首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was conducted to investigate the supplementation of two commercially available multistrain probiotics as an alternative to antibiotics on growth performance, intestinal morphology, lipid oxidation and ileal microflora in broiler chickens. A total of 280‐day‐old ROSS 308 mixed‐sex broiler chickens with an average initial body weight of 42 ± 0.5 g were randomly divided into four treatments with five replicate cages of 14 birds each cage in a completely randomized design and fed with the following diets for 42 day: (a) control (CON) (antibiotic‐free diet), (b) antibiotic (ANT) (CON + Avilamycin 150 g/ton feed), (c) probiotic A (CON + Protexin® 150 g/ton feed) and (d) probiotic B (CON + Bio‐Poul® 200 g/ton feed). The results showed the broilers fed the ANT diet had greater average daily gain than broilers fed the CON diet during day 1–14 (p < 0.05). At day 42, two birds were randomly selected per replicate for evaluation intestinal morphology, lipid oxidation and ileal microflora. birds fed diet supplemented with probiotic A and probiotic B increased villus height and goblet cells numbers in the jejunum and villus height to crypt depth ratio and villus height in the ileum as compared to birds fed CON diet (p < 0.05). The malondialdehyde value was reduced (p < 0.05) in the ANT, probiotic B and probiotic A groups compared with the CON group. The Lactobacillus population was increased and Clostridium spp. population decreased in the ileum of broilers fed diets containing the probiotic B and probiotic A compared with those fed CON diet (p < 0.05). The results from this study indicate that the probiotic A (Protexin®) and probiotic B (Bio‐Poul®) used in this trial may serve as alternatives to ANT.  相似文献   

2.
Today, several strategies are being used to decrease the serious effects of antibiotics abuse on broilers industry and public health, among which synbiotics are one of the most promising antibiotic alternative. This study was undertaken to assess the effects of synbiotics, which composed of probiotics (Bacillus subtilis) and prebiotics (xylooligosaccharide and mannanoligosaccharide), on growth performance, intestinal morphology, sIgA content and antioxidant parameters of broilers. Four hundred and fifty one‐day‐old commercial Cobb48 broilers were assigned to five treatments consisting of six replicates of 15 birds each pen. Five dietary treatments include basal diets (control), basal diets plus antibiotics (4 mg/kg Xanthomycin), basal diets plus 1 g of probiotics B. subtilis product/kg of diets (4 × 108 cfu/kg), basal diets plus 150 mg/kg xylooligosaccharide (35%) and 1 g/kg mannanoligosaccharide (75%), and basal diets plus synbiotics (1 g of probiotics B. subtilis product/kg of diets (4 × 108 cfu/kg), 150 mg/kg xylooligosaccharide (35%) and 1 g/kg mannanoligosaccharide (75%). The results demonstrated that on 21 and 42 days, dietary supplementation of the synbiotics significantly increased daily weight gain (p < 0.05), feed efficiency (p < 0.05), the villus height and villus:crypt ratio in the duodenum, jejunum and ileum (p < 0.05), as well as intestinal mucosa sIgA content (p < 0.05), serum T‐SOD activity (p < 0.05) and lysozyme content (p < 0.05), comparing with control group. In conclusion, synbiotics (B. subtilis and xylooligosaccharide and mannanoligosaccharide) is one of the safe and ideal dietary supplementations to increase broilers' growth performance by improving small intestinal morphology, sIgA content and antioxidant capabilities.  相似文献   

