首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To compare the partial CO2 rebreathing method (non‐invasive cardiac output [NICO]) and the lithium dilution method (lithium dilution cardiac output [LiDCO]) for cardiac output (CO) measurement in anesthetized dogs. Design: Prospective study. Setting: College of Veterinary Medicine, University of Florida. Animals: Six adult dogs (weight range 22–25.4 kg). Interventions: All animals were instrumented for CO determinations using the LiDCO and NICO methods. Direct blood pressure, heart rate, arterial blood gases, end‐tidal isoflurane (ETI), and CO2 concentrations were monitored throughout the study. CO was manipulated with dobutamine and isoflurane to allow for intermediate, low, and high CO determinations in that order using LiDCO and NICO. Measurements and main results: A 1.5% ETI produced the intermediate rate of CO, a constant‐rate infusion of dobutamine (1–4 μg/kg/min) and 1.1% ETI, the highest rate, and 2.5–3% ETI, the lowest rate. Measurements were obtained in duplicate or triplicate for the LiDCO and continuously for the NICO method after achieving a stable hemodynamic plane for at least 15 minutes at each level of CO, allowing 5 minutes between measurements. Forty‐seven comparisons were determined. The correlation coefficient (r) between the 2 methods was 0.888 for all determinations. The mean LiDCO and NICO from 47 measurements were 155.9±78.7 mL/kg/min (range, 49.6–303.2) and 146.6±62.9 mL/kg/min (50–290.3), respectively. The bias between LiDCO and NICO estimations was 9.3 (?60.7 to +79.4) mL/kg/min (mean and 95% confidence interval). The mean (mL/kg/min) of the differences of LiDCO–NICO was 1.11 × NICO. The relative error was 2.4±24.7%. As CO increased, the relative difference between the methods also increased. Conclusions: The NICO is a viable non‐invasive method for CO determination in the dog and compares well with the LiDCO.  相似文献   

2.
OBJECTIVE: To determine the cardiopulmonary effects of increasing doses of dopamine, dobutamine, epinephrine, and phenylephrine and measure plasma concentrations of norepinephrine, epinephrine, and dopamine in cats anesthetized with isoflurane. ANIMALS: 6 healthy adult cats. PROCEDURES: Each cat was anesthetized with isoflurane (1.5 X minimum alveolar concentration) on 4 occasions. Cardiopulmonary measurements were obtained after a 30-minute stabilization period; 20 minutes after the start of each infusion dose; and 30, 60, and 90 minutes after the infusion was discontinued. Cats received 5 progressively increasing infusions of epinephrine or phenylephrine (0.125, 0.25, 0.5, 1, and 2 microg/kg/min) or dobutamine or dopamine (2.5, 5, 10, 15, and 20 microg/kg/min). The order of treatment was randomly allocated. Results-All 4 treatments increased oxygen delivery. Heart rate (HR) increased during administration of all drugs except phenylephrine, and mean arterial pressure increased during administration of all drugs except dobutamine. A progressive metabolic acidosis was detected, but whole-blood lactate concentration only increased during administration of epinephrine and dobutamine. Systemic vascular resistance index increased during administration of phenylephrine, decreased during administration of dobutamine, and remained unchanged during administration of dopamine and epinephrine. A positive inotropic effect was detected with all treatments. CONCLUSIONS AND CLINICAL RELEVANCE: During anesthesia in cats, administration of dopamine, dobutamine, and epinephrine may be useful for increasing cardiac output, with dopamine having the most useful effects. Administration of phenylephrine increased cardiac and systemic vascular resistance indexes with minimal effect on HR and may be useful for increasing mean arterial pressure without increasing HR.  相似文献   

