首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altered platelet function has been reported in calves experimentally infected with type II bovine viral diarrhea virus (BVDV). The purpose of the present study was to further evaluate the ability of BVDV isolates to alter platelet function and to examine for the presence of a virus-platelet interaction during BVDV infection. Colostrum-deprived Holstein calves were obtained immediately after birth, housed in isolation, and assigned to 1 of 4 groups (1 control and 3 treatment groups). Control calves (n = 4) were sham inoculated, while calves in the infected groups (n = 4 for each group) were inoculated by intranasal instillation with 10(7) TCID50 of either BVDV 890 (type II), BVDV 7937 (type II), or BVDV TGAN (type I). Whole blood was collected prior to inoculation (day 0) and on days 4, 6, 8, 10, and 12 after inoculation for platelet function testing by optical aggregometry by using adenosine diphosphate and platelet activating factor. The maximum percentage aggregation and the slope of the aggregation curve decreased over time in BVDV-infected calves; however, statistically significant differences (Freidman repeated measures ANOVA on ranks, P < 0.05) were only observed in calves infected with the type II BVDV isolates. Bovine viral diarrhea virus was not isolated from control calves, but was isolated from all calves infected with both type II BVDV isolates from days 4 through 12 after inoculation. In calves infected with type I BVDV, virus was isolated from 1 of 4 calves on days 4 and 12 after inoculation and from all calves on days 6 and 8 after inoculation. Altered platelet function was observed in calves infected with both type II BVDV isolates, but was not observed in calves infected with type I BVDV. Altered platelet function may be important as a difference in virulence between type I and type II BVDV infection.  相似文献   

2.
Bovine viral diarrhea virus (BVDV) infection continues to have a significant impact upon US cattle producers despite the availability of more than 140 federally licensed vaccines. Detection and control is hampered by viral heterogeneity that results in differences in neutralizing epitopes, cytopathology and virulence. Recently it was found that there are two different genotypes, BVDV1 and BVDV2, among BVDV. BVDV2 isolates make up a significant proportion of the BVDV isolated in North America. Serologically BVDV2 viruses can be distinguished from BVDV1 and border disease viruses. Mab binding also distinguishes between BVDV1, BVDV2 and BDV. Like the BVDV1 viruses, BVDV2 viruses may exist as one of two biotypes, cytopathic or noncytopathic, based on their activity in cultured cells. Cytopathogenic effects on cultured cells does not correlate with virulence in vivo, as BVDV2 associated with hemorrhagic syndrome (HS) are noncytopathic. Variation among BVDV1 and BVDV2 in the 5' UTR is similar. Phylogenetic analysis and differences in virulence suggest that BVDV2 are heterogeneous. Symptoms resulting from BVDV2 infections may range from clinically inapparent to clinically severe. Recently, disease outbreaks associated with acute uncomplicated BVDV infection have been reported in the US and Canada. These outbreaks of clinically severe disease, termed HS, were all associated with viruses from the BVDV2 genotype. Not all BVDV2 isolates cause clinically severe disease. Avirulent BVDV2 isolates do exist and may predominate over virulent BVDV2 in nature. When virulent BVDV2 viruses are inoculated into calves they induce a disease characterized by fever, diarrhea, leukopenia, lymphopenia, neutropenia, thrombocytopenia, and death. Infection with avirulent BVDV2 results in a reduction of luekocytes that may be accompanied by a low-grade fever. These viruses do not cause clinical disease or a clinical leukopenia.  相似文献   

