首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT Ninety-five isolates of Colletotrichum including 81 isolates of C. acutatum (62 from strawberry) and 14 isolates of C. gloeosporioides (13 from strawberry) were characterized by various molecular methods and pathogenicity tests. Results based on random amplified polymorphic DNA (RAPD) polymorphism and internal transcribed spacer (ITS) 2 sequence data provided clear genetic evidence of two subgroups in C. acutatum. The first subgroup, characterized as CA-clonal, included only isolates from strawberry and exhibited identical RAPD patterns and nearly identical ITS2 sequence analysis. A larger genetic group, CA-variable, included isolates from various hosts and exhibited variable RAPD patterns and divergent ITS2 sequence analysis. Within the C. acutatum population isolated from strawberry, the CA-clonal group is prevalent in Europe (54 isolates of 62). A subset of European C. acutatum isolates isolated from strawberry and representing the CA-clonal and CA-variable groups was assigned to two pathogenicity groups. No correlation could be drawn between genetic and pathogenicity groups. On the basis of molecular data, it is proposed that the CA-clonal subgroup contains closely related, highly virulent C. acutatum isolates that may have developed host specialization to strawberry. C. gloeosporioides isolates from Europe, which were rarely observed were either slightly or nonpathogenic on strawberry. The absence of correlation between genetic polymorphism and geographical origin in Colletotrichum spp. suggests a worldwide dissemination of isolates, probably through international plant exchanges.  相似文献   

2.
Isolates of Colletotrichum gloeosporioides associated with anthracnose disease on coffee berries in Vietnam were characterized by morphological and molecular methods. Random amplified polymorphic DNA (RAPD) and microsatellite-primered PCR (MP-PCR) analyses were employed to investigate the genetic variation among 38 and 51 isolates of C. gloeosporioides , respectively. According to both methods, the isolates mainly grouped in accordance with geographical origins. Higher genetic variation ( H  = 0·312 and 0·335) in the northern population of C. gloeosporioides than in the southern population ( H  = 0·261 and 0·186), according to the RAPD and MP-PCR markers, respectively, was indicative of a difference between the northern and southern populations. Moderate gene differentiation ( G st = 0·1) between populations from the north and the south was found. However, there was no differentiation between locations within the northern or southern populations, indicating significant gene flow. A four-gamete test indicated a high level of recombination, particularly in the south. The geographic differences may be explained by different histories of coffee cultivation in different parts of Vietnam. The symptoms caused by the Vietnamese isolates on both hypocotyls and green berries were less severe than symptoms caused by the reference CBD (coffee berry disease; Colletotrichum kahawae ) isolates originating from Africa.  相似文献   

3.
The degree of genetic diversity of 127 Colletotrichum gloeosporioides isolates from Stylosanthes guianensis genotypes in South America was measured at the molecular level by random amplified polymorphic DNA (RAPD) with nine arbitrary primers of 10 bases, and by restriction fragment length polymorphism (RFLP) with a non-LTR (long terminal repeats) retrotransposon DNA sequence. The RAPD products revealed scorable polymorphism among the isolates, and a total of 80 band positions were scored. Sixty-three of the 127 isolates were clustered into 13 distinct lineages usually correlating with geographic origin. Where isolates from various regions were clustered together, most had identical host genotype origin. The pathogen population sampled from Carimagua, Colombia, a long-time Stylosanthes breeding and selection site, with a savanna ecosystem, was highly diverse. A set of 12 S. guianensis genotype differentials was used to characterize pathogenic variability of 104 isolates and their virulence patterns were grouped into 57 pathotypes. However, when they were tested on four Australian differentials, they grouped into 11 pathotypes. As shown in previous studies, no strict correlations existed between genetic diversity measured by RAPD or RFLP, and pathotype defined by pathogenicity pattern on the differentials. Southern blot analysis of the 127 isolates revealed 23 hybridizing fragments, resulting in 41 fingerprint patterns among the 127 isolates. Relationships between RFLP and RAPD variables were examined using Spearman's Rank Correlation Coefficient, which showed that the two measures of genotypic variation are in agreement.  相似文献   