3.
OBJECTIVE: To evaluate the dose-related cardiovascular and urine output (UrO) effects of dopamine hydrochloride and dobutamine hydrochloride, administered individually and in combination at various ratios, and identify individual doses that achieve target mean arterial blood pressure (MAP; 70 mm Hg) and cardiac index (CI; 150 mL/kg/min) in dogs during deep isoflurane anesthesia. ANIMALS: 10 young clinically normal dogs. PROCEDURES: Following isoflurane equilibration at a baseline MAP of 50 mm Hg on 3 occasions, dogs randomly received IV administration of dopamine (3, 7, 10, 15, and 20 microg/kg/min), dobutamine (1, 2, 4, 6, and 8 microg/kg/min), and dopamine-dobutamine combinations (3.5:1, 3.5:4, 7:2, 14:1, and 14:4 microg/kg/min) in a crossover study. Selected cardiovascular and UrO effects were determined following 20-minute infusions at each dose. RESULTS: Dopamine caused significant dose-dependent responses and achieved target MAP and CI at 7 microg/kg/min; dobutamine at 2 microg/kg/min significantly affected only CI values. At any dose, dopamine significantly affected UrO, whereas dobutamine did not. Target MAP and CI values were achieved with a dopamine-dobutamine combination at 7:2 microg/kg/min; a dopamine-related dose response for MAP and dopamine- and dobutamine-related dose responses for CI were identified. Changes in UrO were associated with dopamine only. CONCLUSIONS AND CLINICAL RELEVANCE: In isoflurane-anesthetized dogs, a guideline dose for dopamine of 7 microg/kg/min is suggested; dobutamine alone did not improve MAP. Data regarding cardiovascular and UrO effects indicated that the combination of dopamine and dobutamine did not provide greater benefit than use of dopamine alone in dogs.  相似文献   

4.
OBJECTIVES: To determine agreement of cardiac output measured by use of lithium dilution cardiac output (LiDCO) and thermodilution cardiac output (TDCO) techniques in dogs and to determine agreement of low- and high-dose LiDCO with TDCO. ANIMALS: 10 dogs (7 males, 3 females). PROCEDURE: Cardiac output was measured in anesthetized dogs by use of LiDCO and TDCO techniques. Four rates of cardiac output were induced by occlusion of the caudal vena cava, changes in depth of anesthesia, or administration of dobutamine. Lithium dilution cardiac output was performed, using 2 doses of lithium chloride (low and high dose). Each rate of cardiac output allowed 4 comparisons between LiDCO and TDCO. RESULTS: 160 comparisons were determined of which 68 were excluded. The remaining 92 comparisons had values ranging from 1.10 to 12.80 L/min. Intraclass correlation coefficient (ICC) between low-dose LiDCO and TDCO was 0.9898 and between high-dose LiDCO and TDCO was 0.9896. When all LiDCO determinations were pooled, ICC was 0.9894. For determinations of cardiac output < 5.0 L/min, ICC was 0.9730. Mean +/- SD of the differences of TDCO minus LiDCO for all measurements was -0.084+/-0.465 L/min, and mean of TDCO minus LiDCO for cardiac outputs < 5.0 L/min was -0.002+/-0.245 L/min. CONCLUSIONS AND CLINICAL RELEVANCE: The LiDCO technique is a suitable substitute for TDCO to measure cardiac output in dogs. Use of LiDCO eliminates the need for catheterization of a pulmonary artery and could increase use of cardiac output monitoring, which may improve management of cardiovascularly unstable animals.  相似文献   

