首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate production and reproductive structure development in cotton (Gossypium hirsutum) depends on light availability, a determinant of cotton yield. Light availability is decreased by cloud cover or self-shading when cotton plants are grown in dense populations. The objective of this study was to evaluate the effects of shading during cotton growth and its interactions with plant row spacings on yield and fiber quality. Three independent experiments were conducted as follows: in Paranapanema (23°39′S; 48°58′W), cotton was planted in November in row spacings of 0.45, 0.75 and 0.96 m; in Primavera do Leste (15°33′S; 54°11′W), planting was in January with at row spacings of 0.45 and 0.76 m; and in Chapadão do Céu (18°38′S; 52°40′W), cotton was planted in February in rows spaced at 0.45 and 0.90 m. Plants were exposed to shading during the phenological stages B1 (floral bud), F1 (early flowering), PF (peak flowering) and 3OB (fruit maturity). In addition, there was one treatment without shade. There were no interactions of crop spacing with shading. Increasing plant population and shading both decreased net photosynthetic rate. The number of bolls m−2 increased with higher plant populations only when planting was delayed, and were not affected by shading. When cotton was planted in November and January, higher yields were obtained at 0.75/0.76 m, but when planting was delayed to February, 0.45 m resulted in higher yields with no effect on fiber quality. Shading for eight or ten days decreases boll weight and yields, but do not affect fiber quality. Cotton yield is the most decreased when shading occurs during flowering. These results may be used to build management strategies to minimize shading effects by adjusting cotton sowing time and plant density, by selecting cultivars with increased shade tolerance and by choosing an adequate irrigation period to improve yield.  相似文献   

2.
White lupin (Lupinus albus) and narrow-leafed lupin (L. angustifolius) have special interest as high-protein feed crops but their cultivation is limited by low grain yields. This study aimed to support breeding programs targeting Italy or other climatically variable south-European regions by investigating within-species adaptation patterns across contrasting Italian environments. An additional aim was comparing species for yielding ability. Eight narrow-leafed and six white lupin cultivars featuring different origin, phenological type (Mediterranean in both species; winter in white lupin; spring in narrow-leafed lupin) and plant architecture (determinate or indeterminate in both species; tall or dwarf in white lupin) were evaluated in a Mediterranean and a subcontinental-climate site under autumn and late-winter sowing. Additive main effects and multiplicative interaction was preferable to joint regression for modeling yield responses. In both species, cross-over GE interaction was observed (P < 0.05), autumn-sown Mediterranean and subcontinental environments were the most-contrasting for GE effects, and widely adapted material included cultivars of Mediterranean phenological type with indeterminate growth. Material with determinate growth was not among the best-yielding entries in any environment, whereas a dwarf winter-type white lupin entry was specifically adapted to autumn-sown subcontinental environments. White lupin displayed larger genetic variation than narrow-leafed lupin for phenology and other traits. Relationships of morphophysiological traits with grain yield were environment-specific and were locally high for some white lupin traits (early flowering, long reproductive phase, high aerial biomass, low proportion of pod wall). White lupin exhibited higher yielding ability than narrow-leafed lupin in all environments but the late-winter sown Mediterranean one, when comparing locally top-yielding cultivars.  相似文献   

3.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   

4.
Organic spring wheat (Triticum aestivum L.) producers in the northern Great Plains use cultivars which have been bred for conventional management systems or heritage cultivars released before the widespread use of synthetic fertilizers and pesticides. To investigate the feasibility of organic wheat breeding and to determine common genetic parameters for each system, we used a random population of 79 F6-derived recombinant inbred sister lines from a cross between the Canadian hard red spring wheat cultivar AC Barrie and the CIMMYT derived cultivar Attila. The population, including the parents, was grown on conventionally and organically managed land for 3 years. Heritability estimates differed between systems for 6 of the 14 traits measured, including spikes m−2, plant height, test weight, 1,000 kernel weight, grain protein, and days to anthesis. Direct selection in each management system (10% selection intensity) resulted in 50% or fewer lines selected in common for nine traits, including grain yield, grain protein, spikes m−2, and grain fill duration. The results of this study suggest that indirect selection (in conventionally managed trials) of spring wheat destined for organically managed production would not result in the advance of the best possible lines in a breeding program. This implies that breeding spring wheat specific to organic agriculture should be conducted on organically managed land.  相似文献   

