首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
The effect of terminal drought on the dry matter production, seed yield and its components including pod production and pod abortion was investigated in chickpea (Cicer arietinum L.). Two desi (with small, angular and dark brown seeds) and two kabuli (with large, rounded and light coloured seeds) chickpea cultivars differing in seed size were grown in a controlled-temperature greenhouse, and water stress was applied by withholding irrigation 1 (early podding water stress, ES), 2 (mid-podding water stress, MS) or 3 (late-podding water stress, LS) weeks after the commencement of pod set. In addition, the pod and seed growth of well-watered plants was followed for the first 19 days after pod set. Growth of the pod wall followed a sigmoid pattern and was faster in the desi than in the kabuli cultivars, while no difference was found in early seed growth among genotypes. Time of pod set affected the yield components in all treatments with the late-initiated pods being smaller, having fewer seeds per pod and smaller seeds, but no significant difference between pods initiated on the same day on the primary and secondary branches was observed. Early stress affected biomass and seed yield more severely than the later stresses, and in all stress treatments secondary branches were more affected than primary ones. Pod production was more affected by early stress than by late stress, regardless of cultivar. Pod abortion was more severe in the kabuli than in the desi cultivars, but final seed size per se did not appear to be a determinant of pod abortion under terminal drought conditions. The data indicated that the production and viability of pods was affected as soon as water deficits began to develop. The results show that pod abortion is one of the key traits impacting on seed yield in chickpeas exposed to terminal drought and that irrespective of differences in phenology, kabuli types have greater pod abortion than desi types when water deficits develop shortly after first pod set.  相似文献   

3.
核不育亚麻不育性与标记性状的遗传观察   总被引:2,自引:0,他引:2  
通过对H5A不育系的F、F2(地不育株与可育株姐妹交及可育株自交)兄妹交、回交后代的性状观察,发现上述各群体后代中,只出现了白花、白种皮不育株和蓝花、褐种皮可育途中亲本型,而未出现重组类型。证明了不育性与花色、种皮颜色表现出不是紧密连锁就是完全连锁或一因多效。  相似文献   

4.
M. H. Rahman   《Plant Breeding》2001,120(3):197-200
The inheritance of petal (flower) colour and seed colour in Brassica rapa was investigated using two creamy‐white flowered, yellow‐seeded yellow sarson (an ecotype from Indian subcontinent) lines, two yellow‐flowered, partially yellow‐seeded Canadian cultivars and one yellow‐flowered, brown‐seeded rapid cycling accession, and their F1, F2, F3 and backcross populations. A joint segregation of these two characters was examined in the F2 population. Petal colour was found to be under monogenic control, where the yellow petal colour gene is dominant over the creamy‐white petal colour gene. The seed colour was found to be under digenic control and the yellow seed colour (due to a transparent coat) genes of yellow sarson are recessive to the brown/partially yellow seed colour genes of the Canadian B. rapa cvs.‘Candle’ and ‘Tobin’. The genes governing the petal colour and seed colour are inherited independently. A distorted segregation for petal colour was found in the backcross populations of yellow sarson × F1 crosses, but not in the reciprocal backcrosses, i.e. F1× yellow sarson. The possible reason is discussed in the light of genetic diversity of the parental genotypes.  相似文献   

5.
Summary A strong epidemiological association is known to exist between the consumption of grass pea and lathyrism. A neurotoxin, -N-Oxalyl-L-, -diaminopropanoic acid (ODAP) has been identified as the causative principle. This study was undertaken to investigate the mode of inheritance of the neurotoxin ODAP, flower and seed coat colour in grass pea. Five grass pea lines with low to high ODAP concentration were inter-crossed in all possible combinations to study the inheritance of the neurotoxin. Parents, F1 and F2 progenies were evaluated under field condition and ODAP analyzed by an ortho-phthalaldehyde spectrophotometric method. Many of the progenies of low x low ODAP crosses were found to be low in ODAP concentration indicating the low ODAP lines shared some genes in common for seed ODAP content. The F1 progenies of the low ODAP x high ODAP crosses were intermediate in ODAP concentration and the F2 progenies segregated covering the entire parental range. This continuous variation, together with very close to normal distribution of the F2 population both of low x low and low x high ODAP crosses indicated that ODAP content was quantitatively inherited. Reciprocal crosses, in some cases, produced different results indicating a maternal effect on ODAP concentration. Blue and white flower coloured lines of grass pea were inter-crossed to study the inheritance of flower colour. Blue flower colour was dominant over the white. The F2 progenies segregated in a 13:3 ratio indicating involvement of two genes with inhibiting gene interactions. The gene symbol LB for blue flower colour and LW for white flower colour is proposed.  相似文献   