3.
During the past several years, acute infections with bovine viral diarrhea virus (BVDV) have been causally linked to hemorrhagic and acute mucosal disease-like syndromes with high mortality. The majority of BVDVs isolated in such cases have been classified as type II on the basis of genetic and antigenic characteristics. It was our objective to examine clinical disease, lesions and potential sites of viral replication, following experimental BVDV type II infection in young calves. On approximately day 35 after birth, calves that had received BVDV-antibody-negative colostrum were infected by intranasal inoculation of 5 x 10(5) TCID50 of BVDV type II isolate 24,515 in 5 mL of tissue culture fluid (2.5 mL/nostril). Calves were monitored twice daily for signs of clinical disease. Approximately 48-72 h after infection, all calves developed transient pyrexia (39.4-40.5 degrees C) and leukopenia. Beginning on approximately day 7 after infection, all calves developed watery diarrhea, pyrexia (40.5-41.6 degrees C), marked leukopenia (> or = 75% drop from preinoculation values), variable thrombocytopenia, and moderate to severe depression. Calves were euthanized on days 10, 11, or 12 after infection due to severe disease. Gross and histological lesions consisted of multifocal bronchointerstitial pneumonia (involving 10%-25% of affected lungs), bone marrow hypoplasia and necrosis, and minimal erosive lesions in the alimentary tract. Immunohistochemical staining for BVDV revealed widespread viral antigen usually within epithelial cells, smooth muscle cells and mononuclear phagocytes in multiple organs, including lung, Peyer's patches, gastric mucosa, thymus, adrenal gland, spleen, lymph nodes, bone marrow, and skin. This BVDV type II isolate caused rapidly progressive, severe multisystemic disease in seronegative calves that was associated with widespread distribution of viral antigen and few gross or histological inflammatory lesions.  相似文献   

4.
Genetic comparison of ovine and bovine pestiviruses   总被引:1,自引:0,他引:1  
Viral RNA oligonucleotide fingerprinting was used to compare genetic relationship among pestiviruses originating from ovine or bovine host species. Ovine pestiviruses, including reference border disease virus and 2 border disease isolates originating from natural pestivirus infections of sheep, appeared to have a more distant genetic relationship among themselves than with certain bovine pestiviruses. A closer genetic relatedness was evident between border disease virus and 3 noncytopathic bovine pestiviruses, including Draper bovine viral diarrhea virus (BVDV), a BVDV isolate that originated from aborted bovine fetuses, and a virus that was isolated from the serum of a calf that had a chronic BVDV infection. Four noncytopathic bovine viruses, including Draper BVDV and 3 field isolates, were closely related. Reference Oregon C24V BVDV, a cytopathic virus, was closely related to only 1 of the 7 noncytopathic viruses in this study.  相似文献   

5.
Natural infection of pigs with bovine viral diarrhea virus (BVDV) through contact with infected cattle has caused problems in diagnosing hog cholera (HC). Low cross-reacting serum antibody titers against HC caused by BVDV infection were found in clinically normal pigs as well as those suspected of having HC. Bovine viral diarrhea virus was isolated from specimen tissues and initially identified as HC virus (HCV), using the fluorescent antibody cell culture technique. Additional cell cultures, as well as pig and calf trials, were necessary to identify it as BVDV. The isolate caused clinical signs of illness in the calves, whereas the pigs remained healthy. Bovine viral diarrhea virus may be detected in tissue sections or isolated in cell cultures and confirmed as HCV, using the HC fluorescent antibody conjugate. Laboratories performing the neutralization test for HC should use discretion when interpreting HC titers unless BVD titers are determined on the same serums.  相似文献   

6.
OBJECTIVE: To evaluate protection resulting from use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine against systemic infection and clinical disease in calves challenged with type 2 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV 1 (WRL strain). Calves in both groups were challenged intranasally with BVDV type 2 isolate 890 on day 21. Rectal temperatures and clinical signs of disease were recorded daily, and total and differential WBC and platelet counts were performed. Histologic examinations and immunohistochemical analyses to detect lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to BVDV type 2, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV type 1 vaccine protected against systemic infection and disease after experimental challenge exposure with BVDV type 2. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

7.
OBJECTIVE: To determine the effect of maternally derived antibodies on induction of protective immune responses against bovine viral diarrhea virus (BVDV) type II in young calves vaccinated with a modified-live bovine viral diarrhea virus (BVDV) type I vaccine. DESIGN: Blinded controlled challenge study. ANIMALS: 24 neonatal Holstein and Holstein-cross calves that were deprived of maternal colostrum and fed pooled colostrum that contained a high concentration of (n = 6) or no (18) antibodies to BVDV. PROCEDURE: At 10 to 14 days of age, 6 seropositive and 6 seronegative calves were given a combination vaccine containing modified-live BVDV type I. All calves were kept in isolation for 4.5 months. Six calves of the remaining 12 untreated calves were vaccinated with the same combination vaccine at approximately 4 months of age. Three weeks later, all calves were challenged intranasally with a virulent BVDV type II. RESULTS: Seronegative unvaccinated calves and seropositive calves that were vaccinated at 2 weeks of age developed severe disease, and 4 calves in each of these groups required euthanasia. Seronegative calves that were vaccinated at 2 weeks or 4 months of age developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that a single dose of a modified-live BVDV type-I vaccine given at 10 to 14 days of age can protect susceptible young calves from virulent BVDV type II infection for at least 4 months, but high concentrations of BVDV-specific maternally derived antibodies can block the induction of the response.  相似文献   