5.
OBJECTIVE: To assess the suitability of lithium dilution as a method for measuring cardiac output in anesthetized horses, compared with thermodilution and transesophageal Doppler echocardiography. ANIMALS: 6 horses (3 Thoroughbreds, 3 crossbreeds). PROCEDURE: Cardiac output was measured in 6 anesthetized horses as lithium dilution cardiac output (LiDCO), thermodilution cardiac output (TDCO), and transesophageal Doppler echocardiographic cardiac output (DopplerCO). For the LiDCO measurements, lithium chloride was administered i.v., and cardiac output was derived from the arterial lithium dilution curve. Sodium nitroprusside, phenylephrine hydrochloride, and dobutamine hydrochloride were used to alter cardiac output. Experiments were divided into 4 periods. During each period, 3 LiDCO measurements, 3 DopplerCO measurements, and 3 sets of 3 TDCO measurements were obtained. RESULTS: 70 comparisons were made between LiDCO, DopplerCO, and triplicate TDCO measurements over a range of 10 to 43 L/min. The mean (+/- SD) of the differences of LiDCO - TDCO was -0.86 +/- 2.80 L/min; LiDCO = -1.90 + 1.05 TDCO (r = 0.94). The mean of the differences of DopplerCO - TDCO was 1.82 +/- 2.67 L/min; DopplerCO = 2.36 + 0.98 TDCO (r = 0.94). The mean of the differences of LiDCO - DopplerCO was -2.68 +/- 3.01 L/min; LiDCO = -2.53 + 0.99 DopplerCO (r = 0.93). CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that lithium dilution is a suitable method for measuring cardiac output in horses. As well as being accurate, it avoids the need for pulmonary artery catheterization and is quick and safe to use. Monitoring cardiac output during anesthesia in horses may help reduce the high anesthetic mortality in this species.  相似文献   

6.
Cardiopulmonary effects of halothane anesthesia in cats   总被引:2,自引:0,他引:2  
The cardiopulmonary effects of 2 planes of halothane anesthesia (halothane end-tidal concentrations of 1.78% [light anesthesia] and 2.75% [deep anesthesia]) and 2 ventilatory modes (spontaneous ventilation [SV] or mechanically controlled ventilation [CV]) were studied in 8 cats. Anesthesia was induced and maintained with halothane in O2 only, and each cat was administered each treatment according to a Latin square design. Cardiac output, arterial blood pressure, pulmonary arterial pressure, heart rate, respiratory frequency, and PaO2, PaCO2, and pH were measured during each treatment. Stroke volume, cardiac index, and total peripheral resistance were calculated. A probability value of less than 5% was accepted as significant. In the cats, cardiac output, cardiac index, and stroke volume were reduced by deep anesthesia and CV, although only the reduction attributable to CV was significant. Systemic arterial pressure was significantly reduced by use of deep anesthesia and CV. Respiratory frequency was significantly lower during CV than during SV. Arterial PO2 was significantly decreased at the deeper plan of anesthesia, compared with the lighter plane. At the deeper plane of anesthesia, arterial PCO2 and pulmonary arterial pressure were significantly lower during CV than during SV. The deeper plane of halothane anesthesia depressed cardiopulmonary function in these cats, resulting in hypotension and considerable hypercapnia. Compared with SV, CV significantly reduced circulatory variables and should be used with care in cats. Arterial blood pressure was judged to be more useful for assessing anesthetic depth than was heart rate or respiratory frequency.  相似文献   

7.
The cardiac arrhythmogenic infusion rate of epinephrine, dopamine, and dobutamine in vagotomized dogs was determined during thiamylal-halothane and pentobarbital anesthesia. Epinephrine, dopamine, and dobutamine were administered until 4 or more ventricular arrhythmias on duplicated trials were produced or until a predetermined maximum infusion rate was attained. The mean ventricular arrhythmogenic infusion rates (micrograms X kg-1 X min-1) during thiamylal-halothane anesthesia were: epinephrine, 0.57 +/- 0.24; dopamine, 23.7 +/- 8.26; and dobutamine, 10.21 +/- 3.54. Few arrhythmias were produced at the maximum administered infusion rate during pentobarbital anesthesia (2 of 6 with epinephrine, 3 of 6 with dopamine, and 0 of 6 administered dobutamine). Heart rate and blood pressure increased progressively with increasing infusion rates for all 3 catecholamines during thiamylal-halothane anesthesia. Heart rate and blood pressure changes were similar during pentobarbital anesthesia except for blood pressure changes during dobutamine infusion.  相似文献   

