首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An 8‐week feeding trial was conducted to estimate the optimum dietary protein to energy (P/E) ratio in juvenile olive flounder Paralichthys olivaceus. Eight experimental diets were formulated with two energy levels and four protein levels at each energy level. Two energy levels of 12.5 and 16.7 kJ g?1 diets were included at crude protein (CP) levels of 25%, 30%, 35% and 45% with 12.5 kJ g?1, and CP levels of 35%, 45%, 50% and 60% with 16.7 kJ g?1. After 1 week of the conditioning period, fish initially averaging 8.1±0.08 g (mean±SD) were randomly distributed into the aquarium as groups of 15 fish. Each diet was fed on a dry‐matter basis to fish in three randomly selected aquariums at a rate of 3–5% of total wet body weight per day for 8 weeks. After 8 weeks of the feeding trial, weight gain (WG), feed efficiency ratio and specific growth rate of fish fed 45% CP with 16.7 kJ g?1 energy diet were significantly higher than those from the other dietary treatments (P<0.05). WG of fish fed 12.5 kJ g?1 energy diets increased with the increase of dietary protein levels. However, WG of fish fed 16.7 kJ g?1 energy diets increased with the increase of dietary protein levels up to 45% CP and then decreased when fish fed 50% and 60% CP diets. Both dietary protein and energy affected protein retention efficiency and energy retention efficiency. Haemoglobin (Hb) of fish fed 35% and 45% CP diets with 12.5 kJ g?1 energy were significantly high and not different from Hb of fish fed 45% and 50% CP diets with 16.7 kJ g?1 energy. Haematocrit of fish fed 45% CP diet with 16.7 kJ g?1 energy was significantly higher than those from fish fed 25% and 30% CP diets with 12.5 kJ g?1 energy (P< 0.05). Based on the results of this experiment, we concluded that the optimum dietary P/E ratio was 27.5 mg protein kJ?1 with diet containing 45% CP and 16.7 kJ g?1 energy in juvenile olive flounder.  相似文献   

2.
Four isonitrogenous [30% crude protein (CP)] diets containing different gross energy levels (13.39, 16.74, 20.50 and 23.85 kJ g−1) were evaluated to determine the optimum energy for the Malawian tilapia Oreochromis shiranus. Each tank (120 L) was stocked with 18 juvenile tilapia (average weight 7.32±0.25 g) and they were fed the experimental diets for 10 weeks. The final average weight of the fish was approximately twofold higher (range: 12.64–16.77 g) than the initial weight. The dietary energy significantly (P<0.05) influenced growth. The average weight of fish fed dietary energy level 20.50 kJ g−1 was significantly higher (P<0.05) than the weight of the fish fed any of the other experimental diets. There was no significant difference in growth of fish fed 13.39 and 16.74 kJ g−1 energy levels, but 23.85 kJ g−1 produced the lowest growth rates. There were no significant differences (P>0.05) between feed intake across the treatments. Feed conversion ratio (range: 2.2–3.0) and protein efficiency ratio (range: 1.10–1.50) among the dietary treatment groups were in agreement with trends for weight gain. Dietary energy level significantly (P<0.05) influenced the body composition of O. shiranus. Whole‐body moisture (range: 64.27–67.15%) and ash (range: 13.21–14.73%) decreased in all treatments. Whole‐body protein (range: 63.57–66.16%) increased only in groups fed on the diet containing 20.50 kJ g−1. Whole‐body fat (range: 13.58–17.27%) and gross energy (range: 28.411–33.210 kJ g−1) increased significantly (P<0.05). Fish survival was 100% in all treatments. The results demonstrated that to maximize growth at a temperature of 23°C, O. shiranus should be fed diets containing 20.50 kJ g−1 gross energy.  相似文献   