8.
9.
OBJECTIVE: To evaluate platelet aggregation responses in calves experimentally infected with a thrombocytopenia-inducing type II bovine viral diarrhea virus (BVDV) isolate (BVDV 890). ANIMALS: 9 neonatal male Holstein calves. PROCEDURE: 5 calves were inoculated with BVDV 890, and 4 were used as controls. Platelet aggregation studies and attempts to isolate BVDV from platelets were performed 2 days before, the day of, and every 2 days for 12 days after inoculation. Platelet function was assessed by means of optical aggregometry, using adenosine diphosphate and platelet-activating factor as agonists. Bovine viral diarrhea virus was isolated from purified platelet preparations by use of an immunoperoxidase monolayer assay. RESULTS: Maximum percentage aggregation and slope of the aggregation curve decreased over time in calves infected with BVDV. Bovine viral diarrhea virus was not isolated from platelets from control calves, but it was isolated from infected calves from 4 through 12 days after inoculation. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that platelet function may be depressed in calves infected with type II BVDV. Although the mechanism for altered platelet function was not determined, it likely involved an increase in the percentage of aged platelets in the circulation, a direct virus-platelet interaction, or an indirect virus-platelet interaction. Platelet dysfunction, in addition to thrombocytopenia, may contribute to the hemorrhagic syndrome associated with acute type II BVDV infection in calves.  相似文献   

10.
Eight healthy cattle that were persistently infected with noncytopathic bovine viral diarrhea virus (BVDV) were inoculated with cell culture fluids that contained noncytopathic or cytopathic BVDV. A severe disease occurred after inoculation with cytopathic BVDV. The clinical signs, lesions, and immune response were consistent with those of clinical BVDV infections.  相似文献   

11.
Bovine viral diarrhea virus (BVDV) in pigs may interfere with the detection and epidemiology of classical swine fever virus (CSFV). To investigate the importance of BVDV infections in pigs, first we studied the transmission dynamics of a recent BVDV field isolate. Subsequently, the protection of BVD antibodies against transmission and clinical disease of CSF virus was studied. Only limited transmission of BVDV occurred (R = 0.20), while no CSFV transmission occurred in pigs with BVDV antibodies. We concluded that BVDV transmission among pigs is possible, but seems to be limited and thus the virus should disappear from a population if no new introductions occur. Furthermore, the presence of BVD antibodies may completely prevent the transmission of CSFV and therefore could protect pigs against classical swine fever. It was also noticed that double infections with BVDV and CSFV were incorrectly diagnosed using the neutralization peroxidase linked assay (NPLA), which is the golden standard for antibody detection. This might hamper the diagnosis of CSF in herds with a high BVD prevalence.  相似文献   

12.
A method to evaluate the efficacy of bovine viral diarrhea virus (BVDV) vaccines using a multiple challenge model was investigated. Four pregnant heifers were challenged intranasally with a type I and type II isolate of BVDV at 75 days of gestation. At 60 days postinoculation, virus isolation and RT-PCR from blood and tissues of fetuses indicated that all fetus were persistently infected with both type I and type II isolates. Differing results of detection by PCR and virus isolation between the type I and type II isolates were obtained. These preliminary studies may indicate differences in the level of replication between type I and type II BVDV as well as predilected sites of replication in certain tissues.  相似文献   

13.
The brain from a 15-month-old, black female Angus, with a 48-hour history of central nervous system disease, was submitted to the Oklahoma Animal Disease Diagnostic Laboratory. Microscopic findings consisted of acute, multifocal meningoencephalitis, with neuronal degeneration and necrosis and gliosis. Viral isolation yielded noncytopathic bovine viral diarrhea virus (BVDV). Virus genotyping classified the virus as BVDV type 2. Immunohistochemical labeling for BVDV antigens with BVD MAb 3.12F1 clone was prominent in the cytoplasm of neurons, glial cells, ependymal epithelium, perivascular macrophages and spindle cells, smooth muscle cells, and intravascular monocytes of the cerebrum and brain stem. Laboratory results support that tissue alterations occurred as a result of BVDV type 2 infection. In the absence of other clinical signs related to BVDV infection and using the microscopic and laboratory evidence presented, we propose that the BVDV type 2 isolated from this case may represent a neurovirulent strain of the virus. To the best of our knowledge, this is the first report of brain lesions and neuronal viral antigen localization in BVDV genotype 2 viral infection, acquired either congenitally or postnatally.  相似文献   