3.
This study aimed to determine the effect of different dietary levels of a Chlorella by‐product (CBP) on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology of broilers. In total, 480 one‐day‐old broiler chickens were randomly allotted to four dietary treatments with four replicated pens consisting of 30 chicks. The basal diet was formulated to be adequate in energy and nutrients. Three additional diets were prepared by supplementing 25, 50 or 75 g/kg of CBP to the basal diet. The diets were fed to the broilers ad libitum for 35 days. Result indicated that increasing inclusion level of CBP improved BW gain (linear, p < 0.05). There was no effect of inclusion level of CBP in diets on total cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase levels during the 35 days. Plasma IgG, IgM and IgA concentrations increased (linear, p < 0.05) with inclusion level of CBP in diets. Supplementation of CBP in the diets increased (linear, p < 0.05) the concentrations of Lactobacillus in the caecal content and decreased (linear, p < 0.05) the concentrations of Escherichia coli and Salmonella in the caecal content. Villus height increased (linear and quadratic, p < 0.05) with inclusion level of CBP in diets. Crypt depth increased (quadratic, p < 0.05) with inclusion level of CBP, and a decreased villus height: crypt depth ratio (quadratic, p < 0.05) was observed as inclusion level of CBP in diets increased. The results of the current experiment indicate that dietary supplementation of CBP improves growth performance of birds. Dietary CBP has improving Lactobacillus spp. concentrations in the gastrointestinal tract, plasma immunoglobulin concentrations and intestinal mucosal morphology.  相似文献   

4.
This study evaluated the effects of physical form of starter feed and forage provision on the performance, blood metabolites, liver composition and intestinal morphology of dairy calves. Individually housed calves (n = 52; body weight = 41.5 ± 2.5 kg) were randomly allocated (n = 13 per treatment) to one of the following four treatments: (i) ground starter feed (GS; mean particle size = 0.72 mm in diameter), (ii) textured starter feed (TS; mean particle size = 3.61 mm in diameter, including steam‐flaked corn and barley), (iii) pelleted starter feed (PS; mean particle size = 4.53 mm in diameter) and (iv) ground starter feed with chopped alfalfa hay (GS + AH; mean particle size = 1.02 mm in diameter). The calves fed GS + AH diets had greater (p < 0.01) starter intake, final body weight and average daily gain compared with the other groups, while GS and TS groups both had greater (p < 0.01) starter intake than the PS group. Feed efficiency was found to be better (p < 0.05) in the TS group than in the GS or PS group, but not different from the GS + AH one. Compared with the other groups, the GS + AH group had the highest (p < 0.01), while the PS one had the lowest (p < 0.01) concentrations of blood glucose and triglyceride. The calves fed GS + AH had the highest blood concentrations of total protein, globulin, triiodothyronine (T3), thyroxin (T4), T3 : T4 ratio (p < 0.05) and levels of fat and glycogen in the liver (p < 0.01) compared with the other groups. The highest (p < 0.05) liver glycogen contents were observed in the GS + AH and TS groups. The duodenum, ileum and jejunum in the calves fed GS + AH exhibited a greater muscle layer thickness (p < 0.05) compared with the other groups. Based on the results obtained, the addition of dietary forage to starter diets positively influenced performance, liver composition and intestinal morphology in developing calves.  相似文献   

5.
This study investigated the protective effects of probiotic on heat stress‐induced intestinal injury and inflammatory response in broilers. A total of 180 male broilers were randomly allocated to three treatments with four replicates each from 22 to 42 days of age. The broilers were either raised under thermoneutral (TN) conditions (23 ± 1°C) or subjected to cyclic heat stress (28–35–28°C for 12 hr daily). The broilers kept at TN conditions were fed a basal diet, and those exposed to heat stress were fed basal diets supplemented with or without probiotic at a dose of 1.5 × 108 cfu/kg. Compared with the TN group, heat stress decreased (p < .05) the growth performance, reduced (p < .05) villus height and villus height: crypt depth ratio in intestinal mucosa, increased (p < .05) serum levels of D‐lactic acid on day 28 and endotoxin, TNF‐α and IL‐6 on day 42, and decreased (p < .05) serum IL‐10 content on day 42. Dietary supplementation of probiotic reversed (p < .05) all these changes except for the growth performance in heat‐stressed broilers. In conclusion, dietary inclusion of probiotic could improve intestinal morphology and barrier function, alleviate inflammatory response, but exert no ameliorative effect on growth performance of broilers under cyclic heat stress.  相似文献   