5.
Fourteen durum wheat (Triticum durum Desf.) cultivars introduced in Italy between 1900 and 1990 were grown for 2 years (2001 and 2002) at Foggia (Italy) in field trials with three agronomic treatments in order to assess the genetic improvement in agronomic and qualitative parameters. The traits were measured in the field to describe the biomass production and its partitioning to the grain, the phenological behaviours and the photosynthetic properties. Grain protein content, alveograph's W-index, carotenoid pigments content, ash content and the glutenin and gliadin subunit compositions were then measured to assess grain quality. The results showed that differences in agronomic traits among durum wheat cultivars released in Italy in the last century are generally similar to differences observed in hexaploid wheat, with an annual genetic yield gain of 19.9 kg ha−1 year−1. The genetic gain was most clearly associated with a higher kernels number m−2 indicating a larger grain-sink size and a higher number of spikes m−2. The gradual reduction in plant height associated with an increased harvest index has represented the main breeding goal with an effect on the sink capacity and on the biomass partitioning. The progressive incorporation into recent cultivars, of favourable alleles (7 + 8 glutenin subunit composition) coding for superior quality subunits reflects the improvement in pasta making quality of the recent genotypes.  相似文献   

6.
Accumulations of high molecular weight glutenin subunits (HMW‐GS) and glutenin macropolymer (GMP) in wheat grains are important indicators of grain quality. Two wheat cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading intolerant) which contains the same subunit pairs of 7 + 8 and 2 + 12, were used to evaluate the impacts of shading on HMW‐GS accumulation and GMP concentration in the grain. Three shading levels were implemented from jointing to maturity, i.e. S1, S2 and S3, in which the plants received 8 %, 15 % and 23 % less radiation of the control (S0), respectively. The initial formation of HMW‐GS was pre‐dated by shading. The rapid HMW‐GS accumulation duration was shortened, and the accumulation rate during late grain filling period was lowered in the two relatively severe shaded treatments (S2 & S3). Thus, the total HMW‐GS accumulation in single grain at maturity was lower in S2 and S3 than in the control (S0). However, concentrations of HMW‐GS and GMP at maturity increased because of the reduced single grain weight in S2 and S3, as compared to S0. In contrast, the low density shading (S1) prolonged the rapid accumulation duration of HMW‐GS, hence increased the accumulation and concentration of HMW‐GS in the grains. Consequently, S1 reduced falling number and SDS‐sedimentation volume, while shortened dough development time (DDT) and dough stability time (DST). In contrast, S2 and S3 increased falling number, wet‐gluten concentration and SDS‐sedimentation volume, and lengthened the DDT and DST. In addition, the fluctuations in accumulations of HMW‐GS and GMP and most quality traits because of shading in Yangmai 158 were less than Yangmai 11. The interrelations between HMW‐GS accumulation, GMP concentration and quality of grain and dough were further discussed.  相似文献   

7.
Barley (Hordeum vulgare L.) is an important winter cereal crop grown in the semiarid Mediterranean, where late‐terminal drought stress during grain filling has recently become more common. The objectives of this study were to investigate the growth performance and grain yield of four barley cultivars under late‐terminal drought stress under both glasshouse and field conditions. At grain filling, four barley cultivars (Rum, ACSAD176, Athroh and Yarmouk) were exposed to three watering treatments: (1) well‐watered [soil maintained at 75 % field capacity (FC)], (2) mild drought stress at 50 % FC, (3) severe drought stress at 25 % FC in the glasshouse experiment and (1) well‐watered (irrigated once a week), (2) mild drought (irrigated once every 2 weeks), (3) severe drought (non‐irrigated; rainfed) in the field. As drought stress severity increased, gross photosynthetic rate, water potential, plant height, grain filling duration, spike number per plant, grain number per spike, 1000‐grain weight, straw yield, grain yield and harvest index decreased. In the glasshouse experiment, the six‐row barley cultivars (Rum, ACSAD176, and Athroh) had higher grain yield than the two‐row barley cultivar (Yarmouk), but the difference was not significant among the six‐row cultivars under all treatments. In the field experiment, Rum had the highest grain yield among all cultivars under the mild drought stress treatment. The two‐row cultivar (Yarmouk) had the lowest grain yield. In general, the traditional cultivar Rum had either similar or higher grain yield than the other three cultivars under all treatments. However, the yield response to drought differed between the cultivars. Those, Rum and ACSAD176, that were capable of maintaining a higher proportion of their spikes and grains per spike during drought also maintained a higher proportion of their yield compared with those in well‐watered treatment. In conclusion, cultivar differences in grain yield were related to spike number per plant and grain number per spike, but not days to heading or grain filling duration.  相似文献   

