首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two growth trials were designed to evaluate the utilization of dried fermented biomass (DFB) in commercial type feed formulation for Pacific white shrimp, Litopenaeus vannamei. In trial 1, four experimental diets were formulated to utilize increasing levels (0, 25, 50 and 100 g/kg) of spray‐dried fermented biomass (SDFB) as a replacement of fish meal (FM). Results indicated that SDFB can be utilized up to 50 g/kg as a substitution for FM without causing growth depression in shrimp. However, dietary SDFB supplementation at 100 g/kg significantly reduced the weight gain (WG) of shrimp and increased feed conversion ratio (FCR). This reduction in performance is likely due to palatability or nutrient imbalances of the feed. In trial 2, nine experimental diets were formulated with increasing levels (0, 20, 40, 60 and 120 g/kg) of spray‐dried (S) or granular (G) DFB to replace soy protein concentrate (SPC) or SPC + corn protein concentrate (CPC). This allowed the comparison between spray‐dried and ring‐dried products. Ring drying produced a granular product, reducing dust and increasing product particle size. Shrimp fed with diet containing 20 g/kg GDFB performed the best in terms of final mean weight, WG and FCR. Significantly reduced growth and increased FCR were observed in shrimp fed diets containing 60 and 120 g/kg SDFB. Lipid content of whole body was significantly reduced when GDFB was incorporated at 120 g/kg. No significant differences were detected in survival, protein retention efficiency as well as protein and ash contents of the whole shrimp. Results from analysis of covariance indicated that the processing method (covariant) had a significant effect on final mean weight, WG and FCR. In general, shrimp fed with diet containing granular product performed better as compared to those fed with diets utilizing spray‐dried product. GDFB can be utilized in the diets up to 120 g/kg in practical shrimp feeds as a substitute for SPC and CPC without compromising the growth of shrimp. However, a significant reduction in WG was observed in the diets containing 60 and 120 g/kg SDFB. The results in the current study demonstrate that processing changes to produce a granular product produced an improved feed ingredient for shrimp.  相似文献   

2.
A basal practical diet for juvenile tench (Tinca tinca) was formulated and elaborated to test several protein contents and substitution possibilities of fish meal (FM) by soybean meal (SBM) in a 90‐day trial with 5‐month‐old juveniles (30.54 mm TL, 0.30 g W). A factorial design included nine feeding treatments: three protein contents (50%, 40% or 30%) and three levels of replacement (0%, 25% or 45%) of FM protein by SBM protein. In addition, a commercial carp feed was used as reference. Final survival ranged from 98.2% to 99.4%. The 50% dietary protein with 0% or 25% replacement and 40% dietary protein with 25% replacement diets enabled higher growth (P < 0.05) and lower FCR (P < 0.05) than the rest of practical diets. Fish fed 50% dietary protein had similar growth than those fed carp feed (63.8% protein). Deformed fish averaged 1% for the practical diets and 87.6% for the carp feed. The basal practical diet has showed to be feasible and levels of 40–50% dietary protein with 25% replacement of FM protein by SBM protein can be recommended for juvenile tench aged 5–8 months.  相似文献   

3.
Three six‐week growth trials and a digestibility trial were conducted to evaluate a fish meal analogue (FMA) as a replacement for fish meal (FM) in shrimp feeds. Trials 1 and 2 evaluated and confirmed the potential of FMA supplementation (0, 48.5, 97, 145.5 and 194 g/kg) as a replacement for FM up to 200 g/kg without balancing for phosphorus (P) in practical diets for juvenile Pacific white shrimp L. vannamei. At the end of trial 1, shrimp offered diets containing 48.5 g/kg FMA exhibited significantly higher weight gain (WG) than those fed with the diet containing 145.5 g/kg FMA. At the end of trial 2, dietary FMA inclusion at 48.5 and 97 g/kg significantly improved WG and protein retention (PR), while reducing FCR and protein content of shrimp body compared to the diet containing 194 g/kg FMA. To determine whether P deficiency is the cause of reduced growth, the third trial was conducted utilizing equivalent diet but balanced for P. At the end of trial 3, shrimp fed diet containing 48.5 g/kg FMA+P showed significantly higher WG and PR than those fed diet containing 145.5 g/kg FMA+P. No decreasing trend of growth was detected in the diets containing FMA compared to the FM‐based diet. Apparent digestibility coefficients of dry matter, energy, protein and amino acids of FMA were determined using chromic oxide as an inert maker and the 70:30 replacement technique. The energy, protein and individual amino acid digestibility of FMA were significantly lower than those of soybean meal and FM which were run at the same time. Results of this work indicate that FMA can replace up to 200 g/kg FM in shrimp diets with supplemental inorganic P. Given the good growth across the range of inclusion without any indication of a growth depression, the low nutrient digestibility of FMA may be due to an atypical response or the product simply does not work with the testing technique.  相似文献   