3.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

4.
The effects of dietary protein‐energy levels on the growth rate, proximate composition and production were examined in Nile tilapia, Oreochromis niloticus, at two starting weights (22.9 and 39.8 g) reared in concrete ponds for 180 days. The highest weight gain (183.1 g) was obtained with fish fed a 30% protein and 10.5 kJ g?1 diet for the small initial size and 180.2 g for a diet containing 25% protein and 12.6 kJ g?1 for the large initial size. Dressed yields (edible mass) and fillets increased to 56.9% and 52.5% in fish fed diet with 25% protein and 10.5 kJ g?1 at the initial size of 22.9 g, while fish started at 39.8 g exhibited the best values (56.5% and 52.1%) when fed the 30% protein and 10.5 kJ g?1 diet. Proximate composition of soft tissue (wet weight basis) in small fish was significantly influenced by dietary protein‐energy levels. Protein was 26.1±0.3% in fish fed the high protein (30%) and low energy (10.5 kJ g?1 diet), while lipid content was 6.4±0.3% at diet containing 20% protein and 14.7 kJ g?1 diet. Large initial size fish fed the diet with 25% protein and 14.7 kJ g?1 had the highest body protein (32.0±0.4%) and lowest lipid content (2.2±0.3%). Feed conversion ratio (FCR) and protein efficiency ratio varied with different dietary protein‐energy levels and initial fish sizes. Feed conversion ratio increased with increasing protein and decreasing energy level in the diet, and values in small fish were higher than values in large fish. Protein efficiency ratio decreased with increasing dietary protein level and decreasing energy level. The maximum total production (7.6 tons feddan?1) was with dietary high protein (30%) and low energy (10.5 kJ g?1) for small‐sized fish, while large initial fish had the highest production (3.7 tons feddan?1) when fed the 25% protein and 12.6 kJ g?1 diet energy. Starting with 22.9 g fish was more advantageous than the initial size of 39.8 g for rearing Nile tilapia. Small fish required a high‐protein and low‐energy diet, whereas large fish required a low‐protein and high‐energy diet to achieve highest production.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate the effects of dietary tryptophan concentration on weight gain and feed efficiencies of fingerling Indian major carp, Cirrhinus mrigala. Six isonitrogenous (40% crude protein) and isocaloric (17.90 kJ g?1) amino acid test diets containing casein, gelatin and l ‐crystalline amino acids with graded levels of l ‐tryptophan (0.06, 0.16, 0.26, 0.36, 0.46 and 0.56 g 100 g?1 dry diet) were formulated. Fish (4.25±0.30 cm, 0.62±0.02 g) were randomly stocked in triplicate groups in 70 L (water volume 55 L) flow‐through (1–1.5 L min?1) indoor circular tanks and fed experimental diets at 5% of their body weight/day in two feedings at 08:00 and 16:00 hours. Maximum live weight gain (277%), lowest feed conversion ratio (FCR) (1.50) and highest protein efficiency ratio (PER) (1.66) were measured at 0.36% dietary tryptophan. The relationship between dietary tryptophan levels and weight gain, FCR and PER data were described using second‐degree polynomial regression analysis indicating the tryptophan requirement at 0.42, 0.39 and 0.38 g 100 g?1 of dry diet respectively. Whole body moisture decreased with increasing tryptophan up to 0.36%. Significantly (P<0.05) higher protein content was evident in fish fed diet containing 0.36% tryptophan. Body fat increased significantly (P<0.05) in fish fed with different tryptophan concentrations except those fed 0.36% tryptophan where a significantly lower fat content was noted. Significantly (P<0.05) higher ash content was reported at 0.06% and 0.16% tryptophan levels. Survival was 100% in fish fed all the diets except those fed 0.06% tryptophan. Based on the results, diets for fingerling C. mrigala should contain tryptophan at 0.38 g 100 g?1 dry diet, corresponding to 0.95 g 100 g?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

6.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

7.
An assessment of the nutritive value of palm kernel meal (PKM) and aflatoxin‐contaminated PKM (obtained by fermenting PKM with Aspergillus flavus) as a dietary ingredient in pelleted feed for tilapia, Oreochromis mossambicus Peters, was carried out in a 12‐week feeding trial. Seven isonitrogenous (40% crude protein) and isoenergetic (15.1 kJ g?1) practical diets were formulated and fed close to apparent satiation to triplicate groups of 12 fish (mean initial weight 8.4 ± 0.1 g). The control diet contained 30% fish meal and 10% soybean meal (SBM) proteins. Four other experimental diets containing 20% and 50% of the SBM protein replaced by either PKM or fermented PKM, respectively, were formulated. Two additional diets containing either PKM or fermented PKM supplemented with a commercial aflatoxin adsorber (0.5% SorbatoxTM) were also formulated. Measured aflatoxin B1 levels in the fermented PKM‐based diets ranged from 75 to 100 µg kg?1 diet. The growth performance and feed utilization efficiency of tilapia fed fermented PKM‐based diets were significantly lower than in fish fed the control diet at all inclusion levels (P < 0.05). Despite a small reduction, weight gains of tilapia fed PKM‐based diets were not significantly different compared with fish fed the control diet. The addition of 0.5% Sorbatox did not produce any beneficial or negative effects to the growth of tilapia. Under the dietary conditions of the present experiment, it was concluded that PKM can substitute up to 50% SBM in practical diets for O. mossambicus without much adverse effect to fish growth. However, when PKM was contaminated with A. flavus, its' incorporation into tilapia diets resulted in growth depression as a result of decreased diet digestibility and also possibly because of the presence of anti‐nutrients found in the contaminated PKM.  相似文献   