8.
The yield potential of 60 spring barley varieties was examined under controlled drought and natural conditions in the years 2011–2013. The studied varieties were genotyped with the 1536‐SNP barley oligonucleotide assay. In experiments with controlled drought conditions, the grain yield, 1,000‐grain weight, number of productive tillers and length of the main stem were measured. Physicochemical properties such as the specific surface area, water adsorption energy, fractal dimension and nanopore radius of the plant leaves were determined and correlated with yield‐forming traits. Field trials were conducted over 3 years at 14 locations, where along with the yield‐related traits, monthly rainfall and average temperature were monitored. Five varieties of high yield and five varieties relatively stable under both semi‐controlled and natural conditions were distinguished. The yield‐related traits observed in various locations were related to environmental variables relevant to water availability. The sum of the rainfall in April and May was negatively correlated with the 1,000‐grain weight and positively with the plant height. Positive relationships were found between plant height and temperatures in June and July. Five markers detected earlier as linked to the quantitative trait loci in the mapping populations were identified to have a coherent effect among varieties of various pedigree.  相似文献   

9.
Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat ( Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22 % shading treatment (S1), while 16.2 % and 25.8 % under 33 % shading (S2) in Yangmai 158 and Yangmai 11 respectively. The reduction in LAI was 6.0 % and 9.2 % (S1), and 18.2 % and 22.2 % (S2) in Yangmai 158 and Yangmai 11 respectively. However, decline in canopy apparent photosynthetic rate (CAP) was 15.0–22.9 % (S1) and 29.5–49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease in photosynthetic rate ( Pn ) of flag leaf was partially compensated by the increase in Pn of the third leaf from the top. In addition, an inconsistency between the low Pn and the high Chl content in flag leaf was observed at 30 DAA. This could be explained that more excitation energy was dispersed via the non-photochemical approaches in the photosystem II (PSII) of flag leaf after long-term shading.  相似文献   

10.
Thermometry and thermography are alternative methods used for measuring stomatal conductivity via transpirative cooling. However, the influence of mixed soil–plant information contained in thermal images compared to thermometric spot measurements on the measurement quality and relationships to agronomic traits remains unclear. To evaluate their respective influence, canopy temperature was measured simultaneously by two infrared thermometers (thermometry), which were oriented oblique to the plant canopy and mounted on a tractor, and a hand‐held, nadir oriented thermal camera (thermography) in irrigated and drought‐stressed spring barley cultivar trials in 2011. Canopy temperatures were separated from soil temperatures and extracted from the thermal images by matching thermal and RGB images. Thermometric measurements conducted at the beginning of shooting during a stable period of high radiation were more closely related to total plant biomass and straw yield at harvest than thermography under both irrigated and drought‐stressed conditions. Taking into account the results of this evaluation, thermometry was used for assessing the agronomic importance of stomatal sensitivity, the earliness of stomatal closure, of spring barley cultivars subjected to different water supply in 2013. In this year, 16 spring barley cultivars were grown under mild drought stress and rainfed conditions. A stomatal sensitivity index was derived relating canopy temperatures of the cultivars grown under rainfed and drought‐stressed conditions to each other. Under rainfed conditions, stomatal sensitivity was negatively related to grain protein yield with a coefficient of determination of R2 = .43. Under increasing terminal drought stress, positive regression slopes of stomatal sensitivity to grain yield, biomass yield and culms/m2 were observed with coefficients of determination amounting to R2 = .22, .31 and .36, respectively. Stomatal sensitivity negatively impacts agricultural production under well‐watered conditions, but maintains productivity under conditions of terminal drought.  相似文献   