4.
In order to develop a method for discrimination of Corynespora cassiicola isolates pathogenic to sweet pepper among Japanese isolates, this study analysed pathogenic variations of 64 Japanese isolates of C. cassiicola on perilla, cucumber, tomato, aubergine and sweet pepper, and their multigene phylogeny. Japanese isolates were divided into seven pathogenicity groups (PG1–PG7). The virulence of isolates in PG1–PG5 was restricted to perilla, cucumber, tomato, aubergine and sweet pepper, respectively. Isolates in PG6 were virulent to sweet pepper, tomato and aubergine. Isolates in PG7 were avirulent to all tested plants. Multigene phylogenetic analysis of the isolates based on β‐tubulin, translation elongation factor 1‐α, calmodulin and actin genes showed three divergent clusters, MP‐A, MP‐B and MP‐C. These clusters included all isolates in PG1, PG2, PG8 and PG9 (MP‐A), PG3 and PG5 (MP‐B) and PG4 and PG6 (MP‐C). Isolates in PG7 were distributed amongst all clusters. Furthermore, random amplified polymorphic DNA (RAPD) analysis using universal primers, Q17 (5′‐GAAGCCCTTG‐3′) and Q13 (5′‐GGAGTGGACA‐3′), facilitated discrimination of isolates virulent on sweet pepper amongst isolates in MP‐B and MP‐C, respectively. Together, a combination of the multigene analysis and the RAPD technique allowed the discrimination of the isolates virulent to sweet pepper.  相似文献   

5.
ABSTRACT Colletotrichum crown rot of strawberry in Florida is caused primarily by Colletotrichum gloeosporioides. To determine potential inoculum sources, isolates of Colletotrichum spp. from strawberry and various noncultivated plants growing in the areas adjacent to strawberry fields were collected from different sites. Species-specific internal transcribed spacer primers for C. gloeosporioides and C. acutatum were used to identify isolates to species. Random amplified polymorphic DNA (RAPD) markers were used to determine genetic relationships among isolates recovered from noncultivated hosts and diseased strawberry plants. Selected isolates also were tested for pathogenicity on strawberry plants in the greenhouse. In all, 39 C. gloeosporioides and 3 C. acutatum isolates were recovered from diseased strawberry crowns, and 52 C. gloeosporioides and 1 C. acutatum isolate were recovered from noncultivated hosts. In crown inoculation tests, 18 of the 52 C. gloeosporioides isolates recovered from noncultivated hosts were pathogenic to strawberry. Phylogenetic analysis using RAPD marker data divided isolates of C. gloeosporioides from noncultivated hosts into two separate clusters. One cluster contained 50 of the 52 isolates and a second cluster contained 2 isolates that were homothallic in culture. Isolates from strawberry were interspersed within the cluster containing the 50 isolates that were recovered from noncultivated hosts. The results are not inconsistent with the hypothesis that C. gloeosporioides isolates obtained from strawberry and noncultivated hosts adjacent to strawberry fields are from the same population and that noncultivated hosts can serve as potential inoculum sources for Colletotrichum crown rot of strawberry.  相似文献   

6.
A total of 264 Stylosanthes spp. plants collected from 78 Stylosanthes spp. populations in seven southern Mexican states were analysed for the presence of Colletotrichum spp. Isolates were obtained from 64 plants collected from 36 Stylosanthes populations; 198 isolates produced straight conidia, while 72 isolates produced falcate conidia. Molecular identification was performed to confirm the identity of C. gloeosporioides for the straight-spored isolates. PCR amplifications using the primer CgInt, synthesized from an ITS1 fragment specific to C. gloeosporioides , and the universal primer ITS4 generated the target fragment for 120 Mexican isolates with straight conidia. The endonucleases Ava II and Sma I were used for restriction of the entire amplified ITS1 region of these 120 isolates. The tree constructed from the restriction data grouped 118 Mexican C. gloeosporioides isolates into three clusters containing reference isolates from Africa and Australia, and generated two additional clusters for two Mexican isolates. Conidial shape and growth rate on solid medium were used as the major morphological criteria for distinguishing types A and B. On the basis of 32 other morphological characteristics, a phenogram grouped the colonies into three main clusters. These clusters were partially related to the Stylosanthes species from which they were isolated, and to the molecular groups.  相似文献   

7.
Brazilian isolates of Colletotrichum spp. from citrus orchards affected by postbloom fruit drop were examined for colony colour, mycelial growth, benomyl-resistance, pathogenicity, and genetic variability by random amplified polymorphic DNA (RAPD) analysis. All isolates were obtained from flowers and persistent calyxes from different citrus hosts from Sao Paulo, Brazil. DNA polymorphisms detected after amplification with random 10-mer primers were used to classify the isolates into two groups. Group I isolates grew rapidly on potato-dextrose agar (PDA) and were sensitive to benomyl, and group II isolates grew slowly on PDA and were benomyl-resistant. Colletotrichum acutatum was analyzed by RAPD and had high genetic similarity with group II isolates of Colletotrichum from citrus. Probably, the group I is C. gloeosporioides and group II is C. acutatum.  相似文献   