8.
An 8-wk feeding trial was conducted to estimate the optimum dietary protein level and protein-to-energy (P/E) ratio in juvenile Korean rockfish Sebastes schlegeli. Twenty experimental diets were formulated with four energy levels and five protein levels at each energy level. Four gross energy levels of 14.2, 16.5, 18.6, and 20.9 kJ/g diet were included at various crude protein (CP) levels. Diets containing CP at 30, 40, 45, 50, and 55% had either 14.2 or 16.5 kJ/g energy; those with CP levels of 35, 40, 45, 50, and 60% had either 18.6 or 20.9 kJ/ g energy. After 2 wk of conditioning, fish initially averaging 7.3 ± 0.04 g (means ± SD) were randomly distributed into net cages as groups of 20 fish. Each diet was fed to fish in three randomly selected net cages for 8 wk. After 8 wk of the feeding trial, weight gain (WG) of fish fed 50% and 55% CP with 14.2 kJ/g diet was significantly higher than those of fish fed 30% and 40% CP diets (P 0.05). WG of fish fed 45, 50, and 55% CP with 16.5 kJ/g diet was significantly higher than those of fish fed 30% and 40% CP diets (P < 0.05). WG of fish fed 60% CP with 18.6 kJ/g diet was significantly higher than those of fish fed 35, 40, and 45% CP diets. WG of fish fed 45% CP with 20.9 kJ/g diet was significantly higher than those of fish fed 35, 40, and 60% CP diets. Generally, feed efficiency (FE) and specific growth rate (SGR) showed a similar trend as WG. However, protein efficiency ratio (PER) was negatively related to dietary protein levels. WG of fish did not always increase with increasing dietary protein and energy levels. Comprehensive comparison among diets containing 40, 45, and 50% CP with different energy levels indicated that the increase in protein from 40 to 45% significantly increased WG (P < 0.05), but such effect was not significant when protein increased from 45 to 50% at all energy levels. Increasing dietary energy significantly increased WG of fish fed 40% and 45% CP at each energy level; however, there was no difference in WG of fish fed 50% CP with energy levels of 18.6 and 2.9 kJ/g diet. There was no significant difference in WG of fish fed 50% CP with 18.6 kJ/g or 45 and 50% CP with 20.9 kJ/g diet. Broken-line analysis of weight gain indicated that the optimum dietary protein level was 50.9 ± 1.1% and PIE ratio was 35.4 ± 0.8 mg/kJ with 14.2 kJ/g diet; the optimum dietary protein level was 49.3 ± 5.0% and P/E ratio was 30.2 ± 1.0 mg/kJ with 16.5 kJ/g diet; the optimum dietary protein level was 46.2 ± 9.2% and P/E ratio was 24.7 ± 4.9 mg/kJ with 18.6 kJ/g diet; and the optimum dietary protein level was 45.1 ± 1.8% and P/E ratio was 21.5 ±0.7 with 20.9 kJ/g diet. Therefore, these data indicated that the concept of P/E ratio must be restricted to diets containing adequate protein and energy levels. Based on WG, the optimum P/E ratio was between 21.5 and 35.4 mg protein/kJ gross energy in juvenile Korean rockfish when gross energy ranged from 14.2 to 20.9 kJ/g diet.  相似文献   