11.
Breeders have seldom considered the selection for root traits during the genetic improvement in soybean. It is hypothesized that grain yield would be increased by the root function improvement, especially for the current cultivars. The objective of this grafting experiment was to determine the effect of record‐yield cultivars L14 or Z35 as rootstocks on agronomic traits of cultivars released in different decades. A total of 11 cultivars, released in different decades, were used to graft onto L14 or Z35 rootstocks. The agronomic traits were measured in the pot‐culture experiments. Grafting cultivars released in different decades onto L14 or Z35 rootstocks resulted in higher yield, 100‐seed mass and apparent harvest index as compared with those of non‐grafted or self‐grafted plants. Grain yield gain of cultivars grafted onto record‐yield cultivar rootstocks was 0.40 g/plant/year from 1966 to 2006, which was larger than that of non‐grafts and self‐grafts (0.27 g/plant/year). The yield of current cultivars should increase more if their root functions were improved.  相似文献   

12.
The biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.  相似文献   

13.
Barley landraces from the western Mediterranean area have not been thoroughly exploited by modern breeding. This study aims at assessing the agronomic value of a core collection of lines derived from landraces of Spanish origin and to compare them with sets of successful old and modern cultivars. The agronomic performance of a set of 175 barley genotypes, comprising 159 landrace‐derived lines and 26 cultivars, was evaluated in a series of 10 field trials, carried out over 3 years and several locations. The most relevant trait of the landraces was higher grain yield at low production sites than cultivars, which may be related with better ability to fill the grain under stressful conditions. On the other hand, lateness, excessive plant height and lodging were negative traits frequently found in the landraces. Large genotype‐by‐environment interaction (GEI) for grain yield was detected, related partly with differences between germplasm groups, probably indicating local adaptation. GEI was also associated with the interaction of heading time and powdery mildew resistance with temperature.  相似文献   

14.
Grain yield in wheat is dependent on photosynthate production and allocation. Light intensity is one of the main factors affecting photosynthate production and allocation, and grain yield. This study was conducted to determine whether cultivars varying in grain number per spike and grain weight respond differently to pre‐anthesis shading (PRE) and post‐anthesis shading (POST), and to characterize the responses in production and allocation of photosynthate, yield and yield components, and spike traits. Both PRE and POST caused a decrease in both dry matter (DM) accumulation and allocation to grain. Cultivar Lumai 22, which has a large spike and large grains, was more sensitive to either PRE or POST. PRE reduced photosynthate production and partitioning to the spike in Lumai 22 at anthesis. In contrast, PRE had little influence on these parameters in the small‐spike, small‐grain cultivar Yannong 15. POST reduced the partitioning to the grain, especially in Lumai 22, for which marked reductions in biomass and grain yield were found for both the PRE and POST treatments. Changes in yield components attributable to shading varied with cultivars. The number of spikes m?2 was not affected by either PRE or POST. Lumai 22 was more seriously affected by shading than Yannong 15 in terms of grain number per spike and weight per grain. The decreases in grain number or weight per spikelet in both the PRE and POST treatments took place mainly in the upper and basal spikelets, especially in Lumai 22. We concluded that the adaptability of the small‐spike, small‐grain cultivar Yannong 15 to either PRE or POST was much greater than that of the large‐spike, large‐grain cultivar Lumai 22 in terms of many characteristics closely related to grain yield. Hence, we suggest that, in areas where low light intensity often occurs, the small‐spike, small‐grain cultivar would be more likely to produce high, stable grain yields.  相似文献   

