首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
水分胁迫对甜玉米主要农艺性状及产量的影响   总被引:3,自引:1,他引:2  
在大棚内采用人工供水的方法,研究不同水分胁迫下甜玉米品种主要农艺性状与产量的关系。结果表明,轻度干旱胁迫下可用株高、茎粗、散粉至吐丝间隔期(ASI)、穗粗、每穗粒数、千粒重等6个性状耐旱系数作为品种耐旱性鉴定的指标,而中度干旱胁迫下可用穗位叶面积、散粉至吐丝间隔期(ASI)、穗粗、每穗粒数、出籽率、千粒重这6个性状耐旱系数预测品种产量的耐旱系数。在不同程度水分胁迫下,散粉至吐丝间隔期(ASI)、穗粗、每穗粒数、千粒重等4个性状耐旱系数是不同品种耐旱性鉴定的重要指标,除此之外,株高、茎粗、穗位叶面积等决定植株形态的性状指标也对甜玉米耐旱性起一定作用。  相似文献   

2.
Introduced maize (Zea mays L.) germplasm can serve as sources of favorable alleles to enhance performance in new maize varieties and hybrids under drought stress conditions. In the present study, the combining abilities of 12 exotic maize inbred lines from CIMMYT and 12 adapted maize inbred lines from IITA were studied for grain yield and other traits under controlled drought stress. The inbred lines from each institution were separated into groups using SSR-based genetic diversity and were intercrossed using a factorial mating scheme to generate 96 hybrids. These hybrids were evaluated under both controlled drought stress and well-watered conditions at Ikenne in Nigeria in 2010 and 2011. Average mean yields of hybrids under drought stress represented 23 % of the average yield of hybrids under full irrigation. General combining ability (GCA) effects accounted for 49–85 % of the observed variation for several traits recorded under both well-watered and drought stress conditions. Specific combining ability effects for grain yield, though positive in most hybrids, were not significant under drought stress conditions. All the twelve exotic and nine adapted lines had positive GCA effects (female, male, or both) for grain yield under either drought stress or full irrigation, or both environments. EXL03 and EXL15 that had positive and significant female and male GCA effects for grain yield under both environments can be used to improve their adapted counterparts for grain yield and drought tolerance. Normalized difference vegetation index had weak but significant correlation with grain yield.  相似文献   

3.
A pearl millet mapping population from a cross between ICMB841 and 863B was studied for DNA polymorphism to construct a genetic linkage map, and to map genomic regions associated with grain and stover yield, and aspects of drought tolerance. To identify genomic regions associated with these traits, mapping population testcrosses of 79 F3 progenies were evaluated under post-flowering drought stress conditions over 2 years and in the background of two elite testers. A significant genotype × drought stress treatment interaction was evident in the expression of grain and stover yield in drought environments and in the background of testers over the 2 years. As a result of this, genomic regions associated with grain and stover yield and the aspects of drought tolerance were also affected: some regions were more affected by the changes in the environments (i.e. severity and duration of drought stress) while others were commonly identified across the drought stress environments and tester background used. In most instances, both harvest index and panicle harvest index co-mapped with grain yield suggesting that increased drought tolerance and yield of pearl millet that mapped to these regions was achieved by increased partitioning of dry matter from stover to the grains. Drought stress treatments, years and testers interactions on genomic regions associated with grain and stover yield of pearl millet are discussed, particularly, in reference to genetic improvement of drought tolerance of this crop using marker-assisted selection.  相似文献   

4.
Moisture stress is the major constraint to rice production and its stability in rainfed, mainly irrigated, and aerobic environments. Identification of genomic regions conferring tolerance to stress would improve our understanding of the genetics of stress response and result in the development of drought tolerant cultivars. In the present study, quantitative trait loci for drought response related traits and as well as grain yield were identified using a set of 140 recombinant inbred lines derived from a cross between the popular high-yielding variety, IR64 and the landrace, INRC10192. A total of 36 QTL were identified for grain yield and its components under control and stress conditions. Strikingly, a QTL cluster flanked by the markers RM38 and RM331 on chromosome 8 was found to be associated with grain yield, plant height, no. of productive tillers, chaffy grains, and spikelet fertility on secondary rachis and biomass under stress treatment. The genomic regions associated with these QTL under drought stress will be useful for the development of marker-based breeding for drought tolerant, high-yielding varieties suited to drought-prone areas.  相似文献   