9.
The aim of this study was to evaluate whether pretreatment of palm kernel meal (PKM) with a commercial feed enzyme (Allzyme Vegpro?) or solid‐state fermentation of PKM with the cellulolytic fungus Trichoderma koningii (Oudemans) could improve the nutritive value of raw PKM in the diets of red hybrid tilapia, Oreochromis sp. Seven isonitrogenous (30% crude protein) and isoenergetic (15.1 kJ g?1) practical diets were formulated and fed close to apparent satiation to triplicate groups of 14 fish (mean initial weight 5.1 ± 0.1 g) for 10 weeks. The diets consisted of a control diet which did not contain any PKM, raw PKM diets, enzyme‐treated PKM (EPKM) or fermented PKM (FPKM) diets at 20% and 40% (dry weight basis) inclusion rates. The growth performance and feed utilization efficiency of tilapia fed 20% PKM or 20% EPKM were not significantly different (P > 0.05) from those of fish fed the control diet. Fish fed diets containing 40% EPKM showed significantly higher growth and feed utilization efficiency than fish fed 40% raw PKM owing to the improved dry matter, protein, lipid and energy digestibility of the enzyme‐treated PKM diets. The apparent protein and lipid digestibility of the 20% EPKM and 40% EPKM diets were not significantly different, and nor was the growth and feed utilization efficiency of fish fed these two diets. Hybrid tilapia fed FPKM‐based diets at all dietary inclusions tested showed the poorest growth, and this might indicate the presence of antinutrients in the resultant fungal biomass. In conclusion, it is anticipated that, with further optimization of enzyme pretreatment of PKM, higher levels of PKM could be included in the diets of hybrid tilapia, thereby reducing the impact of rising costs to feed tilapia.  相似文献   

10.
An 8‐week feeding trial was conducted in a warmwater recirculation system at 27 ± 0.2 °C to evaluate the nutritive value of dhaincha (Sesbania aculeata) seed meal as a possible fish meal substitute in the diet of tilapia. Five isonitrogenous and isoenergetic diets were formulated to contain 32% crude protein and 18.4 kJ g?1 gross energy. Sesbania seed meal was included in diets at various levels [0%, 9.7%, 19.4%, 29.1% and 38.8% for diets 1 (control), 2, 3, 4 and 5, respectively, which correspond to 0%, 10%, 20%, 30% and 40% of dietary crude protein]. Each treatment had two replicates, eight fish per replicate, with mean initial weight of 7.06 ± 0.03 g. Fish were fed 20 g kg?1 metabolic body weight daily. On the basis of the observed growth rate, feed conversion ratio, protein efficiency ratio, apparent net protein utilization and energy retention, diets 1 (control) and 2 (containing 9.7% Sesbania meal) were similar and significantly (P < 0.05) better than the other dietary groups. Fish fed diets 3, 4 and 5 containing higher levels of Sesbania meal showed significantly reduced growth performance compared with those fed diets 1 and 2. Fish fed diets 3, 4 and 5 had significantly lower faecal dry matter (DM) content, apparent crude protein, lipid and energy digestibility and reduced levels of cholesterol compared with the control and diet 2. Fish fed diets containing higher levels (>9.7%) of Sesbania meal had significantly higher whole‐body moisture, lower lipid and gross energy content. The lower growth performance of fish fed diets containing higher levels of Sesbania meal is thought to result from the presence of tannins, saponin and the non‐starch polysaccharide content of the seed. The results of this study showed that inclusion of up to 9.7% untreated Sesbania seed meal (10% of the dietary protein) in the diet did not affect the growth performance and nutrient utilization in tilapia.  相似文献   

11.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

12.
This experiment was conducted to determine the optimum dietary protein level for juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel) fed a white fish meal and casein‐based diets for 8 weeks. Olive flounder with an initial body weight of 4.1 ± 0.02 g (mean ± SD) were fed one of the six isocaloric diets containing 35%, 45%, 50%, 55% and 65% crude protein (CP) at a feeding rate of 4–5% of wet body weight on a dry‐matter basis to triplicate groups of 20 fish per aquarium. After 8 weeks of feeding, per cent weight gain (WG) and feed efficiency ratios of fish fed the 55% CP diet were not significantly higher than those from fish fed the 50% and 65% CP diets, but significantly higher than those from fish fed the 35% and 45% CP diets. Fish fed the 50%, 55% and 65% CP diets had significant higher specific growth rates than did fish fed the 35% and 45% CP diets; however, there was no significant difference among fish fed the 50%, 55% and 65% CP diets. The protein efficiency ratio was inversely related to the dietary protein level; that is, maximum efficiency occurred at the lowest dietary protein level. Broken‐line model analysis indicated that the optimum dietary protein level was 51.2 ± 1.8% for maximum weight gain in juvenile olive flounder. The second‐order polynomial regression analysis showed that the maximum WG occurred at 57.7% and it revealed that the minimum range of protein requirement was between 44.2% and 46.4%. These findings suggest that the optimum dietary protein level for maximum growth could be greater than 46.4%, but less than 51.2% CP in fish meal and casein‐based diets containing 17.0 kJ g?1 energy for juvenile olive flounder.  相似文献   