8.
Twenty-two isolates of Corynespora cassiicola obtained from cucumber, papaya, eggplant, tomato, bean, Vigna, sesame and Hevea rubber (Hevea brasiliensis) were analysed by morphological features, the differences of the ribosomal DNA internal transcribed spacer (rDNA-ITS) region sequence and the inter simple sequence repeat (ISSR) technique. Variability of morphological features was observed among the isolates. Pathogenicity tests showed that isolates from different hosts attacked Hevea rubber. Sequences of two outgroup taxa, C. proliferata and C. citricola, were downloaded from GenBank. The phylogenetic trees were constructed by using the rDNA-ITS region sequences from 24 Corynespora spp. isolates. In this analysis, the 24 sequences grouped into two clusters (A and B). Cluster A consists of sequences from all isolates of C. cassiicola; whereas cluster B consists of the two outgroup taxa, C. proliferata and C. citricola. However, the ITS region is conservative, and is not fit for studying differences among isolates. A total of 114 DNA fragments was amplified with 16 ISSR primers, among which 102 were polymorphic (89.5%). A dendrogram was created by the unweighted pair-group method with arithmetic averaging (UPGMA) analysis, and 22 isolates grouped into three clusters (C, D and E). Cluster C is composed of all of the Hevea rubber isolates, whereas cluster D is composed of nine isolates: four from papaya, five from cucumber, eggplant, bean, vigna and sesame. Cluster E is composed of two isolates from cucumber and tomato. These analyses showed that the genetic diversity was very rich among the tested isolates. There are no correlations between the morphological characteristics or rDNA-ITS region sequences of the 22 isolates and their host or geographical origin, but there is a link between ISSR clusters and their host origins. ISSR markers appear to be useful for intra-species population study in C. cassiicola.  相似文献   

9.
Molecular analyses of colletotrichum species from almond and other fruits   总被引:1,自引:0,他引:1  
ABSTRACT Isolates of Colletotrichum spp. from almond, avocado, and strawberry from Israel and isolates of the pink subpopulation from almond from the United States were characterized by various molecular methods and compared with morphological identification. Taxon-specific primer analysis grouped the avocado isolates within the species C. gloeosporioides and the U.S. almond and Israeli strawberry isolates within the species C. acutatum. However, the Israeli almond isolates, previously identified morphologically as C. gloeosporioides, reacted with C. acutatum-specific primers. Arbitrarily primed polymerase chain reaction and A+T-rich DNA analyses determined that each population from almond and strawberry was distinct and clonal. Sequence analysis of the complete internal transcribed spacer (ITS) region (ITS 1-5.8S-ITS 2) revealed a similarity of between 97.03 and 98.72% among almond isolates from Israel, C. acutatum almond isolates from the United States, and C. acutatum strawberry isolates from Israel. Similarity of the above populations to that of C. gloeosporioides of avocado was between 92.42 and 92.86%. DNA sequence analysis of the entire ITS region supported the phylogeny inferred from the ITS 1 tree of 14 different Colletotrichum species. Although morphological criteria indicated that the Israeli isolates from almond are unique, this population was grouped within the C. acutatum species according to molecular analyses.  相似文献   

10.
ABSTRACT Isolates of Colletotrichum spp. from diseased strawberry fruit and crowns were evaluated to determine their genetic diversity and the etiology of the diseases. Isolates were identified to species using polymerase chain reaction primers for a ribosomal internal transcribed spacer region and their pathogenicity was evaluated in bioassays. Isolates were scored for variation at 40 putative genetic loci with random amplified polymorphic DNA and microsatellite markers. Only C. acutatum was recovered from diseased fruit. Nearly all isolates from crowns were C. gloeosporioides. In crown bioassays, only isolates of C. gloeosporioides from strawberry caused collapse and death of plants. A dendrogram generated from the genetic analysis identified several primary lineages. One lineage included isolates of C. acutatum from fruit and was characterized by low diversity. Another lineage included isolates of C. gloeosporioides from crowns and was highly polymorphic. The isolates from strawberry formed distinctive clusters separate from citrus isolates. Evaluation of linkage disequilibrium among polymorphic loci in isolates of C. gloeosporioides from crowns revealed a low level of disequilibrium as would be expected in sexually recombining populations. These results suggest that epidemics of crown rot are caused by Glomerella cingulata (anamorph C. gloeosporioides) and that epidemics of fruit rot are caused by C. acutatum.  相似文献   