5.
To study the effects of early drought priming at 5th‐leaf stage on grain yield and nitrogen‐use efficiency in wheat (Triticum aestivum L.) under post‐anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. ?0.9 MP a) at the 5th‐leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen‐use efficiency (ANUE ) of the primed and non‐primed plants under post‐anthesis drought and heat stress were investigated. Compared with the non‐primed plants, the drought‐primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post‐anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post‐anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post‐anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.  相似文献   

6.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   

7.
干旱胁迫降低大豆产量,探究提高大豆耐旱能力和降低产量损失的机制对大豆生产具有重要意义。施褪黑素能缓解干旱胁迫对植株生长的抑制和氧化损伤。本试验于2017—2018年研究叶面喷施褪黑素对干旱胁迫下大豆鼓粒期叶片光合、抗逆、碳氮代谢和产量的影响表明,外源褪黑素提高干旱胁迫下大豆叶片抗氧化酶活性,抑制活性氧的产生和细胞膜损伤,缓解干旱胁迫对光合能力的抑制,提高碳氮同化能力,最终缓解干旱胁迫造成的产量损失。与干旱胁迫相比,褪黑素处理下单株荚数、单株粒数和百粒重两年平均提高了2.9%、0.8%和17.2%,产量(单株粒重)平均提高了14.7%。  相似文献   

8.
O. P. Yadav 《Plant Breeding》2008,127(2):208-210
The crop cultivars targeted for drought prone areas need to combine drought tolerance and high yield. The present study was conducted to assess the performance of three selected pearl millet landraces, four exotic elite populations and their 12 crosses. They were evaluated for yield, yield components and a drought susceptibility index that was calculated using yield data from drought and non‐drought environments. In the non‐drought season, the exotic populations had significantly higher grain yield than landraces. However, in the severe drought season, the landraces produced significantly greater biomass, grain and stover yields than elite populations. There was a strong relation between panicle size and ability to produce panicles and delay in flowering under severe stress. The biomass and stover yield of crosses was significantly better than parental populations under both drought stress and near‐optimum conditions. The elite populations were most sensitive to drought while crosses were as drought tolerant as landraces because they combined larger panicle size of exotics and lesser delay in flowering of landraces. The results indicated that it is possible to combine drought adaptation with high yield potential through hybridization between adapted landraces and elite genetic materials.  相似文献   

9.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

10.
我国主要玉米自交系开花期耐旱性差异及改良   总被引:26,自引:0,他引:26  
通过对37份我国主要玉米自交系两年的开花期耐旱性鉴定, 筛选出耐旱系12份(K22、 SH15、 X178、 P138、中自01、中自451、金黄96B、齐319、旱23、东91、临京11、 CA156). 在干旱胁迫下, 果穗吐丝延迟, 雌雄开花间隔增大, 结穗率下降, 籽粒产量严重降低; 雌雄开花间隔天数和结穗率与籽粒产量均呈极显著相关, 是可供耐旱性选择  相似文献   

11.
Drought tolerance as such is often not considered to be an independent trait by plant breeders. The objective of this study was to evaluate eight drought tolerance indices, namely stress susceptibility index (SSI), yield stability index (YSI), yield reduction ratio (Yr), yield index (YI), tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), and stress tolerance index (STI) in upland cotton (G. hirsutum L.) genotypes. For this purpose, 16 genotypes were sampled during the 2013-2014 growing seasons under both normal and drought-stress field conditions at the Main Cotton Research Station of Navsari Agricultural University, Surat, India. The drought tolerance indices were calculated based on seed cotton yield under drought stress and non-stress conditions. Mean comparison of drought tolerance indices and seed cotton yield validated the significant influences of drought stress on yield as well as significant differences among genotypes. Results of calculated correlation coefficients and multivariate analyses showed that GMP, MP and STI indices were able to discriminate drought-sensitive and tolerant genotypes. Cluster analysis using the drought-tolerance indices divided the 16 genotypes into tolerant and susceptible groups. Two genotypes, G.Cot.16 × H-1353/10 and H-1353/10 × G.Cot.16 gave good yield response under drought conditions leading to their stability during water stress conditions. Based on multivariate analyses using the indices individually or in combinations, it was possible to identify the most yield-stable genotypes across the environments. Overall, we concluded that GMP, MP and STI indices can be efficiently exploited not only for screening drought tolerance but also to identify superior genotypessuitable for both stress and non-stress field conditions.  相似文献   