13.
An 8‐week feeding trial was conducted to determine the effects of replacing of soybean meal (SBM) with sesame meal (SM) in the diets of Oreochromis niloticus fingerlings. Seven practical diets (33 g kg?1 crude protein, 19.2 MJ kg?1 dry diet) containing substitution levels of 0%, 8%, 16%, 24%, 32%, 40% and 48% SM for SBM protein were formulated and fed to triplicate groups of O. niloticus fingerlings (mean initial weight of 8.74 ± 0.12 g). The fish survival rate, hepatosomatic index, viscerosomatic index and condition factor were not significantly affected by the contents of SM in the diets (P>0.05). The final body weight, weight gain (WG), specific growth ratio, feed conversion ratio and protein efficiency ratio of the fish fed the diet containing 16% SM were similar (P>0.05) to that of the fish fed the control diet. Except lipid, digestible contents of dry matter, crude protein, ash, gross energy and individual amino acids decreased while phosphorous increased with increasing SM levels. No significant differences were observed in whole‐body dry matter, ash and lipid contents among all the treatments (P>0.05); crude protein contents between fish fed the control diet and a diet containing 24% SM were also not affected significantly (P>0.05), and the phosphorus content was not significantly different when the SM level was increased to 32% (P>0.05). No significant negative differences were observed in the liver composition between fish fed the control diet and the diet containing 24% SM. The most efficient diet in terms of cost per unit WG of fish was obtained in 8% SM dietary substitution, while no significant differences were found among the 0%, 8% and 16% levels. It was indicated that SM can be utilized in the juvenile Nile tilapia diet to replace about 16% of SBM protein without causing negative effects on growth performance, body composition, liver composition and feed utilization.  相似文献   

14.
An 8‐wk feeding trial was conducted to estimate the optimum dietary protein level and protein‐to‐energy (P/E) ratio in juvenile parrot fish, Oplegnathus fasciatus. Eight experimental diets were formulated with two energy levels and four protein levels for each energy level. Diets containing crude protein (CP) at 35, 40, 45, and 50% had either 12.5 or 14.6 kJ/g of energy. Fish averaging 7.1 ± 0.06 g (mean ± SD) were fed one of the experimental diets for 8 wk. At the end of the feeding trial, weight gain (WG) of fish fed 45 and 50% CP in the 12.5 kJ/g diet was significantly higher than fish fed the 35% CP diet (P < 0.05). WG of the fish fed 45 and 50% CP in the 14.6 kJ/g diet was significantly higher than fish fed the 35 and 40% CP diets (P < 0.05). Fish fed the 14.6 kJ/g diet had a higher WG compared with fish fed the 12.5 kJ/g diet at all CP levels. Feed efficiency (FE) and specific growth rate (SGR) showed a similar trend to the WG. WG, FE, and SGR improved with increasing dietary protein levels up to 45% and remained constant at 50% CP for both energy levels. However, protein efficiency ratio was negatively related to dietary protein levels. The results suggested that the optimum level of protein and the optimum P/E ratio for juvenile parrot fish should be 45% and 31.1 mg protein/kJ, respectively, in a diet containing 14.6 kJ/g energy.  相似文献   

15.
A 3 × 3 factorial experiment was conducted with Mozambique tilapia. Oreochromis mossambicus (Peters), using satiate feeding with 25%, 30% or 35% dietary protein concentrations each with three energy concentrations 10.5,12.6 or 14.7 kJ per g of purified diets. Protein-to-energy ratios (P/DE ratio) ranged from 17 to 33.4 mg protein kJ?1 of digestible energy (DE). Diets were fed to triplicate random groups of 15 fingerlings for 62 days in glass aquaria. Improvement in both weight gain and feed conversion rate (FCR) was achieved when dietary protein increased (P < 0.05), while increasing dietary energy concentration reduced feed consumption and increased mortality (P < 0.05). Protein efficiency ratio (PER) increased as dietary protein decreased and as dietary energy increased (P < 0.05). P/DE ratio correlated positively with gain, energy retention (ER) and feed consumption (r= 0.96,0.96 and 0.73 respectively) and negatively with feed conversion rate (FCR), protein productive value (PPV), protein efficiency ratio (PER) and mortality (r= -0.93, -0.95. -0.91 and -0.84 respectively). Weight gain had a positive relation with feed consumption (r= 0.82). The optimum P/DE ratio in purified diets for Mozambique tilapia for rapid growth, efficient feed conversion and maximum retention of protein and energy appears to be approximately 23.8 mg of protein kJ?1 of DE.  相似文献   