4.
An 8‐week experiment was conducted to determine the optimal dietary lysine requirement for juvenile Protonibea diacanthus. Six isonitrogenous and isolipidic diets were formulated to contain levels of 10.8 (L10.8), 18.2 (L18.2), 26.1 (L26.1), 33.9 (L33.9), 40.7 (L40.7) and 48.6 g/kg (L48.6) of diets and were fed to the juvenile Protonibea diacanthus, respectively. The results indicated that weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER) and final weight (FW) increased as the dietary lysine level increased from 10.8 to 26.1 g/kg and then decreased as the dietary lysine levels further increased (p < .05). The lowest feed conversion ratio (FCR) was found when dietary lysine level was 26.1 g/kg. Analysis of specific growth rate by two slope broken‐line model indicated that the estimated optimal dietary levels of lysine for juvenile Protonibea diacanthus was 23.06 g/kg (51.24 g/kg dietary protein).  相似文献   

5.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

6.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

7.
Six extruded diets were formulated with a graded level of fish meal (FM); diet 1 and diet 2 were formulated with 80 g/kg FM; diet 3 and diet 4 were formulated with 40 g/kg FM; and diet 5 and diet 6 were devoid of FM. Hence, diet 2, diet 4 and diet 6 were supplemented with essential amino acids (EAAs). The diets were fed throughout an eight‐week feeding trial. The results revealed that specific growth rate (SGR), feed conversion ratio (FCR), body weight gain (BWG) and protein efficiency ratio (PER) were influenced by FM reduction and improved by the addition of EAA (p < 0.05). A survival rate (SR), whole body content of protein, lipid, moisture and ash, and plasma total protein (TP), albumin (ALB), triglyceride (TG) and urea (UN) did not influence by dietary treatments (p > 0.05). Additionally, target of rapamycin (TOR) pathway did not influence by dietary treatments (p > 0.05). Expression levels of hepatic peptide transporter 1 (Pept1) and peptide transporter 2 (Pept2) decreased against FM reduction and improved significantly in the groups fed diet 4 and diet 6. In summary, the findings revealed that diet containing plant proteins mixture supplemented with EAA could totally replace FM in the practical diet of blunt snout bream.  相似文献   

8.
The present study investigated the effect of fish meal (FM) replacement with fermented soybean meal (FSM) on growth and feed utilization of rainbow trout. Two FSM products, FSM1 (more fermentation with more small peptide and acid than FSM2) and FSM2 were used to replace 20%, 40% and 60% of FM in control diet (250 g/kg FM), respectively (FSM1‐20, FSM1‐40, FSM1‐60, FSM2‐20, FSM2‐40 and FSM2‐60). Then the seven diets were fed to rainbow trout (18.1 g) for 8 weeks. Weight gain (WG), feed conversion ratio (FCR) and digestibility of crude protein and dry matter showed no significant difference among the groups of FSM1‐20, FSM1‐40, FSM2‐20, FSM2‐40 and the control, but WG significantly decreased and FCR increased when 60% FM was replaced by both FSMs (p < .05). The replacement of 40%, 60% FM resulted in lower villus height than the control (p < .05), and intestinal protease activity was lower in FSM2‐40, FSM2‐60 and FSM1‐60 groups than the control group (p < .05). In addition, the activity of alkaline phosphatase and superoxide dismutase increased with increasing levels of FSM (p < .05). In conclusion, dietary fish meal could be replaced by 40% with both FSMs without adverse effects on growth and feed utilization of rainbow trout based on an eight weeks feeding trial.  相似文献   