8.
OBJECTIVE: To evaluate the use of a lithium dilution cardiac output (LiDCO) technique for measurement of CO and determine the agreement between LiDCO and thermodilution CO (TDCO) values in anesthetized cats. ANIMALS: 6 mature cats. PROCEDURE: Cardiac output in isoflurane-anesthetized cats was measured via each technique. To induce different rates of CO in each cat, anesthesia was maintained at > 1.5X end-tidal minimum alveolar concentration (MAC) of isoflurane and at 1.3X end-tidal isoflurane MAC with or without administration of dobutamine (1 to 3 microg/kg/min, i.v.). At least 2 comparisons between LiDCO and TDCO values were made at each CO rate. The TDCO indicator was 1.5 mL of 5% dextrose at room temperature; with the LiDCO technique, each cat received 0.005 mmol of lithium/kg (concentration, 0.015 mmol/mL). Serum lithium concentrations were measured prior to the first and following the last CO determination. RESULTS: 35 of 47 recorded comparisons were analyzed; via linear regression analysis (LiDCO vs TDCO values), the coefficient of determination was 0.91. The mean bias (TDCO-LiDCO) was -4 mL/kg/min (limits of agreement, -35.8 to + 27.2 mL/kg/min). The concordance coefficient was 0.94. After the last CO determination, serum lithium concentration was < 0.1 mmol/L in each cat. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated a strong relationship and good agreement between LiDCO and TDCO values; the LiDCO method appears to be a practical, relatively noninvasive method for measurement of CO in anesthetized cats.  相似文献   

9.
OBJECTIVE: To compare cardiac output (CO) measured by use of the partial carbon dioxide rebreathing method (NICO) or lithium dilution method (LiDCO) in anesthetized foals. SAMPLE POPULATION: Data reported in 2 other studies for 18 neonatal foals that weighed 32 to 61 kg. PROCEDURES: Foals were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, end-tidal isoflurane and carbon dioxide concentrations, and CO. Various COs were achieved by administration of dobutamine, norepinephrine, vasopressin, phenylephrine, and isoflurane to allow comparisons between LiDCO and NICO methods. Measurements were obtained in duplicate or triplicate. We allowed 2 minutes between measurements for LiDCO and 3 minutes for NICO after achieving a stable hemodynamic plane for at least 10 to 15 minutes at each CO. RESULTS: 217 comparisons were made. Correlation (r = 0.77) was good between the 2 methods for all determinations. Mean +/- SD measurements of cardiac index for all comparisons with the LiDCO and NICO methods were 138 +/- 62 mL/kg/min (range, 40 to 381 mL/kg/min) and 154 +/- 55 mL/kg/min (range, 54 to 358 mL/kg/min), respectively. Mean difference (bias) between LiDCO and NICO measurements was -17.3 mL/kg/min with a precision (1.96 x SD) of 114 mL/kg/min (range, -131.3 to 96.7). Mean of the differences of LiDCO and NICO measurements was 4.37 + (0.87 x NICO value). CONCLUSIONS AND CLINICAL RELEVANCE: The NICO method is a viable, noninvasive method for determination of CO in neonatal foals with normal respiratory function. It compares well with the more invasive LiDCO method.  相似文献   

10.
OBJECTIVE: To measure cardiac output in healthy female anesthetized dogs by use of lithium dilution cardiac output and determine whether changes in mean arterial pressure were caused by changes in cardiac output or systemic vascular resistance. DESIGN: Prospective clinical study. ANIMALS: 20 healthy female dogs. PROCEDURE: Dogs were anesthetized for ovariohysterectomy. Ten dogs breathed spontaneously throughout anesthesia, and 10 dogs received intermittent positive-pressure ventilation. Cardiovascular and respiratory measurements, including lithium dilution cardiac output, were performed during anesthesia and surgery. RESULTS: Mean arterial pressure and systemic vascular resistance index were low after induction of anesthesia and just prior to surgery and increased significantly after surgery began. Cardiac index (cardiac output indexed to body surface area) did not change significantly throughout anesthesia and surgery. CONCLUSIONS AND CLINICAL RELEVANCE: Results provide baseline data for cardiac output and cardiac index measurements during clinical anesthesia and surgery in dogs. Changes in mean arterial pressure do not necessarily reflect corresponding changes in cardiac index.  相似文献   