6.
To investigate the effects of different levels of enzymatic hydrolysate of dietary locust bean gum on nutrient digestibility, intestinal morphology and microflora of broilers, a total of 768 one-day-old Arbor Acres (AA) broiler chicks were randomly divided into 6 treatments with 8 replicates per treatment and 16 birds per replicate. The treatments were as follows: (1) CON, basal diet; (2) ANT, basal diet +62.5 mg/kg flavomycin; (3) LBG, basal diet +0.1% locust bean gum; (4) ELBG-0.1, basal diet +0.1% enzymatic hydrolysate of LBG; (5) ELBG-0.2, basal diet +0.2% enzymatic hydrolysate of LBG; and (6) ELBG-0.3, basal diet +0.3% enzymatic hydrolysate of LBG. The digestibilities of ether extract, crude protein and dry matter were increased (p < .01) in broilers fed the ELBG-0.3 diet compared with the CON and LBG diets on day 21. Duodenal villus height and the ratio of the villus height to crypt depth were greater (p < .01) in broilers fed the ELBG-0.3 diet than the CON, ANT and LBG diets. Jejunum villus height was higher (p < .05) in broilers fed the ELBG-0.2 and ELBG-0.3 diets than the CON diet. The number of caecal Escherichia coli was reduced (p = .01) in broilers fed the ELBG-0.2 and ELBG-0.3 diets compared with the CON diet. The number of caecal Lactobacilli was greater (p < .05) in broilers fed the ELBG-0.3 diet than the CON and ANT diets. In summary, the addition of 0.3% locust bean enzymatic hydrolysate can increase the surface area of intestinal villi and the number of beneficial bacteria, inhibit the proliferation of harmful bacteria, maintain the balance of intestinal microflora and improve the digestibility of nutrients.  相似文献   

7.
This study was to investigate the effects of Epigallocatechin‐3‐gallate (EGCG) on intestinal morphology, antioxidant capacity and anti‐inflammatory response in heat‐stressed broiler. A total of 192 2‐week‐old Arbour Acres broilers chickens were divided into four groups with six replicates per group and eight chickens per replicate: one thermoneutral control group (28°C, group TN), which was fed the basal diet; and three cyclic high‐temperature groups (35°C from 7:00 to 19:00 hr; 28°C from 19:00 hr to 7:00 hr, heat stress group), which were fed the basal diet supplementation with EGCG 0 mg/kg (group HS0), 300 mg/kg (group HS300) and 600 mg/kg (group HS600). The gut morphology and intestinal mucosal oxidative stress indicators, as well as intestinal barrier‐related gene expression, were analysed. The results showed that compared with group TN, heat stress reduced the villus height (VH), activities of glutathione peroxidase (GSH‐Px), superoxide dismutase (SOD)and catalase (CAT), increased the crypt depth (CD) and malondialdehyde (MDA)content at 21, 28 and 35 days (p < 0.05). After the heat‐stressed broilers were supplemented with EGCG, VH, VH/CD (V/C), and the activities of GSH‐Px, SOD and CAT were increased, and CD and MDA content were reduced compared with those in group HS0 without EGCG supplementation at 21, 28 and 35 days (p < 0.05). The EGCG supplementation promoted the gene expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2), Claudin‐1, Mucin 2 (Muc2) and alleviated the nuclear factor‐kappa B (NF‐κB) and lipopolysaccharide‐induced tumour necrosis factor (LITAF) gene expression compared with group HS0 (p < 0.05). Moreover, intestinal morphology was strongly correlated with antioxidant ability and inflammatory response. In conclusion, EGCG alleviated the gut oxidative injury of heat‐stressed broilers by enhancing antioxidant capacity and inhibiting inflammatory response.  相似文献   