6.
V. K. Gupta  S. Gudu 《Euphytica》1990,46(1):79-84
Summary Intraspecific crosses involving five cultivars of Amaranthus hypochondriacus and two from A. caudatus were studied to investigate the inheritance of five morphological traits (seed coat colour, inflorescence colour, seedling colour, oval leaf mark and purple leaf mark). Seedling colour, inflorescence colour, seed coat colour and oval leaf mark segregated to a 3:1 ratio and therefore each was controlled by a single dominant gene. The purple leaf mark segregated in 9:7 ratio and hence may be controlled by two dominant genes. Simultaneous segregation for seed coat colour and inflorescence colour gave a ratio of 9:3:3:1. Similar genetic ratio was observed for the simultaneous segregation for oval leaf mark and inflorescence colour. It was suggested that each of these traits is controlled by independent genes.  相似文献   

7.
Five parents of common vetch (Vicia sativa L.) having orange/beige cotyledon colour, brown/white testa colour, purple/green seedling colour and purple/white flower colour were crossed as a full diallele set. The inheritance patterns of cotyledon, testa or seed coat colour, flower and seedling colour, were studied by analyzing their F1, F2, BC1 and BC2 generations. The segregation pattern in F2, BC1 and BC2, showed that cotyledon colour was governed by a single gene with incomplete dominance and it is proposed that cotyledon colour is controlled by two allelic genes, which have been designated Ct1 and Ct2. Testa colour was governed by a single gene with the brown allele dominant and the recessive allele white. This gene has been given the symbol H. Two complementary genes governed both flower and seedling colours. These flower and seedling colour genes are pleiotropic and the two genes have been given the symbols S and F.  相似文献   

8.
The inheritance of siliqua orientation and seed coat colour in Brassica tournefortii was investigated using four genotypes varying in these two characters. The F1, F2 and backcross generations of two crosses were used for studying the segregation pattern of the traits. The plants were classified for seed colour as having brown or yellow seeds and for siliqua orientation as having upright, semi‐spread or spread siliqua. Seed colour was found to be under monogenic control with brown being dominant over yellow. Siliqua orientation was under digenic polymeric gene action: upright siliqua was produced by the presence of two dominant genes and spread siliqua by two recessive genes. The absence of even a single dominant gene resulted in a third type of siliqua orientation, semi‐spread siliqua.  相似文献   

9.
Nigel A. R. Urwin 《Euphytica》2014,196(3):331-339
Double podding in cultivated chickpeas (Cicer arietinum L.) can increase yield and yield stability. In the present study, we performed reciprocal crosses of ‘kabuli’ (double podded) and ‘desi’ (single podded) chickpeas to determine (i) the expressivity and penetrance of double podding, (ii) the correlations of yield and yield components, and (iii) the heritability of double podding, flower color, and stem pigmentation in F2 plants. Reciprocal crosses were performed with two genotypes, AC 2969 (kabuli) and ICC 4969 (desi), to generate F1 and F2 plants. The results indicated hybrid vigor (heterosis) for yield in F1 plants and better performance of F2 plants. Yield and yield components of some lines in F2 were superior to the best parent, indicative of transgressive segregation. In particular, the presence of double podding (‘s’ allele) significantly increased yield in some of the transgressive segregants. Expressivity and penetrance of the ‘s’ allele depends on the background of the female parent. Some of the double podding progeny had greater seed yields than those of the single podding progeny and greater seed yields than the best parents. Double podding, stem pigmentation, and pink flowers each appears to be governed by a single recessive gene. Stem pigmentation and pink flowers appear to be linked traits that depend on the genetic background of the crossed chickpeas. Taken together, our studies of reciprocal crosses of kabuli and desi chickpeas clearly showed that yield could be improved by selection for transgressive phenotypes that have double podding.  相似文献   