11.
Objective – To compare the determination of cardiac output (CO) via arterial pulse pressure waveform analysis (FloTrac/Vigileo) versus lithium dilution method. Design – Prospective study. Setting – University teaching hospital. Animals – Six adult dogs. Interventions – Dogs were instrumented for CO determinations using lithium dilution (LiDCO) and FloTrac/Vigileo methods. Direct blood pressure, heart rate, arterial blood gases, and end‐tidal isoflurane (ETIso) and CO2 concentrations were measured throughout the study while CO was manipulated with different depth of anesthesia and rapid administration of isotonic crystalloids at 60 mL/kg/h. Measurements and Main Results – Baseline CO measurements were obtained at 1.3% ETIso and were lowered by 3% ETIso. Measurements were obtained in duplicate or triplicate with LiDCO and averaged for comparison with corresponding values measured continuously with the FloTrac/Vigileo method. For 30 comparisons between methods, a mean bias of ?100 mL/kg/min and 95% limits of agreement between ?311 and +112 mL/kg/min (212 mL/kg/min) was determined. The mean (mL/kg/min) of the differences of LiDCO?Vigileo=62.0402+?0.8383 × Vigileo, and the correlation coefficient (r) between the 2 methods 0.70 for all CO determinations. The repeatability coefficients for the individual LiDCO and FloTrac/Vigileo methods were 187 and 400 mL/kg/min, respectively. Mean LiDCO and FloTrac/Vigileo values from all measurements were 145 ± 68 mL/kg/min (range, 64–354) and 244 ± 144 mL/kg/min (range, 89–624), respectively. The overall mean relative error was 48 ± 14%. Conclusion – The FloTrac/Vigileo overestimated CO values compared with LiDCO and the relative error was high, which makes this method unreliable for use in dogs.  相似文献   

12.
OBJECTIVE: To determine the cardiovascular effects of dopamine and dobutamine infusions during nor-movolemia, hypovolemia (HV) through blood loss of 10 mL/kg (HV(10)), further loss to 25 mL/kg (HV(25)), and volume replacement (VR) in isoflurane-anesthetized dogs. ANIMALS: 7 healthy young dogs. PROCEDURES: Dogs were anesthetized with isoflurane 2 times (3 weeks apart). Cardiovascular measurements were obtained for each volume state. The cardiac index (CI) determined by the lithium dilution technique was compared with CI assessed by the arterial pulse contour technique. At each volume state, random treatment with dobutamine or dopamine was assessed (CI by the arterial pulse contour technique). Ten-minute treatments with 3 and 6 microg of dobutamine/kg/min or 7 and 14 microg of dopamine/kg/min (low and high doses, respectively) were administered sequentially. Differences from baseline were determined for volume, drug, and dose effects. RESULTS: Significant proportional changes in blood pressure (BP), stroke index (SI), and CI were evident with changes in volume state. Systemic vascular resistance (SVR) decreased after VR. Dobutamine induced little change in BP; increased heart rate (HR), SI, and CI; and decreased SVR (high dose). Dopamine increased BP and SI, did not change CI, and increased SVR (high dose). The arterial pulse contour technique underestimated changes in CI associated with volume changes. CONCLUSIONS AND CLINICAL RELEVANCE: Isoflurane eliminates clinically obvious compensatory increases in HR during HV. Dopamine is suitable for temporary management of blood loss in isoflurane-anesthetized dogs. Dobutamine increased CI without an associated improvement in BP. The arterial pulse contour monitor should be recalibrated when volume status changes.  相似文献   