11.
ABSTRACT This study was conducted to identify the species of Colletotrichum infecting tamarillo, mango, and passiflora in Colombia and to assess whether cross-infection between host species is occurring. Isolates of Colletotrichum spp. from tamarillo (n = 54), passiflora (n = 26), and mango (n = 15) were characterized by various molecular methods and by morphological criteria. Morphological characterization grouped the tamarillo isolates as C. acutatum and the passiflora and mango isolates as C. gloeosporioides. Species-specific primer analysis was reliable and confirmed grouping of the tamarillo isolates (besides Tom-6) as C. acutatum and the mango isolates (besides Man-76) as C. gloeosporioides. However, DNA of the passiflora isolates was not amplified by either C. acutatum- or C. gloeosporioides-specific primers, but reacted with a new primer, Col1, designed according to the internal transcribed spacer (ITS) 1 region of these isolates. Isolates Tom-6 and Man-76 also reacted positively with the Col1 primer. All the isolates reacting with the C. acutatum- and C. gloeosporioides-specific primers failed to react with primer Col1. Isolate Pass-35 from passiflora did not react with any of the taxon-specific primers. Arbitrarily primed polymerase chain reaction (ap-PCR), random amplified polymerase DNA (RAPD)-PCR, and A+T-rich DNA analyses delineated representative isolates into subgroups within the designated species. Molecular analyses indicated that the C. acutatum tamarillo isolates were uniform or clonal, whereas the C. gloeosporioides mango isolates and Colletotrichum passiflora isolates were heterogeneous. Likewise, sequence analysis of the complete ITS (ITS1-5.8S-ITS2) region identified certain isolates to their respective species: tamarillo isolates as C. acutatum; mango isolates as C. gloeosporioides; passiflora, Tom-6, and Man-76 isolates as a Colletotrichum sp. as yet undefined; and the Pass-35 isolate as an additional undefined Colletot-richum sp. Molecular analyses of the population of Colletotrichum isolates from passiflora, Tom-6 from tamarillo, and Man-76 from mango indicate that this population may not be host specific.  相似文献   

12.
ABSTRACT Alternaria spp. were sampled from two rough lemon (RL) and two Minneola tangelo (MIN) groves in a limited geographic area in central Florida to test for host-specialized forms of the pathogen. Isolates of Alternaria spp. were scored for variation at 16 putative random amplified polymorphic DNA (RAPD) loci and for pathogenicity on both hosts. Subpopulations on each host were differentiated genetically and pathogenically, which was consistent with the hypothesis of host specialization. Highly significant genetic differentiation was detected among all four subpopulations (Nei's coefficient of gene differentiation [G(ST)] = 0.292, P = 0.000); most of the differentiation occurred between hosts (G(ST) = 0.278, P = 0.000). Phenograms of qualitative similarities among isolates within subpopulations revealed two or three distinct clusters of isolates within each subpopulation. The majority of isolates sampled from RL were pathogenic on RL and not on MIN, although a few RL isolates were able to induce disease on MIN, and 44% were nonpathogenic on either host. In contrast, isolates from MIN were pathogenic only on MIN, never on RL, and only 3% of the isolates were nonpathogenic. Overall, three genetically distinct clusters of isolates were detected on both hosts. One of the clusters (cluster A) sampled from RL was pathogenic on RL and not on MIN and consisted almost entirely of one RAPD genotype. This cluster also contained two isolates that were 93% similar to the majority genotype but were pathogenic on MIN and not RL. In isolates from MIN, two distinct clusters of isolates were found in one subpopulation (clusters B and C), and three distinct clusters were found in another subpopulation (clusters A, B, and C). Clusters A and B were found on both hosts, while cluster C was limited to MIN. Populations of Alternaria spp. sampled from RL and MIN showed a high degree of host specificity; however, the specificity obscured a high level of genetic variation within subpopulations.  相似文献   