8.
With the ever-growing strict prohibitions on antibiotic growth promoters (AGP) in animal production, in-feed probiotics are becoming attractive alternatives to antibiotics in the poultry industry. To investigate the effects of Paenibacillus polymyxa 10 and Lactobacillus plantarum 16 on the growth performance and intestinal health of broilers, 540 male Cobb 500 broilers of 1 d old were randomly divided into 3 groups with 6 replicates per group and 30 chicks per replicate. Broilers were fed with either a basal diet or basal diets supplemented with 1 × 108 colony-forming units (CFU)/kg P. polymyxa 10 (BSC10) or L. plantarum 16 (Lac16) for 42 d. Results showed that Lac16 treatment improved (P < 0.05) the growth performance (body weight and feed conversion) of broilers at the starter phase, while BSC10 treatment slightly improved (P > 0.05) the growth performance of the starter phase broilers. The increased villus height (P < 0.05) at d 14, 21 and 42 and villus height to crypt depth ratio (P < 0.05) at d 14 and 21 were observed in the ileum of the 2 probiotic groups. Besides, transmission electron microscopy results showed that the 2 probiotics enhanced the intestinal epithelial barrier. Both probiotic treatments up-regulated (P < 0.05) the mRNA expression of fatty acid binding protein 1 (FABP1) and sodium-dependent glucose transporters-1 (SGLT-1) in the ileal mucosa of broilers at d 21. In addition, BSC10 and Lac16 treatments significantly (P < 0.05) increased the relative abundance of short-chain fatty acids-producing bacteria, such as Butyricicoccus pullicaecorum, Faecalibacterium prausnitzii, Lachnospira and Coprococcu, and significantly (P < 0.05) decreased the relative abundance of enteric pathogens (Escherichia coli, Bacteroides fragilis and Shigella sonnei). Furthermore, the 2 probiotic treatments also increased the positive connection among the intestinal microbes and the carbohydrate metabolism-related pathways of the intestinal bacteria (P < 0.05), with decreasing (P < 0.05) nucleotides biosynthesis-related pathways of the intestinal bacteria. Overall, these results suggest that the 2 probiotics, especially Lac16, have a potential beneficial effect on the growth performance and intestinal health of starter phase broilers.  相似文献   

9.
Chicory (Cichorium intybus) belongs to plants of the Compositae family accumulating energy in the form of inulin fructan. Chicory, a prebiotic, is a fermentable oligosaccharide and oligofructose that may affect the intestinal mucosal architecture and the electrophysiological parameters. Therefore, this study was conducted to evaluate the effectiveness of adding chicory fructans in feed on the intestinal morphology and electrogenic transport of glucose in broilers. Four hundred, 1 day old broiler chicks were randomly divided into two groups (200 bird per group) for 5 weeks. The dietary treatments were (i) control, (ii) basal diets supplemented with the dried, grinded ground chicory pulp containing inulin (1 kg of chicory/ton of the starter and grower diets). In duodenum, dietary chicory increased the villus height and villus width and villus height to crypt depth ratio (p < 0.05), but the duodenal crypt depth remained unaffected (p > 0.05). However, in jejunum, the villus height, crypt depth and villus height to crypt depth ratio were decreased by dietary chicory compared with control birds (p < 0.05). In ileum, the villus height and villus crypt depth was decreased by dietary chicory supplementation compared with control (p < 0.05), but, the villus height to crypt depth ratio was increased (p < 0.05). Moreover, dietary chicory relatively affected the electrophysiological parameters of the intestine but did not reach significance. The amount of ΔIsc after d ‐glucose addition to the jejunal mucosa was numerically higher for chicory fed birds (19 μA/cm2) than control birds (10 μA/cm2). The percentage of increase in the Isc after d ‐glucose addition (ΔIsc %) was higher for chicory group upto (90%) of the control group. In colon, the actual Isc value and Isc after d ‐glucose addition was numerically higher for chicory fed birds than control birds (p > 0.05). Moreover, the conductance of jejunal and colonic tissues after d ‐glucose addition remained unaffected by the dietary chicory. In conclusion, addition of chicory to broilers diet increased the duodenal villus height, villus width and villus height to crypt depth ratio and decreased the villus height and crypt depth in both jejenum and ileum. Furthermore, dietary chicory relatively modified the small intestinal electrogenic transport of glucose in broilers.  相似文献   

