首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
果园升降作业平台是果树修剪和果实采收过程中使用广泛的果园作业机械,我国果树多种植于丘陵山地,由于地形结构复杂,果园升降作业平台在工作过程中是否能够保持水平状态就直接影响了果园作业人员的工作安全和效率。因此,本课题设计一种能够快速稳定调平作业平台的调平装置,来提高果园升降作业平台的水平调节稳定性,保障作业人员的安全和提高劳动舒适性。实验证明,本调平机构能够更高效的调节平台水平,适应更加复杂的地形。  相似文献   

2.
为实现高地隙植保机底盘离地间隙调节和底盘调平控制,以湖南农业大学与宗南重工联合研制的高地隙多功能植保机为平台,设计加装了底盘自动调平系统。系统由STM32主控芯片、倾角传感器、驱动模块、平行四边形升降机构和液压执行机构组成。每个平行四边形升降机构上安装倾角传感器,用于检测底盘的离地间隙;底盘中心位置安装1个水平倾角传感器,用于检测底盘的水平角度。采用Kalman滤波算法处理底盘水平倾角数据,采取基于位置误差控制加角度误差控制的调平控制策略,完成高地隙植保机离地间隙调节和底盘调平的控制。试验证明,滤波算法能有效抑制水平倾角数据的抖动;调平系统能完成植保机离地间隙调节和底盘调平,平均响应时间为0.45 s,静态调平的平均水平误差≤0.25°,最大误差0.45°,均方根误差≤0.27°;动态调平的平均水平误差≤0.64°,最大误差0.81°,均方根误差≤0.34°,满足高地隙植保机作业要求。  相似文献   

3.
货箱自适应调平果园作业平台设计与试验   总被引:1,自引:0,他引:1  
【目的】针对南方丘陵山区果园地势起伏不平,现有果园作业平台存在振动大、坡道运输货物易倾翻等问题,设计一种具有货箱伺服调平功能的电动果园作业平台。【方法】通过理论分析及Amesim仿真,试制果货箱自适应调平果园作业平台样机,并测试样机的续航里程、货箱伺服调平等性能参数。【结果】其满载续航时间为3.4 h,最高行驶速度为4 km/h,最大升降高度1.52 m,最小转弯半径为0.89 m。台架试验中空载动态调平误差平均值小于1°;满载动态调平误差平均值小于1.5°,在设计的爬坡角度以内,调平稳定时间最长为4.32 s,果园实地测试中,作业平台以1 km/h的行驶速度,测试在10°和15°纵坡、-10°和-5°横坡的调平性能,最终货箱自动调平角度均保持在-2°~2°;【结论】通过试验分析,货箱自适应调平果园作业平台性能良好,能够满足丘陵山区果园的采摘、运输等环节需要。  相似文献   

4.
基于模糊PID的山地拖拉机调平控制系统的设计   总被引:1,自引:0,他引:1  
在自行开发的山地拖拉机调平机构上加装了自动调平控制系统。系统以可编程逻辑控制器(PLC)为主控核心,以倾角传感器为车身平台倾角检测机构,以模糊PID为调平控制算法,通过监测倾角传感器检测的角度值来实时调整伺服电机的转动与伺服电缸的伸缩,以实现车体平台的自动调平。静态试验结果表明,拖拉机车体平台在倾斜15°的情况下,车体平台横向和纵向单独完成调平分别用时1.851 s和1.882 s,同时调平在3.319 s内完成。动态试验结果表明,拖拉机在行驶速度1.73 km/h、最大坡度15°时,完成车体平台横向和纵向调平分别用时6.253 s和6.853 s;调平时最大超调角分别为9.053 3°和8.687 2°,调平后车体平台角度偏差最终可控在0.5°。  相似文献   

5.
针对小型农业作业车辆坡道行驶或作业时,驾驶室和工作装置不能自动保持水平等问题,设计了一种手动液压调平机构并阐述其调平机理和液压控制系统,利用虚拟样机技术对调平机构进行仿真得到其主要运行参数.仿真结果与理论计算误差在3%以内,表明该机构可以在较复杂路面条件下实现调平功能,满足调平装置结构设计及功能要求.  相似文献   

