natural and serious infection of Cucurbita spp. and Ci. lanatus, which was not observed in 2001–2008. Generally, virulence structure and dynamics of P. cubensis populations are extremely variable in the Czech Republic.  相似文献   

12.
ABSTRACT Fusarium wilt of lettuce, caused worldwide by Fusarium oxysporum f. sp. lactucae, is an emerging seed-transmitted disease on Lactuca sativa. In order to develop a molecular diagnostic tool for identifying race 1 (VCG0300) of the pathogen on vegetable samples, an effective technique is presented. Inter-retrotransposon amplified polymorphism polymerase chain reaction (PCR), a technique based on the amplification of genomic regions between long terminal repeats, was applied. It was shown to be useful for grouping F. oxysporum f. sp. lactucae race 1 isolates. Inter-retrotransposon sequence-characterized amplified regions (IR-SCAR) was used to develop a specific set of PCR primers to be utilized for differentiating F. oxysporum f. sp. lactucae isolates from other F. oxysporum isolates. The specific primers were able to uniquely amplify fungal genomic DNA from race 1 isolates obtained in Italy, Portugal, the United States, Japan, and Taiwan. The primers also were specific to pathogen DNA obtained from artificially infected lettuce seed and naturally and artificially infected plants.  相似文献   

13.
Isolates of Fusarium oxysporum f. sp. lactucae obtained from six localities in Japan were divided into three patho-genicity groups. Group 1 was highly pathogenic to lettuce cultivars of crisphead and red leaf types and was less pathogenic to butterhead and green leaf type cultivars. Group 2 was highly pathogenic to butterhead type and less pathogenic to crisphead and leaf types. Group 3 was less pathogenic to all lettuce types than groups 1 and 2. These results indicated pathogenic differentiation in F. oxysporum f. sp. lactucae, roughly relating to horticultural types of host lettuce cultivars. Received 21 February 2001/ Accepted in revised form 28 May 2001  相似文献   

14.
In 1993–1996, the virulence of regional populations of the wheat powdery mildew pathogen (Erysiphe graminis DC f. sp. tritici Marchal) from the Czech Republic, Austria, Hungary and Slovakia against 13 resistance genes was investigated. The populations differed mainly at the regional level. Populations from the Czech Republic, mainly from the western regions, showed higher values of virulence against the Pm4b gene. Lower frequency of virulence against Pm4b was found in Austria, and the lowest value was observed in Hungary. The differences in frequencies of virulence against Pm4a and Pm4b showed a similar geographic pattern across the four countries: a continuous decline from west to east and from north to south. Virulence against Pm2 decreased in all countries considered; virulence to pm5, Pm6, Pm8 and Mli was high throughout. Genes and gene combinations that can ensure a relatively effective biological protection against this pathogen across Central Europe at present are Pm3b, Pm2+Mld and Pm1+2+9. Czech and Slovak populations were the most complex: virulence complexity reached a maximum in Slovakia in 1994. A similar evolution, though less significant, was observed in the Czech Republic. Data on complexity of isolates suggest that Central European populations of wheat powdery mildew tend to reach an intermediate level representing the optimal number of virulence genes. This process is probably a consequence of stabilizing selection.  相似文献   

15.
The nature of virulence in isolates of Bremia lactucae from South Devon   总被引:1,自引:1,他引:0  
Nine isolates of Bremia lactucae from South Devon showed the presence of virulence factors against all 11 resistance factors available in lettuce, but no insensitivity to metalaxyl. The virulence phenotype of a single–sporangium isolate of the fungus changed from VI, 3, 4 and 7 to 1, 2, 3, 4, 6 and 7 after it was maintained on Lobjoit Green Cos (RO) for 10 months.  相似文献   

16.
This study used the pathosystem of lettuce ( Lactuca spp.) and downy mildew ( Bremia lactucae ) as a model to investigate the inheritance of nonhost resistance, and focused on the contribution of quantitative trait loci (QTLs) to nonhost resistance at various developmental stages in the lettuce life cycle. A set of 28 backcross inbred lines (BILs) of L. saligna CGN05271 (nonhost) introgressions in a L. sativa cv. Olof (host) background identified 16 introgressions that contributed to resistance at various plant developmental stages: seedlings, young plants, adult plants in the greenhouse and adult plants in the field. This paper provisionally considered these introgressions to be 16 QTLs. Of these 16 QTLs, seven were identified previously and nine were new. For 15 QTLs ( Rbq1, Rbq2, rbq3–7 and Rbq8–15 ), the resistance alleles were derived from the nonhost L. saligna ; the resistance allele of the other QTL ( Rbq16 ) was from the susceptible L. sativa cv. Olof. Of the 15 QTLs in L. saligna , only two, rbq5 and rbq7 , were found to be effective at every plant developmental stage; the other 13 QTLs were only effective at certain developmental stages. Experiments with seven B. lactucae races did not provide evidence that any QTL was race-specific. The data suggest that nonhost resistance in L. saligna is the result of cumulative effects of many resistance QTLs operating at various developmental stages.  相似文献   