14.
OBJECTIVE: To compare the efficacy of modified-live virus (MLV) vaccines containing either type 1 bovine viral diarrhea virus (BVDV) or types 1 and 2 BVDV in protecting heifers and their offspring against infection associated with heterologous noncytopathic type 2 BVDV challenge during gestation. DESIGN: Randomized controlled study. ANIMALS: 160 heifers and their offspring. PROCEDURES: After inoculation with a placebo vaccine, 1 or 2 doses of an MLV vaccine containing type 1 BVDV, or 1 dose of an MLV vaccine containing both types 1 and 2 BVDV, heifers were bred naturally and challenge exposed with a type 2 BVDV field isolate between 62 and 104 days of gestation. Pregnancies were monitored; after parturition, virus isolation and immunohistochemical analyses of ear-notch specimens were used to determine whether calves were persistently infected. Blood samples were collected at intervals from heifers for serologic evaluation and virus isolation. RESULTS: Persistent infection was detected in 18 of 19 calves from heifers in the control group and in 6 of 18 calves and 7 of 19 calves from heifers that received 1 or 2 doses of the type 1 BVDV vaccine, respectively. None of the 18 calves from heifers that received the type 1-type 2 BVDV vaccine were persistently infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the incidence of persistent BVDV infection among offspring from dams inoculated with 1 dose of the MLV vaccine containing types 1 and 2 BVDV was decreased, compared with 1 or 2 doses of the MLV vaccine containing only type 1 BVDV.  相似文献   

15.
Bovine viral diarrhea virus (BVDV) has been isolated from washed and sonicated, in vitro-produced embryos, but the infectivity of BVDV associated with intact, developing, embryos has not been demonstrated. The objective of this study was to determine if a dose of BVDV infective for co-culture cells was associated with individual, developing embryos, following artificial exposure to the virus and washing. In 5 replicates, zona pellucida-intact, in vitro-produced embryos were assigned to a negative control embryo group, or were incubated in 10(5)-10(6) cell culture infective doses (50%, CCID50) per milliliter of a type I, noncytopathic (strain SD-1) BVDV for 2 h. Unexposed negative control embryos and exposed positive control embryos were washed, sonicated and assayed for BVDV using virus isolation with immunoperoxidase monolayer assay. Immediately or following cryopreservation, remaining virally-exposed, washed embryos were co-cultured individually with BVDV-negative cultures of bovine uterine tubal cells in a medium free of BVDV-neutralizing activity. After two days in culture, uterine tubal cells and embryos (including the zona pellucida) were separated and washed. The culture medium, uterine tubal cells and embryos were then assayed for BVDV. Bovine viral diarrhea virus was not isolated from any negative control embryo group, but was isolated from all positive control embryo groups. Although all uterine tubal cell populations were confirmed to be susceptible to BVDV, virus was never isolated from uterine tubal cells or embryos from post-exposure culture. In conclusion, although BVDV remains associated with washed in vitro-produced embryos, the virus associated with unsonicated embryos was not infective for uterine tubal cells in vitro.  相似文献   

16.
Bovine viral diarrhea virus (BVDV) has been segregated into two genotypes, type 1 and type 2. To determine the efficacy of the commercially available bovine viral diarrhea type 1 vaccine used in Japan against BVDV type 2, calves were infected with BVDV type 2 strain 890 4 weeks after administration of the vaccine. The vaccinated calves did not develop any clinical signs and hematological changes such as observed in unvaccinated calves after the challenge. Furthermore, the challenge virus was not recovered from the vaccinated calves throughout the duration of the experiment, whereas it was recovered from all unvaccinated calves. The bovine viral diarrhea vaccine used in Japan is efficacious against infection with BVDV type 2 strain 890.  相似文献   