13.
ObjectivePrevious studies showed an influence of xylazine on the LiDCO sensor in vitro and in standing horses, but did not prove that this interaction caused error in LiDCO measurements. Therefore, agreement of cardiac output (CO) measurements by LiDCO and bolus-thermodilution (BTD) was determined in horses receiving xylazine infusions.Study designProspective, experimental study.AnimalsEight Warmblood horses.MethodsAll horses were premedicated with xylazine. Anaesthesia was induced with midazolam and ketamine and was maintained with isoflurane in oxygen. During six hours of anaesthesia CO measurements and blood samples were taken before, during and after a 60 minute period of xylazine infusion. Pairs of LiDCO and bolus thermo-dilution (BTD) measurements of CO were performed. Sensor voltages exposed to blood and saline were measured before, during and after xylazine infusion and compared using Bland-Altman method of agreement with corrections for repeated measures.ResultsThe CO values (mean ± SD) before xylazine were 34.8 ± 7.3 and 36.4 ± 8.1 L minute−1 for BTD and LiDCO, respectively. After starting the xylazine infusion, the CO values for BTD decreased to 27.5 ± 6.1 L minute−1 whereas CO values measured by LiDCO increased to 54.7 ± 18.4 L minute−1. One hour after discontinuing xylazine infusion, CO values were 33 ± 6.7 and 36.5 ±11.9 L minute−1 for BTD and LiDCO, respectively. The difference between saline and blood exposed sensor voltages decreased during xylazine infusion and these differences were positive numbers before but negative during the infusion. There were correlations between xylazine plasma concentrations, CO differences and sensor voltage differences (saline – blood).Conclusions and clinical relevanceThis study proved that xylazine infusion caused concentration dependent bias in LiDCO measurements leading to an overestimation of readings. Sensor voltage differences (saline – blood) may become valuable clinical tool to predict drug-sensor interactions.  相似文献   

14.
OBJECTIVES: To quantify direction and velocity of blood flow in hepatic veins in dogs under different hemodynamic conditions by use of pulsed-wave Doppler ultrasonography. ANIMALS: 10 healthy dogs. PROCEDURE: Dogs were anesthetized, and venous flow velocities in the quadrate lobe were measured. Arterial blood pressure, right atrial pressure, pulmonary artery pressure, and cardiac output were measured simultaneously. The timing of each waveform during the cardiac cycle was used to identify velocity profiles. Peak waveform velocities were measured during conditions of light anesthesia with isoflurane (baseline; period 1), cardiovascular depression following administration of high-dose isoflurane and esmolol i.v. (period 2), cardiovascular depression with crystalloid volume expansion (period 3), and high cardiac output induced with dobutamine (period 4). Hemodynamic measurements and maximum waveform velocities were compared among the 4 periods by use of an ANOVA and univariate and multivariate linear regression. RESULTS: During each study period, 4 distinct, low-velocity waves were identified. Mean velocities recorded during period 1 were as follows: retrograde atrial contraction a-wave, 7.3 cm/s; antegrade systolic S-wave, 15.0 cm/s; retrograde venous return v-wave, 2.7 cm/s; and antegrade diastolic D-wave, 11.4 cm/s. Mean S:D ratio was 1.27. During periods 3 and 4, S-wave velocity increased; D-wave velocity was highest during period 4. CONCLUSIONS AND CLINICAL RELEVANCE: Consistent hepatic venous velocity profiles were observed in healthy dogs under different hemodynamic conditions. These findings provide baseline values that may be useful in evaluating clinical cases, but further study involving healthy, awake dogs and dogs with cardiac and hepatic diseases is required.  相似文献   