12.
Abiotic stress tolerance in plants is said to be induced by pre-stress events (priming) during the vegetative phase. We aimed to test whether drought priming could improve the heat and drought tolerance in wheat cultivars. Two wheat cultivars “Gladius” and “Paragon” were grown in a fully controlled gravimetric platform and subjected to either no stress or two drought cycles during the tillering stage. At anthesis, both batches were either subjected to high temperature stress, drought stress or kept as control. No alleviation of grain yield reduction due to priming was observed. Higher CO2 assimilation rates were achieved due to priming under drought stress. Yield results showed that priming was not damage cumulative to wheat. Priming was responsible to alleviated biochemical photosynthetic limitations under drought stress and sustained photochemical utilization under heat stress in “Paragon.” Priming as a strategy in abiotic stress alleviation was better evidenced in the stress susceptible cultivar “Paragon” than tolerant cultivar “Gladius”; therefore, the type of response to priming appears to be cultivar dependable, and thus phenotypical variation should be expected when studying the effects of abiotic priming.  相似文献   

13.
Maize (Zea mays L.) is severely affected by drought and this challenge is expected to worsen with climate change. One of the most promising solutions is breeding for drought tolerance that requires the identification of sources of drought tolerance. Eighteen maize populations from the Algerian Sahara were evaluated along with three European and two American checks in two Algerian locations under drought and control conditions. Under drought conditions, Algerian populations had large variability for most traits and the populations BTM and LOM out yielded most checks. The ratio yield under drought/yield under control conditions was 65.90, 65.33, and 53.23% for BTM, TAO and LOM, respectively. These populations maintained also yield components such as grain weight, ear length, number of kernel rows, ears per plant, and leaf area under stress conditions; furthermore, they have reduced leaf rolling. TAO and BTM presented the highest relative water content, and LOM had the highest proline content. Algerian populations can be considered as a novel source of favorable alleles for drought tolerance and show a wide variety of mechanisms of response to drought.  相似文献   

14.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   

15.
Developing tolerant genotypes is crucial for stabilizing maize productivity under drought stress conditions as it is one of the most important abiotic stresses affecting crop yields. Twenty seven genotypes of maize (Zea mays L.) were evaluated for drought tolerance for three seasons under well watered and water stressed conditions to identify interactions amongst various tolerance traits and grain yield as well as their association with SSR markers. The study revealed considerable genetic diversity and significant variations for genotypes, environment and genotype × environment interactions for all the traits. The ranking of genotypes based on drought susceptibility index for morpho-physiological traits was similar to that based on grain yield and principal component analysis. Analysis of trait – trait and trait – yield associations indicated significant positive correlations amongst the water relations traits of relative water content (RWC), leaf water potential and osmotic potential as well as of RWC with grain yield under water stressed condition. Molecular analysis using 40 SSRs revealed 32 as polymorphic and 62 unique alleles were detected across 27 genotypes. Cluster analysis resulted in categorization of the genotypes into five distinct groups which was similar to that using principal component analysis. Based on overall performance across seasons tolerant and susceptible genotypes were identified for eventual utilization in breeding programs as well as for QTL identification. The marker-trait association analysis revealed significant associations between few SSR markers with water relations as well as yield contributing traits under water stressed conditions. These associations highlight the importance of functional mechanisms of intrinsic tolerance and cumulative traits for drought tolerance in maize.  相似文献   