13.
ABSTRACT Didymella bryoniae (anamorph Phoma cucurbitacearum) is the causal agent of gummy stem blight, although other Phoma species are often isolated from cucurbit plants exhibiting symptoms of the disease. The molecular and phylogenetic relationships between D. bryoniae and these Phoma species are unknown. Isolates of D. bryoniae and Phoma obtained from cucurbits grown at various geographical locations in the United States were subjected to random amplified polymorphic DNA (RAPD) analysis and internal transcribed spacer (ITS) sequence analysis (ITS-1 and ITS-2) to determine the molecular and phylogenetic relationships within and between these fungi. Using RAPD fingerprinting, 59 isolates were placed into four phylogenetic groups, designated RAPD group (RG) I, RG II, RG III, and RG IV. D. bryoniae isolates clustered in either RG I (33 isolates), RG II (12 isolates), or RG IV (one isolate), whereas all 13 Phoma isolates clustered to RG III. There was greater than 99% sequence identity in the ITS-1 and ITS-2 regions between isolates in RG I and RG II, whereas isolates in RG III, P. medicaginis ATCC 64481, and P. exigua ATCC 14728 clustered separately. On muskmelon seedlings, a subset of RG I isolates were highly virulent (mean disease severity was 71%), RG II and RG IV isolates were slightly virulent (mean disease severity was 4%), and RG III isolates were nonpathogenic (disease severity was 0% for all isolates). The ITS sequences indicate that RG I and RG II are both D. bryoniae, but RAPD fingerprints and pathogenicity indicate that they represent two different molecular and virulence subgroups.  相似文献   

14.
采用RAPD-PCR分子标记技术分析了51株不同地理来源、寄主来源的绿僵菌Metarhizium anisopliae菌株的遗传多态性。从94条RAPD引物中筛选出18条引物,对所有试验菌株进行RAPD-PCR扩增,共获得96条扩增片段,其中81条片段表现多态性,占84.1%。聚类分析表明,供试的51株菌株间的相似性系数范围为0.52~0.98,表明菌株间存在丰富的遗传多态性。供试菌株在相似性系数0.7的水平可分为4个组群。按菌株DNA多态性与地理及寄主来源的聚类分析表明,大多数菌株的DNA多态性与地理或寄主有一定的相关性,即长期的地理环境和寄主适应性可能形成了种群的分化。  相似文献   

15.
Fungal isolates from chilli ( Capsicum spp.) fruits in Thailand that showed typical anthracnose symptoms were identified as Colletotrichum acutatum , C . capsici and C . gloeosporioides . Phylogenetic analyses from DNA sequence data of ITS rDNA and β-tubulin ( tub 2) gene regions revealed three major clusters representing these three species. Among the morphological characters examined, colony growth rate and conidium shape in culture were directly correlated with the phylogenetic groupings. Comparison with isolates of C . gloeosporioides from mango and C . acutatum from strawberry showed that host was not important for phylogenetic grouping. Pathogenicity tests validated that all three species isolated from chilli were causal agents for chilli anthracnose when inoculated onto fruits of the susceptible Thai elite cultivar Capsicum annuum cv. Bangchang. Cross-infection potential was shown by C . acutatum isolates originating from strawberry, which produced anthracnose on Bangchang. Interestingly, only C . acutatum isolates from chilli were able to infect and produce anthracnose on PBC 932, a resistant genotype of Capsicum chinense . This result has important implications for Thai chilli breeding programmes in which PBC 932 is being hybridized with Bangchang to incorporate anthracnose resistance into chilli cultivars.  相似文献   

16.
ABSTRACT Colletotrichum gloeosporioides causes a serious crown rot of strawberry and some isolates from native plants are pathogenic to strawberry. C. gloeosporioides from lesions on wild grape and oak were sampled at two sites adjacent to commercial strawberry fields in Florida and two distant sites. Random amplified polymorphic DNA (RAPD) marker data and restriction enzyme digests of amplified rDNA were used to determine whether isolates were from the same C. gloeosporioides subgroup that infects strawberry. There were 17 to 24 native host isolates from each site that clustered with a group of strawberry crown isolates based on RAPD markers. Among strawberry isolates, there were two rDNA genotypes identified by restriction enzyme analysis. Both genotypes were present among native host isolates sampled from all four sites. There was some evidence that the different rDNA genotypes differentiated two closely related subpopulations, although the proportion of pathogenic isolates from native hosts among the two different genotypes was not different. The incidence of isolates pathogenic to strawberry was greater at sites close to strawberry fields relative to sites distant from strawberry fields for isolates with a BstUI(-)/MspI(+) rDNA genotype (44 versus 13%), a BstUI(+)/MspI(-) genotype (57 versus 16%), or when both genotypes were analyzed together (46 versus 15%). Based on these results, it appears that the C. gloeosporioides subgroup that causes crown rot on strawberry is widely distributed in Florida and that selection for pathogenicity on strawberry occurs in the area where this host is grown in abundance.  相似文献   