15.
The aim of this study was to determine whether dobutamine, dopamine, or milrinone (a phosphodiesterase [PDE] III inhibitor) would support cardiac function that had been attenuated by administration of the beta-blocker, carvedilol (0.2, 0.4, or 0.8 mg/kg). Hemodynamic and cardiac parameters including the heart rate (HR), left-ventricular fractional shortening (FS), and arterial pressure were measured in six healthy dogs without cardiac disease. Carvedilol did not affect FS or arterial pressure, but decreased the HR significantly. The positive inotropic and chronotropic responses to dobutamine and dopamine were attenuated by carvedilol, whereas arterial pressure was unaffected. Milrinone did not affect the HR and decreased arterial pressure, whereas FS was significantly greater both in the control and carvedilol-treated groups. Although milrinone affect the negative chronotropic effects of carvedilol, milrinone increased FS and prevented the decrease in arterial pressure. These results suggest that inhibition of PDE III preserves cardiac contractility and hemodynamic function in the presence of carvedilol.  相似文献   

16.
Objective – To compare cardiac output (CO) measured by use of lithium dilution (LiDCO) and ultrasound velocity dilution (UDCO) in conditions of high, intermediate, and low CO in anesthetized foals.
Design – Original prospective study.
Setting – University teaching hospital.
Animals – Six foals 1–3 days of age (38–45 kg).
Interventions – Neonatal foals were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, and CO. The CO was measured by use of LiDCO and UDCO techniques. Measurements were obtained from each foal at baseline and during low, intermediate, and high CO states. Measurements were converted to cardiac index (cardiac index=CO/body weight) values for statistical analysis. Agreement between the 2 methods was determined using Bland and Altman analysis and concordance correlation coefficients.
Measurements and Main Results – LiDCO determinations of CO ranged between 4.0 and 14.0 L/min resulting in cardiac index ranging between 75.5 and 310 mL/kg/min. There was no significant effect of blood pressure variation on bias or relative bias ( P =0.62 and 0.93, respectively). The mean bias and relative bias of UDCO (±SD) compared with LiDCO were −20.1±39.2 mL/kg/min and −7.7±23.4%, respectively. Concordance correlation coefficient between LiDCO and UDCO was 0.833.
Conclusions – When compared with LiDCO, the UDCO technique has acceptable clinical utility for measuring CO in healthy anesthetized newborn foals.  相似文献   

17.
The precision and accuracy of an indirect oscillometric blood pressure measurement technique (Dinamap 8100) was assessed in 11 anesthetized Beagle dogs weighing 8 to 11.5 kg. Direct blood pressure measurements were made by catheterization of the lingual artery, and simultaneous indirect measurements were determined by placing a cuff over the median artery (midradial area). Blood pressure measurements at 2 different planes of anesthesia (light and deep) were recorded in triplicate. At a light plane of anesthesia, the Dinamap 8100 underestimated diastolic and mean arterial pressure, and at a deep anesthetic plane overestimated systolic pressure. The indirect technique had good repeatability of systolic pressures. Regression analysis for the 2 techniques showed excellent correlation (r = 0.93). The results indicate that the indirect oscillometric blood pressure measurement technique provides a good estimate of systolic, diastolic, and mean arterial pressure in dogs weighing 8-11.5 kg.  相似文献   