15.
Heat stress resulting from climate change and more frequent weather extremes is expected to negatively affect wheat yield. We evaluated the response of different spring wheat cultivars to a post‐anthesis high temperature episode and studied the relationship between different traits associated with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield in all cultivars. Significant variation was observed among cultivars in the reduction in average grain weight and grain dry matter yield under heat stress (up to 36 % and 45 %, respectively). The duration of the grain‐filling period was reduced by 3–12 days by the heat treatment. The reduction in the grain‐filling period was negatively correlated with grain nitrogen yield (r = ?0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water‐soluble carbohydrates (WSC) was not related to treatment effects on grain yield or grain weight. However, the treatment effect on stem WSC remobilization was negatively correlated with reduction in grain‐filling duration due to heat stress (r = ?0.74) and positively with treatment effect on grain N yield (r = 0.52). The results suggest that the effect of the heat treatment on GLA was the trait most associated with yield reduction in all cultivars. These findings suggest the importance of ‘stay green’‐associated traits in plant breeding as well as the need for better modelling of GLA in crop models, especially with respect to brief heat episodes during grain filling. There is in particular a need to model how heat and other stresses, including interacting effects of heat and drought, affect duration of GLA after flowering and how this affects source–sink relations during grain filling.  相似文献   

16.
Naked (hulless) barley was neglected by plant breeders in Europe during the period of intensive crop improvement in the 20th Century, but it is now receiving renewed interest due to the potential health benefits it can convey. Very few naked barley cultivars have been developed for modern UK or European agricultural systems, in contrast to the wide diversity of naked barley in Asia. Prior to initiating any breeding programme, phenotyping in UK field conditions is needed to assess the value of existing exotic landraces. This article reports such a programme where naked barley landrace lines were grown alongside modern cultivars and unimproved UK hulled landrace lines over 4 years at a research station in North Wales and assessed for yield and agronomic traits. Multivariate analysis of the traits suggested that accessions clustered by region of origin. Himalayan landrace lines formed Eastern and Western clusters while Japanese and Korean landrace lines were distinct from these. European naked barleys were found to be closest to European hulled barleys, suggesting that the distinctiveness of the Asian naked barley landrace lines was due to origin rather than the naked grain trait per se. The only agronomic trait that could be attributed to naked grain was poorer crop establishment, but some Himalayan landrace lines showed vigorous seedling growth. Modern lines of naked barley from Syria gave superior yields to old UK hulled barleys, indicating that there is potential for breeding modern UK cultivars of naked barley.  相似文献   

17.
Chickpea (Cicer arietinum L.) has an indeterminate growth nature, and the plant canopy with an improved light environment during critical growth stages may increase biomass (BM) production and improve crop yield. This study examined (i) the effects of shading, light enrichment and defoliation applied at various growth stages on BM and seed yield of chickpea in northern latitudes; and (ii) the difference between cultivars with fern‐ vs. unfoliate‐leaf type in responding to the altered canopy light environments. Field studies were conducted at Saskatoon and Swift Current, Saskatchewan in 2004 and 2005. Different light environments were created by 50 % defoliation at vegetative growth and at first flower, 50 % shading from vegetative growth to first flower, and two light enrichment treatments initiated at the first flower and pod formation stages. The 50 % shade treatment prior to flowering significantly decreased harvest index (HI) and seed yield. Light enrichments increased seed yield only one of three location‐years (the fourth site excluded because of disease damage). Defoliation at vegetative growth or first flower had a marginal effect on seed yield, largely as a result of the regrowth of vegetative tissues compensating for the lost plant tissues. The cultivar CDC Yuma (fern‐leaf type) exhibited consistently greater maximum light interception (LI), cumulative intercepted radiation, HI and seed yield than the cultivar Sanford (unifoliate‐leaf type) across all location‐years. Selective use of chickpea cultivars with improved morphological traits such as fern‐leaf type will likely improve LI and increase crop yield for chickpea in northern latitudes. Moreover, optimized crop management practices should be adopted to ensure that chickpea be grown under conditions with minimum shading before flowering and optimum light environment within the canopy especially during reproductive growth period.  相似文献   