10.
The dietary contents of crude protein and free amino acids (AA) may affect the protein digestion and AA absorption in pigs. Trypsin and chymotrypsin activities, AA serum concentrations and expression of AA transporters in the small intestine of pigs fed a low protein, AA‐supplemented (19.2%, LPAA) or a high protein (28.1%, HP), wheat‐soybean meal diet were measured in two 14‐d trials. The LPAA diet contained free L‐Lys, L‐Thr, DL‐Met, L‐Leu, L‐Ile, L‐Val, L‐His, L‐Trp and L‐Phe. All pigs were fed the same amount of feed (890 and 800 g/d for trial 1 and 2 respectively). In trial 1, samples of mucosa (duodenum, jejunum and ileum) and digesta (duodenum and jejunum) were collected from 14 pigs (17.2 ± 0.4 kg); in trial 2, blood samples were collected from 12 pigs (12.7 ± 0.3 kg). The trypsin and chymotrypsin activities in both intestinal segments were higher in pigs fed the HP diet (p < 0.01). Trypsin activity was higher in jejunum than in duodenum regardless the dietary treatment (p < 0.05). Pigs fed the LPAA diet expressed more b0,+AT in duodenum, B0AT1 in ileum (p < 0.05), and tended to express more y+LAT1 in duodenum (p = 0.10). In pigs fed the LPAA diet, the expression of b0,+AT was higher in duodenum than in jejunum and ileum (p < 0.01), but no difference was observed in pigs fed the HP diet. Ileum had the lowest b0,+AT expression regardless the diet. The serum concentrations of Lys, Thr and Met were higher in LPAA pigs while serum Arg was higher in HP pigs (p < 0.05). Serum concentrations of AA appear to reflect the AA absorption. In conclusion, these data indicate that the dietary protein contents affect the extent of protein digestion and that supplemental free AA may influence the intestinal site of AA release and absorption, which may impact their availability for growth of young pigs.  相似文献   

11.
This study was conducted to investigate the effects of dietary supplementation with montmorillonite (MMT) on performance, intestinal endotoxin concentration, gut mucosal oxidation status, intestinal morphology and permeability, and immunological barrier function of laying hens during late production. Four hundred and eighty 75‐week‐old laying hens (Lohmann Brown) were randomly assigned to five treatments with eight replicates per treatment and 12 hens in each replicate. The hens were fed the basal diet supplemented with 0 (control), 0.3, 0.6, 0.9, or 1.2 g MMT/kg for 70 days. Compared with the control, supplemented with 0.9 g MMT/kg increased egg mass significantly (p < 0.05) during weeks 1–5 of the experiment. Supplemented with 0.6 and 0.9 g MMT/kg also increased the endotoxin concentration in the ileal digesta (p < 0.05), but decreased the MDA concentration in the ileum significantly (p < 0.05). The T‐AOC in the jejunum of the group fed 0.3 g MMT/kg was significantly increased (p < 0.05). Compared with the control, the villus height:crypt depth of ileum from the groups fed 0.6, 0.9, and 1.2 g MMT/kg increased significantly (p < 0.05). The sIgA concentration of jejunum in the groups fed 0.6 and 0.9 g MMT/kg was higher (p < 0.05) than the control. The MMT supplementation linearly increased (p < 0.05) the mRNA expression of claudin‐1 and claudin‐5 in the jejunum. Dietary MMT supplementation down‐regulated the mRNA expression of NF‐κB P65 and TNF‐α in the jejunum in a linear and quadratic manner (p < 0.05). The IL‐1β mRNA expression of jejunum in the group fed 0.6 g MMT/kg was lower (p < 0.05) than the control. In conclusion, dietary supplementation with MMT may improve the gut barrier functions and suggests that 0.9 g/kg of MMT in diets may be the optimal supplemental level for laying hens in late production.  相似文献   

12.
Spatial variations in intestinal skatole production and microbial composition in broilers were evaluated. Fifteen 42‐day‐old broilers were slaughtered. Samples were taken from the broilers’ ileum, cecum, and rectum and analyzed for skatole levels. Denaturing gradient gel electrophoresis (DGGE) technique was used to analyze the microbial community from the intestinal digesta. The skatole levels could be arranged in decreasing order: cecum > rectum > ileum. Cecal lactate and acetate levels were higher than those of ileum and rectum (< 0.01). Cecal microbial diversity and richness were higher than those of ileum (p < 0.05). One specific DGGE band was found in cecal sample and is closely related to Bacteroides uniformis. Cecum and rectum samples consisted of three coexistence bands, the related bacteria included Lactobacillus vaginalis and two members of Candidatus Arthromitus. The total bacterial population in cecum was higher than that in ileum and rectum (p < 0.05). Skatole levels were positively correlated with microbial Shannon‐Wiener index, richness, total bacteria (p < 0.01) and Lactobacilli and Bifidobacterium (p < 0.05) populations. These results suggest that the variations in fermentation patterns are more likely to explain differences in intestinal skatole level. Bacteroides uniformis may play a role in the production of skatole.  相似文献   