16.
Nine isoenergetic (18.5 kJ g?1) diets were formulated in a 3 × 3 factorial design to contain three protein levels (350, 400 and 450 g kg?1) for each of three lipid levels (65, 90 and 115 g kg?1), respectively, and fed twice daily for 8 weeks to fish of mean initial weight 3.34 ± 0.02 g reared in a re‐circulatory water system. Temperature, pH and dissolved oxygen (DO) were maintained within the range 28–30 °C, 5.6–6.8 and 4.82–6.65 mg L?1 respectively throughout. Results show that fish survival was better in the groups fed 65 g kg?1 lipid while growth performance (% weight gain, WG; specific growth rate, SGR) and nutrient utilization (feed conversion ratio, FCR; protein efficiency ratio, PER; protein intake, PI) in the 65/450 and 90/450 g kg?1 treatments were similar and significantly (P < 0.05) higher than in fish fed the other lipid/protein ratio combinations. The body indices monitored (Hepatosomatic index, HSI and viscerosomatic index, VSI) were similar among the treatments whereas intestinal lipase activity was not significantly (P < 0.05) affected by increase in dietary lipid and protein levels. Carcass composition showed that dietary protein level affected body protein content positively in the 65 and 90 g kg?1 lipid treatments, but dietary lipid level did not affect body lipid content. A lipid/protein ratio of 65/450 g kg?1 is considered adequate for good growth performance and survival of Channa striatus fry.  相似文献   

17.
Two feeding trials were conducted to determine the optimal dietary carbohydrate to lipid (CHO:L) ratio for juvenile and grower rockfish. Triplicate groups of juvenile (initial mean weight 3.6 g) and duplicate groups of grower (initial mean weight 166 g) were fed the five isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets with the different CHO:L ratios (0.4–5.6 g:g) for 8 weeks respectively. The survival of juvenile and grower was above 93% and was not affected by the dietary CHO:L ratios. Weight gain of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 was significantly higher than that of the fish fed diets with CHO:L ratios of 2.8 and 5.6 (P<0.05). The feed efficiency and protein efficiency ratio of juvenile fed the diet with CHO:L ratio of 5.6 were the lowest among all groups (P<0.05). The daily feed intake of juvenile fed the diet with a CHO:L ratio of 5.6 was significantly higher than that of the other groups (P<0.05). The condition factors of juvenile fed the diets with CHO:L ratios of 0.8 and 1.6 were significantly higher than that of 5.6 (P<0.05). The crude lipid content of whole body, liver and viscera of juvenile decreased as the dietary CHO:L ratio increased, and the opposite was found for the moisture content. Weight gain, feed efficiency, daily feed intake, protein efficiency ratio and condition factor of grower were not affected by the dietary CHO:L ratio. Hepatosomatic and viscerasomatic indexes of grower were significantly influenced by dietary CHO:L ratio (P<0.05). Significant differences were observed in the lipid content of whole body and viscera of grower. Dietary CHO:L ratios significantly affected the major fatty acid composition of whole body in both juvenile and grower. The contents of 18:2n‐6 and 18:3n‐3 linearly decreased as the dietary CHO:L ratio increased, whereas the 20:4n‐6, 20:5n‐3 and 22:6n‐3 contents increased. Based on growth, feed efficiency and body composition, the optimal dietary CHO:L ratio was 1.6 for juvenile rockfish fed isonitrogenous (51% CP) and isoenergetic (4.0 kcal g?1) diets, and starch could partially replace lipids in the diets with CHO:L ratios ranging from 0.4 to 5.6 for grower.  相似文献   