9.
Six isoproteic diets were designated to evaluate the effects of dietary lipid levels (from 70 to 270 g/kg) on the growth performance, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Brachymystax lenok (average initial weight 0.54 ± 0.04 g). Each diet was fed to triplicate tanks (30 fish per tank) in an indoor closed recirculating system for 9 weeks. Final body weight and weight gain were highest in fish fed 190 g/kg diet and lowest in fish fed the 70 g/kg diet. Specific growth rate of fish fed with 190 g/kg diet was significantly higher than those fed with 70 and 270 g/kg diets (< .05). Protein efficiency ratio of fish fed with 70 g/kg diet was significantly lower than the 110–230 g/kg treatments and was not significantly different from the 270 g/kg treatment. Fish fed with 270 g/kg diet had significantly higher hepatosomatic index and viscerosomatic index than those fed with 70–190 g/kg diets (< .05). Intraperitoneal fat ratio and the whole‐body lipid content had a trend to increase with increase in dietary lipid level. Muscle crude lipid content increased up to 190 g/kg with increase in dietary lipid level. Lipid retention decreased with increase in dietary lipid level, while no significant differences in protein intake and retention levels were observed in fish among all treatments. Lipase activity of the mixture of pyloric caeca and foregut in fish fed 190 and 230 g/kg diets was significantly higher than those fed 70 and 110 g/kg diets. Midgut and hindgut lipase activities of fish were significantly higher than those fed the 190 and 230 g/kg diets. In conclusion, based on the second‐order polynomial model of WG and FCR, this study suggested that 173.8–195.0 g/kg dietary lipid levels were appropriated for B. lenok.  相似文献   

10.
In this study, a practical basal diet (control, C) was supplemented with crystal methionine (Met) (CM) or encapsulated Met (EM), and then was pelleted (P) or extruded (E) to form six diets, PC, PCM, PEM, EC, ECM and EEM. The six diets were fed to Jian carp with initial body of 8.6 ± 0.4 g for 8 weeks to evaluate the effects of Met supplementation and feed processing on growth of the fish. In pelleted diets, weight gain (WG) increased and feed conversion ratio (FCR) decreased (P < 0.05) in response to the supplementation of EM, but both WG and FCR were not affected by the supplementation of CM in the pelleted diet, when compared with PC group. In extruded diets, WG of fish fed ECM or EEM diets was higher and FCR was lower (P < 0.05) than those of fish fed EC diet. In the pelleted diets, the highest level of serum free Met was observed at the 1st, 2nd and 3rd h after feeding for PCM, PEM and PC group, respectively, but the three extruded diet groups showed the same peaking time at the 3rd h after feeding. In both pelleted and extruded diets, the supplementation of EM increased the expression of IGF‐1 gene in muscle (P < 0.05) when compared to PC and EC respectively. Results above indicated that the growth of Jian carp can be improved by the supplementation of EM in pelleted diet, or by the supplementation of EM, CM in extruded diet deficient in Met, but not by the supplementation of CM in pelleted diet.  相似文献   

11.
A 56‐day growth trial was conducted to determine the amount of fish meal (FM) in rainbow trout (Oncorhynchus mykiss) diets containing 200 g/kg FM as the sole animal protein source; that could be replaced with carinata (Brassica carinata) meal (CM) processed by aerobic conversion (AC, by fungi ssp.) followed by a single wash (ACCM). ACCM replaced 50, 100 and 150 g of FM. Replacement of ≥100 g of FM with ACCM, resulted in reduced (p < 0.01) growth, due to reduced dietary lysine and diet consumption (p < 0.01). Fulton's condition factor K decreased (p < 0.01) with increased FM replacement. FCR (p < 0.01) had an inverse relationship with diet consumption. The trend in FCR was similar to the trend in PER (p < 0.01). Apparent net protein utilization was lower (p < 0.01) for the highest FM replacement diet. There was no effect of FM replacement by ACCM on whole‐body composition or viscera, spleen and liver weights. However, visceral fat increased (p < 0.01) with increased feed consumption. There was no apparent effect of ACCM on hematocrit, haemoglobin or mean corpuscular haemoglobin contents. Results of this study indicate that replacement of ≥100 g of FM by ACCM in low FM/animal (200 g/kg) RBT diets may have been achieved if feed consumption and dietary lysine were similar.  相似文献   