13.
Growing male Cobb broiler chickens were fed on diets supplemented with additives reported as able to influence intestinal microbiota composition. The diets used were a balanced commercial diet (no additive), inulin (20 g/kg), fructose caramel (FC, 20 g/kg) and the garlic derivative PTS‐O (propyl propane thiosulfonate, 45 and 90 mg/kg diet). The composition of the intestinal microbiota was analysed by qPCR at different points of the intestinal tract, and a number of nutritional parameters were also determined. The relative amounts of bacteroides (bacteroides/total bacteria) in the ileal contents correlated (p < 0.05) positively with faecal NDF, ADF, hemicellulose and cellulose digestibility. The relative amounts of Escherichia–Shigella (Escherichia–Shigella/total bacteria) in the crop contents correlated (p = 0.05) negatively with weight gain of broilers. Faecal N digestibility correlated (p < 0.05) negatively with total bacteria in the ileal contents of chickens. The relative amounts of Escherichia–Shigella (Escherichia–Shigella/total bacteria) in the caecal contents correlated (p = 0.05) negatively with faecal fat digestibility of broilers. Total bacteria in ileal or caecal contents of growing chickens correlated (p < 0.05) negatively with ileal N digestibility. The results here reported suggest that positive or negative correlations can be found between performance parameters and changes in intestinal microbiota composition of growing broiler chickens.  相似文献   

14.
Butyrate modulates intestinal epithelial cell structure and function. Three hundred and sixty Lohmann LSL‐Classic layer cockerels were used to investigate the effect of butyrate on heat stress‐induced intestinal injury and intestinal integrity. The experiment was conducted from day 85 to 105 of age. The birds were divided randomly into three treatments: control, heat stress (HS), and heat stress provided with butyrate (HSB) at a level of 0.35 g/kg of diet. The control was reared at 21 ± 1 °C throughout the experiment. The HS and HSB treatments were exposed to a cyclic HS (35 ± 1 °C from 09:00 to 13:00 and 21 ± 1 °C from 13:00 to 09:00). Intestinal and mucosal weights, villus height, villus surface area (VSA), absorptive epithelial cell area and intestinal beneficial bacteria were lower in the HS treatment than in the other two treatments (p < 0.05). Heat‐stressed cockerels exhibited the highest (p < 0.05) villi injury scores and serum endotoxin levels compared with the other treatments. Dietary inclusion of butyrate increased (p < 0.05) intestinal and mucosal weights, villus height, VSA, absorptive epithelial cell area and intestinal beneficial bacteria counts and reduced (p < 0.05) HS‐induced injury in intestinal epithelia as well as intestinal permeability to endotoxin. In conclusion, dietary butyrate exerted protective effects against intestinal damage induced by HS and improved intestinal health and integrity.  相似文献   

15.
The present study aimed to evaluate the effect of different levels of an ethanolic extract of propolis (EEP) on broiler performance, carcass characteristics, weight of gastrointestinal organs, intestinal morphometry and digestive enzyme activity. 1020 male broiler chicks were assigned in a completely randomised experimental design to six treatments (EEP supplement levels of 0, 1000, 2000, 3000, 4000 and 5000 ppm) and five replications, and 34 birds per experimental unit. The experimental diets were administered from 1 to 21 days of age, and the birds were subsequently provided a ration based on corn and soybean meal. EEP supplementation from 1 to 7 days negatively affected (p < 0.05) the weight gain and feed intake. The proventriculus weight at 7 days exhibited a quadratic response (p < 0.05), which predicted a lower weight at a dose of 2865 ppm of the EEP. For the duodenum at 21 days of age, the response pattern (p < 0.05) predicted that birds that were fed 2943 and 3047 ppm of the EEP would exhibit an improved crypt depth and villus‐to‐crypt ratio respectively. The villus height, crypt depth and villus‐to‐crypt ratio in the jejunum and the ileum were not affected (p > 0.05). With increased EEP doses, the duodenal sucrase activity linearly decreased at 7 days of age and linearly increased in the jejunum at 21 days of age (p < 0.05), while pancreatic enzyme activity was unaffected (p > 0.05). Although the carcass and cut yields did not improve, the percentage of abdominal fat decreased (p < 0.05). The supplementation of the broiler pre‐starter diet with 1000–5000 ppm of the EEP impaired performance at this stage, most likely due to the decreased sucrase activity. However, the EEP supplementation from 3000 ppm improved intestinal morphophysiology at 21 days of age and did not affect the performance or carcass yield at 42 days of age.  相似文献   