18.
In order to evaluate the effects of dietary protein and lipid levels on the growth, feed utilization and body composition of Heterotis niloticus fingerlings, a factorial experiment with three replicates was conducted. Six experimental diets containing three crude protein levels (28%, 32% and 36%) and two crude lipid levels (6% and 13%) were tested. Heterotis niloticus (2.34 g) were fed with the diets to apparent satiation, twice a day. For 56 days, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein retention (PR) were significantly affected by dietary protein and dietary lipid levels respectively (P<0.01). The highest WG, SGR and FE were observed for fingerlings fed the diet containing 36% protein and 6% lipid, but no significance difference was found between groups fed with the following diets: P28L13 (28% protein and 13% lipid), P32L6, P32L13 and P36L13. A significant interaction between dietary protein and lipid was observed for WG, SGR, FE and PR. The whole‐body protein, lipid, moisture and ash content were not significantly affected by dietary lipid levels, but body protein and lipid content were significantly affected by dietary protein. The dietary protein‐sparing effect was clearly demonstrated when the dietary energy of lipid increased from 17 to 19.6 kJ g?1 at 28% crude protein on H. niloticus.  相似文献   

19.
This study was designed to determine the effect of complete substitution of fish meal (FM) by three plant protein sources including extruded soybean meal (SBM), extruded full‐fat soybean (FFSB) and corn gluten meal (CGM) on growth and feed utilization of Nile tilapia Oreochromis niloticus and tilapia galilae Sarothrodon galilaeus. Four isonitrogenous of crude protein (ca. 28.0%) and isocaloric (ca. 19 MJ kg−1) experimental diets were formulated. The control diet (diet 1) was prepared with FM as the main protein sources. Diets 2–4, each FM control diet, were completely substituted with SBM (diet 2), FFSB (diet 3) and CGM (diet 4). l ‐lysine and dl ‐methionine were added to plant protein diets to cover the nutritional requirements of tilapia. Each treatment was allocated to three net pens and fed for 17 weeks. Nile tilapia fed the control diet showed significantly higher (P≤0.05) values for final body weight (FBW), feed intake (FI), weight gain (WG) and specific growth rate (SGR), whereas fish fed the diet with CGM achieved the lowest values. Tilapia galilae fed SBM diet recorded the highest (P≤0.05) values for growth performance. Better feed conversion ratio (FCR) for both Oreochromis niloticus and Sarothrodon galilaeus was observed when fish were fed SBM diet, whereas the worse FCR was recorded for FFSB diet. Feed utilization parameters including protein productive value (PPV), fat retention (FR) and energy retention (ER) showed significant differences (P≤0.05) for both the species fed different dietary protein sources. The present results suggest that, for Nile tilapia, both SBM and FFSB supplemented with dl ‐methionine and l ‐lysine can completely replace dietary FM. Meanwhile, S. galilaeus fed SBM diet exhibited comparable growth and feed utilization with those fish fed a fish‐meal‐based diet.  相似文献   

20.
An 8‐week feeding trial was conducted in a recycling water system at 28 ± 1 °C to investigate protein to energy ratio (P/E ratio) in African catfish Clarias gariepinus (10.9 ± 0.04 g). Six fishmeal‐based diets of two protein levels (330 and 430 g kg?1), each with three lipid levels (40, 80 and 120 g kg?1) resulted in P/E ratios ranging from 15.5 to 21.3 mg protein kJ?1 gross energy (GE) were fed to 20 fish (per 30‐L tank) in triplicate. Fish were fed 50 g kg?1 of their body weight per day adjusted fortnightly. Significantly higher (P < 0.05) growth rates and feed conversion efficiency were evident in fish fed with higher protein diet. The highest growth rate was found by fish fed 430 g kg?1 protein, 21.2 kJ?1 GE with a P/E ratio of 20.5 mg protein kJ?1 GE. Significantly indifferent (P > 0.05) values of protein utilization were found in‐between the both (higher and lower) protein diets. Higher lipid deposition (P < 0.05) in whole body and liver was observed with increasing dietary lipid level at each protein diet and as higher (P < 0.05) for the lower protein diets. Liver glycogen tended to decrease with increasing gross energy at each protein diet and higher protein diet showed comparatively lower values (P > 0.05). Digestive enzyme activities (protease and lipase) and histological examination of intestine and liver of fish fed varying P/E diets found no significant differences in response to experimental diets. The study reveals that African catfish C. gariepinus performed best the diet containing 430 g kg?1, 21.2 kJ g?1 and 20.5 mg protein kJ g?1 GE protein, gross energy and P/E ratio, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号