12.
To investigate the effects of dietary tryptophan on growth and glycometabolism in juvenile blunt snout bream, 450 fish (initial weight 23.33 ± 0.03 g) were fed six practical diets with graded levels of tryptophan (from 0.79 g/kg to 5.96 g/kg dry matter) for 8 weeks. Results showed that final weight, per cent weight gain (PWG), protein efficiency rate, feed intake and feed conversion ratio (FCR) were significantly improved by 2.80 g/kg diet. The maximum values of protein and ash were observed in 2.80 g/kg diet, while moisture was minimum. Lipid content of fish fed 3.95 g/kg diet was significantly higher than other diets. The highest plasma insulin‐like growth factor‐1 (IGF‐1) content was observed in 0.79 g/kg diet. In the liver, IGF‐1 mRNA levels were significantly downregulated by 2.80 g/kg dietary tryptophan, while glucokinase levels were by 3.95 g/kg, while glucose‐6‐phosphatase and phosphoenolpyruvate carboxykinase mRNA levels showed a converse trend compared with IGF‐1. Based on PWG and FCR, the optimal dietary tryptophan level was determined to be 1.99 g/kg (6.20 g/kg of dietary protein) and 1.96 g/kg (6.11 g/kg of dietary protein), respectively, using broken‐line regression analysis.  相似文献   

13.
An 8‐week feeding trial was conducted to determine dietary lysine requirement of juvenile Pseudobagrus ussuriensis (initial body weight: 0.60 g). Six isonitrogenous (crude protein, 400 g/kg) and isolipidic (crude lipid, 50 g/kg) diets were formulated to contain graded levels of dietary lysine (12.8, 19.9, 26.5, 34.0, 40.8 and 44.1 g/kg dry diets, respectively). The results indicated that weight gain, specific growth rate, productive protein value and protein efficiency ratio increased, while feed conversion ratio decreased with increasing dietary lysine level up to 34.0 g/kg dry diet and then levelled off. Fish fed diet with 12.8 g/kg lysine had the lowest lysine content (58.6 g/kg dry matter) in muscle, while fish fed diet with 34.0 g/kg lysine had the highest value (61.6 g/kg dry matter; p < .05). Broken‐line analysis on the basis of weight gain showed that the optimal dietary lysine requirement for maximum growth of juvenile Pseudobagras ussuriensis is 33.5 g/kg dry diet (82.4 g/kg dietary protein). Quadratic regression analysis of protein efficiency ratio against dietary lysine levels indicated that the optimal dietary lysine requirement of juvenile Pseudobagras ussuriensis is 36.4 g/kg dry diet (89.5 g/kg dietary protein).  相似文献   

14.
This study was conducted to determine effects of dietary Fe levels on growth performance, hepatic lipid metabolism and antioxidant response for juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were fed six isonitrogenous and isolipidic diets containing Fe levels of 16.20, 34.80, 54.50, 76.44, 100.42 and 118.25 mg/kg for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased with dietary Fe levels from 16.20 to 54.50 mg/kg diet and then plateaued over the level. Feed conversion rate (FCR) was highest and protein efficiency rate (PER) was lowest for fish fed the lowest Fe levels of diet. Fe contents in whole body and liver increased with increasing dietary Fe levels. Hepatic lipid content was lowest, but mRNA levels of carnitine palmitoyltransferase (CPT‐1) and peroxisome proliferator‐activated receptor α (PPARα) were highest for fish fed 54.50 mg Fe/kg diet. Fish fed adequate dietary Fe levels reduced hepatic malondialdehyde (MDA) level and increased activities of antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT) and GS. Based on the broken‐line regression analysis of WG against dietary Fe levels, optimal dietary Fe requirement for yellow catfish was 55.73 mg Fe/kg diets. Fe‐induced changes in MDA levels and antioxidant enzymatic activities paralleled with the change in hepatic lipid content, suggesting the potential relationship between oxidative stress and hepatic lipid accumulation in yellow catfish.  相似文献   

15.
Atlantic cod (Gadus morhua), initial weight 15 g, were fed ten experimental diets for 15 weeks. The diets were based on a mixture of plant proteins (PP) and fish meal (FM), where PP constituted 65% of dietary protein. PP mixtures were chosen to reach as low levels of lysine and methionine as possible. The diets were supplemented with increasing amounts of lysine (19.2–31.9 g kg?1 diet) or methionine (9.4–12.3 g kg?1 diet), in a regression design. No growth difference among diet groups was found in the plant‐based diets. Increased dietary lysine resulted in decreased liver size, plasma triacylglycerol concentration (TAG) and lipid productive value (LPV). Methionine additions did not result in changed Hepatosomatic index (HSI), LPV or plasma TAG. Feed conversion ratio (FCR) and protein utilization were neither affected by lysine nor methionine. Plasma and muscle concentrations of free lysine and methionine correlated with dietary levels 5‐h post feeding. Overall conclusion was that cod maintain growth rates in plant‐based diets if dietary protein was high, without additional supplements of crystalline lysine or methionine. Lysine intake significantly influenced lipid metabolism, showing the necessity to add lysine in plant protein‐based diets to hinder increased lipid deposition. No such effects were found because of lack of methionine additions.  相似文献   