10.
The F2 progenies of crosses between several cowpea (V. unguiculata) lines were investigated for variation of eye pattern and seed coat colour. It was found that three (W, H, O) and five (R, P, B, M, N) major genes control eye pattern and seed coat colour, respectively. The recessive gene (GO) for restricted eye pattern enables the underlying basic white or cream seed coat colour to be observed. A similar effect is obtained with the recessive gene (rr) for colour expression. The expression of mottling (V), possibly a seed coat pattern, may for be observed when it is combined with the genes for certain eye patterns. The significance of these findings in breeding for consumer preference for specific seed coat colour is discussed.  相似文献   

11.
Two field experiments were carried out to investigate the effects of terminal drought on chickpea grown under water-limited conditions in the Mediterranean-climatic region of Western Australia. In the first experiment, five desi (small angular seeds) chickpeas and one kabuli (large round seeds) chickpea were grown in the field with and without irrigation after flowering. In the second experiment, two desi and two kabuli cultivars were grown in the field with either irrigation or under a rainout shelter during pod filling. Leaf water potential (Ψl), dry matter partitioning after pod set and yield components were measured in both experiments while growth before pod set, photosynthesis, pod water potential and leaf osmotic adjustment were measured in the first experiment only.

In the first experiment, total dry matter accumulation, water use, both in the pre- and post-podding phases, Ψl and photosynthesis did not vary among genotypes. In the rainfed plants, Ψl decreased below −3 MPa while photosynthesis decreased to about a tenth of its maximum at the start of seed filling. Osmotic adjustment varied significantly among genotypes. Although flowering commenced from about 100 days after sowing (DAS) in both experiments, pod set was delayed until 130–135 DAS in the first experiment, but started at 107 DAS in the second experiment. Water shortage reduced seed yield by 50 to 80%, due to a reduction in seed number and seed size. Apparent redistribution of stem and leaf dry matter during pod filling varied from 0 to 60% among genotypes, and suggests that this characteristic may be important for a high harvest index and seed yield in chickpea.  相似文献   


12.
Summary A landrace seed lot of runner bean (Phaseolus coccineus L.), obtained from the Budapest region, Hungary, was separated into five seed groups according to seed coat colour. 131 plants were grown randomly, and observed for 27 morphological and physiological characters. The collected data were analysed by ANOVA.Numerical taxonomy of the data employed Principal Components Analysis to generate scatter diagrams and Cluster Analysis to generate dendrograms, both before and after removing data on the four anthocyanin colour characters (seed coat, calyx, stem and flower colour) as these characters are probably controlled by a single major gene. The progenies from the five distinct parental seed groups showed much overlap in characteristics, indicating that they were not distinct lines but comprised a largely panmictic population.Some character associations were detected: plants from white seeds matured significantly later than those from black seeds, plants from white seeds with a few dark spots produced seeds significantly heavier than average, whereas those from white or black seeds produced significantly lighter seeds, although the average seed yield per plant did not differ significatly.  相似文献   

13.
Seed size, determined by 100-seed weight, is an important yield component and trade value trait in kabuli chickpea. In the present investigation, the small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) and F1, F2 and F3 populations were developed to study the gene action involved in seed size and other yield attributing traits. Scaling test and joint scaling test revealed the presence of epistasis for days to first flower, days to maturity, plant height, number of pods per plant, number of seeds per plant, number of seeds per pod, biological yield per plant, grain yield per plant and 100-seed weight. Additive, additive?×?additive and dominance?×?dominance effects were found to govern days to first flower. Days to maturity and plant height were under the control of both the main as well as interaction effects. Number of seeds per pod was predominantly under the control of additive and additive?×?additive effects. For grain yield per plant, additive and dominance?×?dominance effects were significant in the cross ICC 16644?×?KAK 2, whereas, additive?×?additive effects were important in the cross ICC 16644?×?JGK 2. Additive, dominance and epistatic effects influenced seed size. The study emphasized the existence of duplicate epistasis for most of the traits. To explore both additive and non-additive gene actions for phenological traits and yield traits, selection in later generations would be more effective.  相似文献   

14.
15.
The inheritance of siliqua locule number and seed coat colour in Brassica juncea was investigated, using three lines each of tetralocular brown seeded and bilocular yellow seeded. Three crosses of tetralocular brown seeded × bilocular yellow seeded lines were attempted and their F1, F2 and backcross generations were examined for segregation of these two traits. Brown seed colour and bilocular siliqua characters were found to be dominant over yellow seed and tetralocular siliqua, respectively. Chi‐square tests indicated that each trait is controlled by different sets of duplicate pairs of genes. Bilocular siliquae or brown seeds can result from the presence of either of two dominant alleles, whereas tetralocular siliquae or yellow seeds are produced when alleles at both loci are recessive. A joint segregation analysis of F2 data indicated that the genes governing siliqua locule number and seed colour were inherited independently.  相似文献   