18.
Objective – To determine if metatarsal artery pressure (COmet) is comparable to femoral artery pressure (COfem) as the input for transpulmonary pulse contour analysis (PiCCO) in anesthetized dogs, using the lithium dilution method (LiDCO) as a standard for cardiac output (CO) measurement. Design – Prospective randomized study. Setting – University research laboratory. Animals – Ten healthy purpose‐bred mixed breed dogs were anesthetized and instrumented to measure direct blood pressure, heart rate, arterial blood gases, and CO. Interventions – The CO was measured using LiDCO and PiCCO techniques. Animals had their right femoral and left distal metatarsal artery catheterized for proximal (COfem) and distal (COmet) PiCCO analysis, respectively. Measurements were obtained from each animal during low, normal, and high CO states by changing amount of inhalant anesthetics and heart rate. Measurements were converted to CO indexed to body weigh (CIBW=CO/kg) for statistical analysis. Agreement was determined using Bland and Altman analysis and concordance correlation coefficients. Measurements and Main Results – Thirty paired measurements were taken. The LiDCO CIBW (± SD) was 68.7 ± 30.3, 176.0 ± 53.0, and 211.1 ± 76.5 mL/kg/min during low, normal, and high CO states, respectively. There was a significant effect of CIBW state on bias and relative bias with COmet (P<0.001 and P=0.003, respectively). Bias of the COmet method (± SD) was ?116.6 (70.5), 20.1(76.4), and 91.3 (92.0) mL/kg/min at low, normal, and high CIBW, respectively. Bias of the COfem (± SD) was ?20.3 (19.0), 8.6 (70.9), and ?2.9 (83.0) mL/kg/min at low, normal, and high CIBW, respectively. The mean relative bias for COfem was ?6.7 ± 44% (limits of agreements: ?81.2 to 67.9%). Conclusion – Compared with lithium dilution, the pulse contour analysis provides a good estimation of CO, but requires femoral artery catheterization in anesthetized dogs.  相似文献   

19.
OBJECTIVES: To assess the effect of increasing serum lithium concentrations on lithium dilution cardiac output (LiDCO) determination and to determine the ability to predict the serum lithium concentration from the cumulative lithium chloride dosage. ANIMALS: 10 dogs (7 males, 3 females). PROCEDURE: Cardiac output (CO) was determined in anesthetized dogs by measuring LiDCO and thermodilution cardiac output (TDCO). The effect of the serum lithium concentration on LiDCO was assessed by observing the agreement between TDCO and LiDCO at various serum lithium concentrations. Also, cumulative lithium chloride dosage was compared with the corresponding serum lithium concentrations. RESULTS: 44 paired observations were used. The linear regression analysis for the effect of the serum lithium concentration on the agreement between TDCO and LiDCO revealed a slope of -1.530 (95% confidence interval [CI], -2.388 to -0.671) and a y-intercept of 0.011 (r2 = 0.235). The linear regression analysis for the effect of the cumulative lithium chloride dosage on the serum lithium concentration revealed a slope of 2.291 (95% CI, 2.153 to 2.429) and a y-intercept of 0.008 (r2 = 0.969). CONCLUSIONS AND CLINICAL RELEVANCE: The LiDCO measurement increased slightly as the serum lithium concentration increased. This error was not clinically relevant and was minimal at a serum lithium concentration of 0.1 mmol/L and modest at a concentration of 0.4 mmol/L. The serum lithium concentration can be reliably predicted from the cumulative lithium dosage if lithium chloride is administered often within a short period.  相似文献   

20.
Minimally invasive cardiac output was determined using transthoracic bioimpedance (BICO), partial carbon dioxide rebreathing (NICO) and transesophageal Doppler echocardiography (TEECO) and compared to thermodilution (TDCO) in 6 beagle dogs. The dogs were 2 years old, weigh between 9.1-13.0 kg and were anesthetized with nitrous oxide-oxygen-sevoflurane. All dogs were administered a neuromuscular blocking drug and artificially ventilated during anesthesia. Thirty paired measurements of TDCO and each non-invasive method were collected during low, intermediate, and high values of cardiac output achieved by varying the depth of anesthesia and the administration of dobutamine. Cardiac output values ranged from 1.10-2.50 L/min for BICO compared to 0.81-4.88 L/min for TDCO; 0.70-2.60 L/min for NICO compared to 0.89-4.45 L/min for TDCO; and 0.59-4.37 L/min for TEECO compared to 0.57-4.15 L/min for TDCO. The limits of agreement and percentage error were -0.58 +/- 1.56 L/min and +/- 75.4% for BICO, -1.04 +/- 1.08 L/min and +/- 56.0% for NICO, and 0.03 +/- 0.26 L/min and +/- 12.3% for TEECO compared to TDCO. In conclusion, TEECO provided the best agreement to TDCO in sevoflurane anesthetized beagle dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号