16.
In a 2-years experiment, 30 wheat cultivars and 21 landraces from different countries were tested under near optimum and drought stress conditions. Plant height, number of sterile spikelets per spike, spikelets per spike, number of kernels per spike, kernel weight per spike, 1000 kernel weight and grain yield were evaluated. The number of kernels per spike, 1000 kernel weight and especially yield were more sensitive to drought stress in the cultivars than plant height and number of spikelets per spike, while in the landraces these traits did not differ under drought stress compared to near optimum conditions. The average yield of cultivars was significantly better than the average yield of landraces under near optimum as well as drought stress conditions. Path coefficient analysis showed that for cultivars under near optimum conditions there was no significant direct association of any of the analysed characters with yield, while under drought stress conditions, number of kernels per spike had a significant positive direct effect. Under drought stress conditions, the number of sterile spikelets displayed a negative direct effect, while kernel weight per spike had a positive direct effect on yield. Hierarchical cluster analysis was used as a tool to classify cultivars and landraces according to their yield ability under near optimum and drought stress conditions. Among the cultivars, two groups out of five and among one of three in the landraces were characterised by high yields in both near optimum as well as under drought stress conditions. These genotypes may serve as sources of germplasm for breeding for drought tolerance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Water deficit is a major factor responsible for soybean yield gap in Southern Brazil and tends to increase under climate change. An alternative to reduce such gap is to identify soybean cultivars with traits associated to drought tolerance. Thus, the aim of this study was to assess soybean adaptive traits to water deficit that can improve yield under current and future climates, providing guidelines for soybean cultivar breeding in Southern Brazil. The following soybean traits were manipulated in the CSM-CROPGRO-Soybean crop model: deeper root depth in the soil profile; maximum fraction of shoot dry matter diverted to root growth under water stress; early reduction of transpiration under mild stress; transpiration limited as a function of vapor pressure deficit; N2 fixation drought tolerance; and sensitivity of grain filling period to water deficit. The yields were predicted for standard and altered traits using climate data for the current (1961–2014) and future (middle-century) scenarios. The traits with greater improvement in soybean yield were deeper rooting profile, with yield gains of ≈300 kg ha−1, followed by transpiration limited as a function of vapor pressure deficit and less drought-induced shortening of the grain filling period. The maximum fraction of shoot dry matter diverted to root and N2 fixation drought tolerance increased yield by less than 75 kg ha−1, while early reduction of transpiration resulted in a small area of country showing gains. When these traits were combined, the simulations resulted in higher yield gains than using any single trait. These results show that traits associated with deeper and greater root profile in the soil, reducing transpiration under water deficit more than photosynthesis, creating tolerance of nitrogen fixation to drought, and reducing sensitivity of grain filling period to water deficit should be included in new soybean cultivars to improve soybean drought tolerance in Southern Brazil.  相似文献   

18.
Molecular marker loci responding to selection under drought stress were monitored in a rice breeding population obtained by crossing a tolerant parent (Apo) to a susceptible parent (IR64). The 40 highest-yielding lines under stress and non-stress conditions obtained after two cycles of divergent selection under drought stress and non-stress conditions, respectively were genotyped using 72 polymorphic and widely distributed SSR markers. Ten loci (RM572, RM6703, RM71, RM3387, RM5686, RM520, RM510, RM256, RM269 and RM511) showing highly significant allele frequency differences between the two sets were identified. Favorable alleles at eight of these loci came from the tolerant parent, and at two (RM3387 and RM510) from the susceptible parent (IR64). Effects of these loci on grain yield were tested in five independent experiments covering a range in soil moisture levels. Results showed that at six loci (RM572, RM6703, RM520, RM256, RM269, and RM511), Apo alleles had highly significant effects on grain yield in at least three of the four stress trials but only two of these loci (RM572 and RM511) also affected grain yield under non-stress conditions. In all these cases, the effects of loci generally increased with stress level. Apo alleles at these loci seem to enhance yield under stress mainly by increasing harvest index and reducing flowering delay. Large-effect quantitative trait loci (QTLs) affecting grain yield under upland drought stress have already been found previously in other populations near RM6703, RM520, and RM511. Thus, these regions appear to be important in explaining genetic variation for upland drought tolerance in rice.  相似文献   

19.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

20.
为了探究小麦新品种‘宛麦632’的抗旱性,以‘周麦18’为对照试验材料,采用PEG模拟干旱和田间自然干旱的方法测定抗旱指标。无干旱胁迫条件下,‘宛麦632’与‘周麦18’的各项抗旱指标均无显著差异,其产量分别为7052 kg/hm2和6916 kg/hm2。干旱胁迫条件下,在萌发期,‘宛麦632’的发芽率、发芽势分别较‘周麦18’高44.23%、106.25%;在苗期,‘宛麦632’的苗高、根长、茎叶鲜重和根鲜重分别较‘周麦18’高62.90%、55.32%、83.33%和60.00%;在成株期,‘宛麦632’的株高、最高分蘖、有效穗、穗粒数、千粒重和产量分别较‘周麦18’高2.99%、1.94%、1.44%、14.71%、10.61%和6.80%。除有效穗外,其他性状差异均达显著水平。此外,‘宛麦632’和‘周麦18’的综合抗旱指数分别为0.901、0.582。据此认为,在干旱胁迫条件下,‘宛麦632’生长受抑制程度小,其各项抗旱指标均优于‘周麦18’;‘宛麦632’具有较好的抗旱性,在干旱环境下有产量优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号