16.
黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析   总被引:4,自引:2,他引:2  
类黄酮物质在植物花、叶、果实和种子颜色变化的过程中起着至关重要的作用,本研究以不同黄黑籽种皮材料为研究对象,采用基因同源克隆方法,获得17个类黄酮基因全长ORF序列,在核酸和蛋白水平上分别序列差异比较表明,这些基因在不同黄黑籽材料中共存在41个不同拷贝成员。在核苷酸水平上,检测到BnTT3、BnTT18、BnTTG1和BnTTG2的单核苷酸位点数目介于16~52之间,且BnTTG2在3个不同的位置上还存在多个碱基的连续性缺失现象(119~121 bp,183~189 bp和325~330 bp),但在蛋白水平上仅存在2~16个氨基酸位点差异,说明BnTT3、BnTT18、BnTTG1和BnTTG2在不同甘蓝型黄黑籽材料中存在单核苷酸位点差异,而单核苷酸位点突变不一定导致氨基酸位点的变异。在不同黄黑籽材料中仅BnTT3和BnTT18存在一致性的氨基酸突变位点(252和87),推测BnTT3和BnTT18可能在黄黑籽甘蓝型油菜种皮颜色差异形成过程中发挥至关重要的作用。通过这些位点的等位特异PCR可以区分材料间透明种皮基因,为特异基因芯片的开发及阐明甘蓝型油菜种皮色泽性状的基因及其作用位点奠定基础。  相似文献   

17.
白菜—甘蓝染色体附加系的性状遗传   总被引:1,自引:0,他引:1  
以白菜和甘蓝种间对应性状作为遗传标记性状,人工合成甘蓝型油菜,建立白菜—甘蓝附加系,并用附加系研究种皮颜色、花色和雄性不育等三个质量性状的遗传。结果表明,在甘蓝的染色体组和甘蓝型油菜所含的甘蓝染色体组中,控制种皮颜色和控制花色的基因分别载于不同染色体上,控制所用白菜雄性不育的育性恢复基因与控制种皮颜色和花色的基因也分别载于不同的染色体上;选择种间对应质量性状有显隐性差异的白菜和甘蓝材料合成的甘蓝型油菜附加系,可用所选择性状作遗传标记对其进行区分和利用。  相似文献   

18.
J. P. Singh  I. S. Singh 《Euphytica》1992,66(3):231-233
Summary Four grey mottled seed coat colour lentil lines/cultivars were crossed to one brown seed coat colour cultivar. The F1 hybrids were brown seeded in all the crosses. Segregation pattern for seed coat colour in F2 and F3 generations revealed that it is under control of a single dominant gene, which is present in the parent UPL 175 while a recessive gene is responsible for grey mottled seed coat colour in Pant L 406, Pant L 639, LG 120 and Rau 101.  相似文献   

19.
Gene flow via outcrossing from transgenic plants to relatives will be one of the most important concerns to grow of the transgenic chickpea (Cicer arietinum L.) in European Union (EU). This report is therefore focused on spontaneous outcrossing rate in chickpea. A total of 39 kabuli type mutants with white flower and one desi type with pink flower were grown to estimate spontaneous outcrossing rate. Outcrossing rate ranged from 0.0 to 1.25% in mutant materials. Since labelling threshold for transgenic contamination in food and feed in European Union (EU) is 0.9%, outcrossing rate of 1.25% is higher than threshold of 0.9% in EU, and this result suggests that cultivation of transgenic chickpea will be under high risk to be contaminated chickpeas in neighbourhood fields.  相似文献   

20.
Summary The inheritance of purple seedling colour was studied, in relation to the genetic control of flower colour. It was found that purple seedling colour is likely to be controlled by a single gene and that the trait is dominant over green seedling colour. White flowering prohibited the expression of the purple seedling colour, and is therefore thought to be epistatic.This character can be used to estimate rate of outcrossing in breeding programmes, as well as contribute to our knowledge of the biosynthesis of plant pigments and secondary metabolites such as tannins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号