6.
为降低丘陵山地复杂环境作物信息地面采集设备人工多次移动架设的劳动强度,提高信息采集效率,研究设计了一种自动水平调节平台,用于丘陵山地中作物信息数据采集设备的搭载.利用旋量理论和运动学原理,建立了平台机构的数学模型,设计了控制系统和程序,进行了样机试制和室内、室外试验.试验表明,在最大负载、最大坡度范围内,最大静态调平误差小于0.3°,最大动态调平误差小于3°.平台能够较好满足搭载光谱与图像等设备在丘陵山地±15°坡角采集作物信息时的自动调平需求,能够同时调节俯仰方向和横滚方向角度,与现有调平平台只有俯仰调节功能相比,该平台更符合丘陵山地场景的使用要求.  相似文献   

7.
【目的】为改善高空作业平台的调平性能,研究长管道效应对调平性能的影响.【方法】通过建立长管道模型,分析了影响调平性能的管道参数,并结合长管道作用下的调平系统仿真模型,分别研究管道材质、长度、直径及布管方式对调平性能的影响规律.【结果】硬管材质能够较软管材质使系统响应时间缩短0.4~0.6s;管道长度由1m增加至40m可使系统响应时间由0.05s延长至0.3s,压力损失由0.6bar增大至24.8bar;管道直径由5mm增大至20mm,使调平稳定时间由1.1s延长至2.2s,压力损失由69.9bar减小至1.7bar;阀前布管较阀后布管加快系统响应时间约0.2s,但易引起压力冲击.【结论】长管道效应对高空作业平台调平性能的影响显著,长管道参数化分析形成调平系统的优化布置及参数选择原则,对高空作业平台的调平性能改善提供了参考.  相似文献   

8.
果园高位自动调平作业平台设计及仿真   总被引:2,自引:0,他引:2  
[目的]我国果园机械化程度低,尤其缺少丘陵山地果园的机械,目前果园疏花疏果、套袋、采摘等繁重工作主要依靠人工架梯完成.设计一款适用于丘陵山区苹果园的高位自动调平平台,可以提高果园采收机械的采收效率、安全性和稳定性.[方法]根据果园地形特点和果树高度确定平台设计要求和调平方式,确定俯仰、侧倾不同部分尺寸关系,液压缸所需推...  相似文献   

9.
通过对丘陵山地拖拉机车身调平模式和后悬挂机具横向调平模式的研究和分析,以及在研究了现有耕深自动测量方法的基础上,通过理论分析和计算,本文提出一种基于具有车身调平功能的丘陵山地拖拉机的耕深自动测量方法。丘陵山地拖拉机车身调平模式分为单侧作用和双侧作用两种形式;后悬挂机具横向调平模式也分为单侧作用和双侧作用两种形式,进行搭配组合得到四种组合工作模式。针对这四种工作模式,通过对事先在水平作业面内标定好的耕深测量公式分别进行零点修正和等效角度选用,共得到8组最终的测量公式。不仅能够满足水平作业面内的测量要求,而且还能在坡地等高作业时,后悬挂机具的横向角度调整后,通过实时采集传感器的信号即可获得实际耕深,实现耕深的自动测量。  相似文献   

10.
针对小型山地作业车辆坡道行驶时,驾驶平台不能自动保持水平,甚至发生车辆倾翻事故等问题,设计了基于双单片机(STC89C52)控制的调平系统,实现自动找平、手动调整的双模式控制方式,能够在复杂林地环境中保持车辆驾驶平台时刻处于水平状态,阐述了调平机理、机械机构设计、系统软硬件及液压控制系统原理.  相似文献   

11.
现有的激光平地机对平地铲只有高程控制而没有水平平衡控制。分析了当前激光平地机在不平整地面上工作的缺点,提出了一种自调平控制系统,实现激光平地机水平方向上自调平控制,改进与提高其平整精度和效率。当激光平地机在斜坡上工作时,使用该系统可自动保持农具平衡。实时倾角通过固定机具中心的倾角传感器获得,控制器将根据实时倾角来驱动电磁阀,控制油缸动作,使得机具实现自调平控制;同时对其进行静态试验和动态试验,通过数据分析,发现该系统能有效提高土地作业的稳定性。最终得出该系统相对于常规的激光平地机地块平整前后的绝对改善度提高了50.0%,相对改善度提高了18.6%,土地误差水平小于1.0%。  相似文献   