18.
In the eastern wheatbelt of Western Australia the yield of barley relative to wheat is influenced by soil type. Field trials studied detailed aspects of growth, development, yield and water use of a range of barley and wheat cultivars on 2 soil types at 2 locations to identify those factors that lead to the differential relative yields.
Barley had greater grain yields than wheat on both fine and coarse textured soils. On both soil types barley had a greater number of mainstem leaves which appeared faster than those of wheat and this was associated with greater tillering (6.5 v. 3.5 shoots/plant), higher GAI and greater dry matter production (845 v. 804 g/ m). The difference in yield between the two species was greater on the fine textured soil (15 v. 7 %). Barley also had greater harvest index than wheat (6—15%), and this combined with greater dry matter production on the fine textured soil led to a larger yield advantage over wheat than occurred on the coarse textured soil. Water use efficiency was greater for barley than for wheat on both soils.
The greater yield advantage of barley over wheat on the fine textured soil was the result of greater biomass production by barley and greater harvest index. Differences in pattern of water use, and water use efficiency of grain production were associated with greater barley yields but are not themselves considered to be the cause of relative yield differences across soil types. The possible implications of factors such as intrinsic nutrient supply on the 2 soil types in relation to observed yield differences are discussed.  相似文献   

19.
In every agroforestry system, the tree canopy reduces the incident radiation for the crop. However, cereal varieties were selected, and most crop growth models were designed for unshaded conditions, so both may be unsuited to agroforestry conditions and performance. In southern France, durum wheat productivity was monitored over 2 years in an agroforestry system including walnut trees and under artificial shade conditions. Yield components were measured in both full and reduced light conditions. The cereal yield was always decreased by shade; by almost 50% for the heaviest shade conditions (31% of light reduction). The main effect of the shade was the reduction in the number of grains per spike (35% at the most) and in the weight of grains (16% at the most). The mean grain weight was moderately affected, while the protein content was increased in shaded conditions (by up to 38% for artificial shade). Consequently, the protein yield per hectare was less reduced by the shade than the dry matter grain yield. A crop model (STICS) was also used to simulate the crop productivity in full light and shaded conditions, but the crop LAI and the yield components were not correctly simulated in the shade. The simulations emphasized the sensitivity of the wheat grain filling to shade during the critical period, 30 days before flowering, for yield elaboration. Further experimental and modelling studies should take into account the heterogeneity of shade intensity due to the shape of the tree crown, the width of the crop alley and the orientation of the tree rows and the modification of carbon allocation inside the plant.  相似文献   

20.
With increasingly erratic rainfall patterns particularly in drought‐prone production systems, the capacity of plants to recover productively from drought spells becomes an important feature for yield stability in rainfed agriculture. Consequently, effects of water management at the stem elongation stage on partitioning and remobilization of dry matter, alteration in photosynthesis and water‐use efficiency (WUE), and yield components of wheat plants were studied in a glasshouse pot experiment. The plants were subjected to three soil moisture regimes: well watered during all phenological stages (WW), drought affected during stem elongation and post‐anthesis stages (DD) and drought affected during stem elongation and rewatered at post‐anthesis stage (DW). Total dry weight substantially decreased by both drought treatments. However, DD plants allocated relatively higher assimilates to roots whereas DW plants remobilized them to the grains. Drought applications resulted in a decrease of grain yield and thousand grain weight while reduction was more pronounced in DD treatment. Relative contribution of post‐anthesis photosynthesis to dry matter formation in grain was higher in WW treatment (72.6 %) than DD (68.5 %) and DW (68.2 %) treatments. Photosynthetic rate, gas exchange and transpiration decreased whereas leaf (photosynthetic) and plant level WUE increased with drought applications. However, all these parameters were rapidly and completely reversed by rewatering. Our findings showed that partitioning of dry weight to grain increases with rewatering of wheat plants subjected to drought during stem elongation phase, but the relative contributions of remobilization of stem reserves and post‐anthesis photosynthesis to grain did not change. Moreover, rewatering of plants at booting stage after a drought period lead to full recovery in photosynthesis and WUE, and a significant although partial recovery of yield components, such as grain yield, TGW and harvest index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号