17.
OBJECTIVE: To determine the comparative virulence of 5 isolates of bovine viral diarrhea virus (BVDV) type II by inoculating 6- to 9-month-old beef calves with isolates originating from the tissues of cattle affected with naturally occurring, transient, acute, nonfatal infections or naturally occurring, peracute, fatal infections. ANIMALS: 22 calves that were 6 to 9 months old. PROCEDURE: The study used BVDV isolates 17011, 713, and 5521 that originated from fetuses aborted from cows with transient, nonfatal, acute BVDV infections and isolates 23025 and 17583 that originated from the tissues of cattle with peracute, fatal BVDV infections. Calves were allotted to 6 groups (1, mock-infected control calves [n = 2]; 2, inoculated with BVDV 17011 [4]; 3, inoculated with BVDV 713 [4]; 4, inoculated with BVDV 5521 [4]; 5, inoculated with BVDV 23025 [4]; and 6, inoculated with BVDV 17583 [41]. Rectal temperatures and clinical signs of disease were recorded daily. Total and differential WBC and platelet counts were performed. Histologic examination and immunohistochemical analysis were conducted to detect lesions and distribution of viral antigens, respectively. RESULTS: Calves inoculated with BVDV 23025 or 17583 developed more severe clinical signs of disease (fever and diarrhea), more severe lymphopenia, and more severe lesions (alimentary epithelial necrosis, lymphoid depletion, and BVDV antigen deposition in lymphatic tissues), compared with calves inoculated with BVDV 713, 5521, or 17011. CONCLUSIONS AND CLINICAL RELEVANCE: Relative severity of experimentally induced infections corresponded to severity of clinical signs of naturally occurring infections with respective BVDV isolates.  相似文献   

18.
OBJECTIVE: To evaluate protection against systemic infection and clinical disease provided by use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine in calves challenged with NY-1 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV type 1 (WRL strain). Calves in both groups were challenged intranasally with NY-1 BVDV on day 21. Calves' rectal temperatures and clinical signs of disease were recorded daily, total and differential WBC and platelet counts were performed, and serum neutralizing antibody titers against NY-1 BVDV were determined. Histologic examinations and immunohistochemical analyses to detect gross lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to NY-1 BVDV, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV vaccine protected calves against systemic infection and disease after experimental challenge exposure with NY-1 BVDV. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

19.
Bovine viral diarrhea virus (BVDV) was isolated from 28 animals with a history of immunization against respiratory disease with a vaccine contaminated with BVDV. The vaccine-derived parental virus strain and the 28 isolates were analyzed using 10 monoclonal antibodies (MAbs) directed against different epitopes and antigenic domains on the major envelope glycoprotein of BVDV. None of the isolates displayed a reaction pattern identical with the parental virus. Instead, seven different reaction patterns (#A-G) emerged. Circumstantial evidence indicated that six of these were vaccine related whereas in one case (pattern #F) the origin of the isolate was unclear. The results indicated that BVDV rapidly changed during animal passages and that the tracing of the vaccine contaminant using Mabs was impossible.  相似文献   

20.
Thrombocytopenia has been associated with type II bovine viral diarrhea virus (BVDV) infection in immunocompetent cattle, but the mechanism is unknown. The purpose of the present study was to develop and characterize a model of type II BVDV-induced thrombocytopenia. Colostrum-deprived Holstein calves were obtained immediately after birth, given a BVDV-negative and BVDV antibody-negative plasma transfusion, housed in an isolation facility, and randomly assigned to either control (n = 4) or infected (n = 5) groups. Infected calves were inoculated by intranasal instillation on day 3 of age with 10(7) TCID50 of the prototype type II isolate, BVDV 890, whereas control calves were sham inoculated. Blood counts and virus isolations from serum, white blood cells, and platelets were performed daily until day 12 after infection, at which time all experimental calves were euthanatized, and pathologic, virologic, and immunohistochemical examinations were performed. On physical examination, the control calves remained normal, but the infected calves developed pyrexia and diarrhea characteristic of type II BVDV infection. The platelet count decreased in all infected calves, and a statistically significant difference in the platelet count between control and infected calves was observed on days 7-12 after infection. In addition, the mean platelet volume and white blood cell counts also decreased. Examination of the bone marrow from the infected calves revealed immunohistochemical staining for BVDV antigen in megakaryocytes and evidence of concurrent megakaryocyte necrosis and hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号