12.
山地拖拉机调平系统的研究现状及发展趋势   总被引:2,自引:0,他引:2  
采用理论分析和文献综述相结合的方法,对国内外拖拉机车身调平系统的现状进行研究;从拖拉机后悬挂技术、机具调平坡地自适应技术2个方面对文献知识进行梳理和归纳。结果表明:1)利用拖拉机调平系统能使拖拉机在车身遇到颠簸或倾斜时调整至水平状态,能确保驾驶员的安全和舒适;在山地复杂多变和高低起伏环境下,拖拉机在山地作业的稳定性和通过性与车身自动调平程度密切相关;2)悬挂机构对拖拉机车身调平及后悬挂机具调平起着至关重要的连接作用,悬挂机构的技术结构直接影响了拖拉机车身调平及后悬挂技术研究的发展程度;3)对悬挂机具在坡地等高作业及耕作自适应等关键技术的研究,是整个山地拖拉机调平系统研究的关键问题。针对山地复杂地形和作业质量要求,提出如下发展策略:在搭建山地拖拉机车身调平系统和优化悬挂机构的基础之上,全面研究山地拖拉机后悬挂技术和机具调平坡地自适应技术;在保障山地作业质量和作业效率的前提下,进一步深入研究山地拖拉机车身与悬挂机具协调自适应技术,实现山地拖拉机悬挂机具对坡地的仿形作业,是山地拖拉机自动调平系统的主要发展方向。  相似文献   

13.
森林的规划利用需要对森林资源进行精确估测。在新的作业环境下,需要研究新型树木信息采集装置来适应复杂的林区环境同时实现数据的高效采集,自行式树木测量激光扫描仪是能够实现林分数据高效采集的设备之一。为了实现扫描仪在林中机动灵活地移动,并迅速架设,保证平稳工作,需要开发一个扫描仪车载自行机构。机构由车、调平平台、桅杆和云台四部分组成。通过对坡度、灌木高度、树高和树木坐标等数据的采集和分析,确定了调平平台的调平角度、桅杆的初始高度和工作高度、云台的水平和竖直方向的旋转角度、车的尺寸、车的牵引力和额定功率等主要工作参数。  相似文献   

14.
为实现旋耕机田间作业过程中保持水平,设计了一种机具自动调平系统,该系统由控制系统、液压系统、三点悬挂机构、执行元件等组成。建立了该机具在不同情况下的数学模型,并基于AMESim软件构建了液压系统的仿真模型,仿真结果表明:常规PID算法超调非常明显,且连续调平后需要的稳定时间超过2 s,整体调节时间较长,达不到系统所需要求,而模糊PID算法响应时间为1 s左右,基本不超调,到达目标时间、且稳定时间明显更短。并对有、无自动调平功能的旋耕机进行了田间作业,结果表明:具有自动调平功能的系统相较无自动调平功能的系统在耕整地上有大幅度提升,前者耕深高度差最大为23 cm,后者耕深高度差最大为94 cm;前者平均耕深稳定性系数为947%,后者平均耕深稳定性系数为81%;前者平整度≤108 cm,后者平整度≤28 cm。研究了液压系统对调平影响规律,深入分析了调平响应速度、调平控制精度、系统稳定性,为旋耕机具对土壤作业保持平整性和耕深一致性提供了一定依据。  相似文献   

15.
丘陵山地农机具的自动调平系统设计   总被引:1,自引:0,他引:1  
设计了一种基于PID速度调节的自动调平系统,该系统以51单片机为主控制器,通过与传感检测模块的串口通信来实时获取车身姿态,以步进电机作为执行机构构成的四点式机电调平系统。通过步进电机的位移进行轴方向调平,以履带式模型车具作为搭载底盘,并应用于丘陵地区作业的农机具上。  相似文献   