17.
Plasmopara halstedii was isolated from diseased sunflowers collected from eight locations in the Czech Republic from 2007 to 2014. Races of the pathogen were determined based on 84 isolates collected during the study. In total, eight races of P. halstedii were detected using a set of nine sunflower differential lines. Races 700, 704, 705, 710, 714 and 715 were proven by soil drench inoculation, and two additional races (730 and 770) proposed by the previously applied leaf disc inoculation method. Race 700 was the most dominant in the Czech P. halstedii populations, with race 710 being the second most frequent. Races 704 and 714 were found over three seasons, while other races were recorded only in one growing season (race 730 in 2010, and the new races 705 and 715 in 2014). A comprehensive study was further conducted for isolates collected in 2013–14 using an extended differential set consisting of 15 sunflower lines. According to the latter methodology which marks races with five‐digit virulence codes, races 70060, 70471, 70571, 71060, 71461 and 71571 were recorded. The growing complexity of P. halstedii pathogenicity exhibited by the ability to infect higher numbers of differential genotypes and resulting in determination of the new pathogen races (virulence profiles) 70571, 71461 and 71571 is alarming. Although the limited number of isolates studied cannot characterize the entire pathogen diversity in the Czech Republic, the trend towards more diverse virulence in P. halstedii populations is clearly demonstrated by the new records of races 704, 705, 714 and 715, all capable of overcoming the resistance gene Pl6.  相似文献   

18.
Isolates of 85 bacteria and 94 streptomycete and 35 nonstreptomycete actinomycetes were obtained from a lettuce-growing field in Al-Ain, United Arab Emirates, on colloidal chitin agar, and screened for their ability to produce chitinase. Twenty-three bacteria and 38 streptomycete and 15 nonstreptomycete actinomycete isolates produced high levels of chitinase and were examined in vitro for their ability to suppress the growth of Sclerotinia minor , a pathogen causing basal drop disease of lettuce. The three most suppressive isolates were examined further for their production of β-1,3-glucanase and antifungal activity as well as their ability to colonize the roots and rhizosphere of lettuce in vitro and in planta . The three isolates, Serratia marcescens, Streptomyces viridodiasticus and Micromonospora carbonacea , significantly reduced the growth of S. minor in vitro , and produced high levels of chitinase and β-1,3-glucanase. Streptomyces viridodiasticus also produced antifungal metabolite(s) that significantly reduced the growth of the pathogen in vitro . When the pathogen was presented as the sole carbon source, all three isolates caused extensive hyphal plasmolysis and cell wall lysis. Serratia marcescens and St. viridodiasticus were competent to varying degrees in colonizing the roots of lettuce seedlings after 8 days on agar plates and the rhizosphere within 14 days in pots, with their competency being superior to that of M. carbonacea . All three isolates, individually or in combination, were antagonistic to S. minor and significantly reduced incidence of disease under controlled glasshouse conditions.  相似文献   

19.
ABSTRACT Fusarium oxysporum f. sp. lactucae, causal agent of Fusarium wilt of lettuce, is a serious pathogen recently reported in Arizona. Sequence analysis of the mitochondrial small subunit (mtSSU), translation elongation factor 1-alpha (EF-1alpha) gene, and the nuclear ribosomal DNA intergenic spacer (IGS) region was conducted to resolve relationships among f. sp. lactucae isolates, F. oxysporum isolates from other hosts, and local non-pathogenic isolates. Analysis of mtSSU sequences provided limited phylogenetic resolution and did not differentiate the lactucae isolates from 13 other F. oxysporum isolates. Analysis of EF-1alpha sequences resulted in moderate resolution, grouping seven formae speciales with the lactucae isolates. Analysis of the IGS region revealed numerous sequence polymorphisms among F. oxysporum formae speciales consisting of insertions, deletions, and single nucleotide transitions and substitutions. Repeat sequence analysis revealed several duplicated subrepeat units that were distributed across much of the region. Based on analysis of the IGS sequence data, lactucae race 1 isolates resolved as a monophyletic group with three other formae speciales of F. oxysporum. In all analyses, lactucae race 2 isolates composed a separate lineage that was phylo-genetically distinct and distantly related to the lactucae race 1 isolates.  相似文献   

20.
Failure to control Bremia lactucae (lettuce downy mildew) with metalaxyl in an intensive lettuce-producing region of Lancashire at the end of 1983 was shown to be due to the occurrence of a high level of resistance to this fungicide (isolates capable of growth at < 100 μg/ml metalaxyl). During most of 1984, metalaxyl-resistant isolates were obtained from numerous sites but all within a 20-km radius of the initial outbreak. Thereafter, at the end of 1984 and during 1985, metalaxyl-resistant isolates were recovered from most major lettuce-producing regions in the UK with protected crops more affected than field crops. AH metalaxyl-resistant isolates tested were identical in their response to fungicide, sexual compatibility type (B2) and virulence phenotype, probably representing a clone from a single origin. The resistant pathotype was virulent on resistance factors R 1-10 and 12-15 but lacked virulence for R 11 and 16-18. This was also the most common virulence phenotype among sensitive isolates collected at the same time. Cross-resistance to other phenylamide fungicides was demonstrated but isolates resistant and sensitive to phenylamide showed a similar response to the unrelated systemic fungicides propamocarb and fosetyl-Al. An F1 sexual progeny isolate from a cross between a phenylamide-sensitive and a phenylamide-resistant isolate (presumed heterozygous at the locus or loci regulating response to phenylamide fungicides) exhibited an intermediate response to phenylamide fungicides. No isolates of this type were obtained from the field. At the high concentrations affecting spore germination, phenylamide fungicides exhibited lower activity against a resistant isolate compared with a sensitive isolate. The findings are discussed in relation to future control strategies, the population biology of the fungus and possible directions for lettuce breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号