16.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

17.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

18.
The effects of fructooligosaccharide (FOS) on growth performance, immunity and predominant autochthonous intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal (FM) partially replaced by soybean meal (SBM) were evaluated. After acclimation, shrimps (1.82 ± 0.01 g/kg) were allocated into 15 tanks (25 shrimps per tank) and fed five different diets including positive control diet (C0, containing 250 g/kg FM and 285 g/kg SBM), control diet (C, containing 125 g/kg FM, 439 g/kg SBM) and three experimental diets supplemented with 1.0 g/kg FOS (T1), 2.0 g/kg FOS (T2) and 4.0 g/kg FOS (T3) to control diet (C) respectively. Shrimps were fed diets to apparent satiation three times per day, and 15 shrimps from each aquarium were randomly sampled and analysed at the end of the 6‐week feeding trial. The results showed that FBW, WGR, SGR and SR decreased, while FCR and FI increased significantly in control (C) compared with positive control (C0). Besides, significantly decreased trypsase and lipase activities, and SOD, AKP and ACP activities were recorded in control (C) compared with positive control (C0). On the other hand, significantly improved SGR and decreased FCR were observed in groups T1, T2 and T3 compared with control (C). Moreover, lipase and amylase activities enhanced significantly in group T3 compared with the control (C), while GOT and GPT activities dropped significantly with the increment supplementation of FOS in diets. Compared with the control (C), SOD activity enhanced significantly and MDA level decreased significantly in groups T2 and T3, and improved AKP and ACP activities were observed in group T3. In addition, dietary FOS improved the microbial diversity, and suppressed several potential pathogens, such as Vibrio tubiashii, Vibrio parahaemolyticus and Photobacterium damselae‐like strains in the intestine of shrimp. Overall, these results proved FOS could relieve the side effects induced by SBM and supported the use of 2.0–4.0 g/kg FOS in shrimp diets with FM partially replaced by SBM.  相似文献   

19.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

20.
Three growth trials and a digestibility trial were designed to evaluate the efficacy of a novel bacterial biomass (BB) in commercial‐type feed formulation for Pacific white shrimp, Litopenaeus vannamei. In trial 1, the basal diet was supplemented with 0, 60 and 120 g/kg BB to replace soybean meal (SBM). Significant improvement was observed in the survival when BB was incorporated in the diets. However, shrimp fed diets containing 120 g/kg BB exhibited significantly lower weight gain (WG) and higher feed conversion ratio (FCR). To confirm the results from trial 1 and explore the effects of BB supplementation at low levels, the basal diet was incorporated with 0, 10, 20, 40, 60 and 120 g/kg BB to replace SBM in trial 2. Significant reductions in WG, FCR, lipid content of whole body, protein retention efficiency and most amino acids retention efficiency were detected in shrimp fed with diet containing 120 g/kg BB. Trial 3 was designed to elucidate whether the digestible protein is the cause of reduced growth. No improvements in terms of growth performance and FCR were detected in the treatments balanced for digestible protein. Apparent digestibility coefficients of energy, protein and amino acid (AA) for BB were determined using chromic oxide as an inert marker and the 70:30 replacement technique. The energy, protein and individual amino acid digestibility coefficients of BB were significantly lower than those of fish meal (FM) and SBM that were given at the same time. Results of this study indicated that BB can be utilized up to 40 g/kg in shrimp feed without causing a decrease in growth. However, supplementations (≥60 g/kg) of BB can result in negative effects on growth response, FCR and protein as well as amino acids retention efficiency. At the lower levels of inclusion, shrimp performance was improved when BB was supplemented on a digestibility basis; however, at the higher level of inclusion, there was no improvement, indicating there may be other nutrients limiting. Based on enhanced survival in the treatment with BB supplementation in trial 1, further research regarding the immune effects of BB in practical shrimp feed will be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号