17.
A two-year survey was conducted to investigate the level of genetic variability occurring across growing seasons within natural populations of Alternaria solani, the cause of early blight in potato. Genetic diversity among 151 isolates, taken from a disease resistance breeding trial, was assessed using seven random amplified polymorphic DNA (RAPD) primers and sequence analyses of portions of the internal transcriber spacer (ITS) region and Alt a1 gene. A. solani isolates were grouped into 19 RAPD profiles to examine the distribution patterns of genetically distinct isolates within and between years. Seven RAPD profiles were found spanning both years with profiles 6 and 13 being the most prevalent. Five unique profiles were found only in 2008 and seven were found only in 2009. No variation was observed among isolates of A. solani based on ITS and Alt a1 sequence analyses, but a distinction between A. solani and A. dauci, a close relative outgroup was identified. Pathogenicity was also assessed using a tissue culture plantlet assay on four isolates and two reference cultures. Differences in virulence were observed among the isolates examined.  相似文献   

18.
Jaunet TX  Wang JF 《Phytopathology》1999,89(4):320-327
ABSTRACT A population of Ralstonia solanacearum race 1 from tomato (Lycopersicon esculentum) was analyzed for genetic polymorphism and aggressiveness on tomato. The 46 strains were collected from main tomato-growing areas in Taiwan. Genetic analysis was achieved by two polymerase chain reaction (PCR)-based methods: REP-, ERIC-, and BOX-PCR (collectively as rep-PCR) and random amplified polymorphic DNA (RAPD) techniques. RAPD (with three 10-mers) and rep-PCR revealed 35 and 30 haplotypes, respectively, that were grouped in 14 clusters and 3 clusters, respectively. Distribution of strains into genetic clusters did not appear related to biovar or geographic origin in considering RAPD, rep-PCR, or composite data. Although strains were more dissimilar based on RAPD data than on rep-PCR data, the two techniques gave complementary results for strain clustering. A set of 40 strains representing the main haplotypes was inoculated on six tomato cultivars differing in their bacterial wilt resistance. Six groups differing in general level of aggressiveness and cultivar specificity were detected. Although populations were highly diverse in both genotype and aggressiveness, no association was found between the two characteristics. Although the sample sizes in this study were not adequate to draw definite conclusions about population structure, these results will be valuable for future population genetic studies on R. solanacearum.  相似文献   

19.
Fifty-five isolates of Rosellinia necatrix, the cause of common avocado white root rot disease, were collected from south-east Spain and characterised according to their virulence behaviour and their molecular patterns to assess broader levels of genetic diversity. Virulence properties were revealed by in vitro inoculation on avocado plants. Differences in reaction types showed variability among these isolates. No sequence differences were observed when the internal transcribed spacer 1 (ITS1) and ITS2 regions and DNA fragments of the β-tubulin, adenosine triphosphatase and translation elongation factor 1 genes were explored in representive isolates from five virulence groups. Random amplified polymorphic DNA (RAPD) amplifications were also performed for each isolate using 19 random primers. Four of these primers revealed polymorphism among isolates and repetitive and discriminative bands were used to build an unweighted pair group with arithmetic mean tree. However, RAPD clustering showed low stability, and no correlation between RAPD and virulence groups was observed, possibly indicating high levels of sexual recombination.  相似文献   

20.
Isolates ofF. oxysporum collected from symptomless carnation cuttings from Australian carnation growers properties, together with isolates from national collections, were screened for pathogenicity and grouped according to vegetative compatibility and random amplified polymorphic DNA (RAPD) patterns. The collection of 82 Australian isolates sorted into 23 different vegetative compatibility groups (VCGs). Of 69 isolates tested for pathogenicity, 24 were pathogenic to carnations, while the remaining 45 were non-pathogenic. All pathogenic isolates were within two VCGs, one of which was also compatible with an isolate obtained from an international culture collection, and which is known to represent VCG 0021 and race 2. Race status of the two pathogenic VCGs remains unknown. The RAPD assay revealed distinct DNA banding patterns which could distinguish pathogenic from non-pathogenic isolates as well as differentiate between isolates from the two pathogenic VCGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号