16.
为了使拖拉机旋耕机具在田间作业时保持平稳并实现耕深一致性,为1GDZ–150型履带式旋耕机三点悬挂装置研制了调平机构。该机构由杠杆机械部分、液压系统和倾角信号采集装置组成。机具作业时,倾角传感器实时检测其倾角,采用复合数字滤波算法组合对倾角数据进行滤波处理,同步液压缸通过杠杆机构以中心不动调平法调节机具的倾角以实现调平。试验结果表明,该调平机构作业时,耕深均值为11.34 cm,旋耕机具的耕深稳定性变异系数为3.7%,能够较好地完成调平作业。  相似文献   

17.
实现丘陵地区坡耕地机械化耕作,对于全面提高该地区农业机械化水平和实现农业可持续发展具有重要意义。但是,耕作机械的倾斜作业不仅对土壤的硬底层造成破坏,而且还影响到耕作平整度和深度等耕作性能指标,导致耕作效果不理想和作业效率较低等问题。针对丘陵地区现有的耕作机械只能在坡度较小的耕地上作业的现状,本文采用倾角控制调平策略,以AT89C51单片机为控制器、液压油缸为执行元件、倾角传感器为反馈元件,设计一套适用于丘陵地区的小型犁耕机的自动调平系统,其主要由耕作机构、整机机身、调平控制机构和自动调平控制系统四个部分组成。该系统具有调平速度快、精度高和操作简单等特点,能保持小型犁耕机的平稳性,提高了小型犁耕机在丘陵地区作业时的稳定性及坡地适应性。  相似文献   

18.
针对目前水平调节装置的调节精度和自动化程度未能满足方方面面的要求.设计了一种新型的水平调节装置.通过倾角传感器测量地面与水平面的倾斜情况,并由单片机和驱动器控制步进电动机的运行,进而控制螺钉的升降,最终实现载物台面的水平调节.相对于其他的水平调节装置,该调节装置在调节精度和自动化方面更臻完美.  相似文献   

19.
调平式果园作业平台设计与仿真分析   总被引:1,自引:0,他引:1  
基于河北农业大学研制的果园作业平台设计了一种调平式果园作业平台,能够在调节工作台面倾斜角度的同时对车身载荷转移情况进行调整,有效提高作业平台坡地作业时的稳定性和搭载人员及物品的安全性,增强作业平台对不同作业环境的适用性。本研究采用最大侧倾稳定角和横向载荷转移率即值作为作业平台倾翻稳定性评价指标,利用ADAMS软件对作业平台虚拟样机在多工况下车身稳定性进行运动学及动力学分析。基于传统力学和运动学理论建立了仿真模型的动力学数学模型,经验证计算结果与仿真结果误差不超过0.5%,验证了仿真模型有效。仿真结果表明:调平后,作业平台最大侧倾稳定角度值提高,横向载荷转移率值降低,有效提高了作业平台抗倾覆性和行走稳定性;通过运动学仿真得到工作台围栏内测量点的运动学参数,为日后电液控制系统设计提供了技术理论参考。  相似文献   

20.
针对目前柑橘等机械化专用收获机械设备少、收集过程中损伤率较高、导致工作效率低、劳动强度大等问题,采用旋转均匀分离装置和果箱下降的装箱工艺,设计了一种新型的适用于现代标准矮砧密植果园的自动收集装箱机。结果表明,该机主要由两侧输送装置、旋转均匀分离装置、装箱升降装置、换箱装置和履带式移动采摘平台等组成。通过上下随动和定向设计可实现输送装置上下、左右的摆动调节,适应不同位置的放果要求,保证连续收集;采用旋转均匀分离装置带动宽皮柑橘滚动,逐一遇孔等概率落果,实现均匀装箱;通过Adams软件对升降装置进行运动学分析,配合果箱精确升降,防止跌落或挤压造成损伤。以宽皮柑橘为对象进行验证试验,当两侧输送装置转速0.15 m/s,旋转均匀分离装置转速20 r/min,缓冲轨道距果面高度为10 cm,分离圆盘分布孔数为6个时,损伤率为6.1%,装箱效率为48个/min,实现了果实的连续收集、均匀装箱和自动换箱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号