16.
This study investigated the influence of Bacillus‐based probiotics on performance and intestinal health in broiler challenged with Clostridium perfringens‐induced necrotic enteritis. One‐day‐old Arbor Acre (n = 480) were randomly assigned to four treatments with 10 cages of 12 birds: (a) basal diet negative control (NC), with no probiotics nor antibiotics formulated to contain 2,930 and 3,060 kcal/kg with 24.07 and 15.98% CP, for starter and finisher diet, respectively, (b) basal diet + enramycin (5 mg/kg), an antibiotic growth promoter (AGP); (c) basal diet + Bacillus subtilis B21 at 2 × 109 CFU per g (BS); (d) basal diet + Bacillus licheniformis B26 at 2 × 109 CFU per g (BL); growth performance, intestinal morphology, intestinal lesion scores, short‐chain fatty acids (SCFAs) and mucosal barrier tight junction's (TJ) mRNA expression were assessed. NC‐ and BL‐fed groups showed higher (p = 0.005) average daily feed intake from d1 to d21 than AGP and BS, whereas BS‐ and AGP‐fed groups showed higher average daily weight gain from d22 to d42 and d1 to d42 of age. Higher mortality rate of (12.5%) and lower of (5.5%) were recorded in AGP and NC fed‐groups respectively, lesion score was higher in BS and BL than in AGP, while no lesion was observed in NC group, results revealed higher duodenum and jejunum villus height to crypt depth (VH:CD) compared with NC and BS. Probiotics‐fed groups showed higher total (SCFAs), acetic and butyric acid concentrations at d21 post‐challenge (PC) than other groups. The expression of claudin‐1 was upregulated in duodenum (d7) PC and in jejunum (d7) and (d21) PC in BL group, while at d21 PC, the expression of occludens was higher in jejunum and ileum by AGP and BL. The present study indicated both BS and BL have some similarity with AGP in preventing or partially preventing NE effect in broilers.  相似文献   

17.
18.
The abnormalities in intestinal morphology and digestive function during weaning are associated with the loss of milk‐borne growth factors. Epidermal growth factor (EGF) has been shown to stimulate the growth of animals. This study was to determine the effect of dietary EGF on nutrient digestibility, intestinal development and the expression of genes encoding nutrient transporters in weaned piglets. Forty‐two piglets were weaned at 21 days and assigned to one of three treatment groups: (1) basal diet (control), (2) basal diet + 200 µg/kg EGF or (3) basal diet + 400 µg/kg EGF. Each treatment consisted of 14 replicates, and seven piglets from each treatment were sampled on day 7 and 14. The EGF supplementation significantly elevated (p < 0.05) the coefficients of total tract apparent digestibility of crude protein, calcium and phosphorus, but tended to decrease sucrase activity (< 0.10) than the control group. At day 7 post‐weaning, animals receiving EGF diets showed a tendency (p < 0.10) towards greater ileal villus height (VH), jejunal crypt depth (CD) and duodenal VH:CD when compared with the control group. Moreover, the mRNA levels of glucose transporter 2 (Slc2a2), neutral amino acid transporter (Slc6a19) and calbindin D9k (S100G) tended to be higher (p < 0.10) for EGF groups than the control group. By day 14, EGF supplementation markedly enhanced (p < 0.05) the VH, CD and VH:CD in the jejunum compared to the control group. This addition also up‐regulated (p < 0.05) the mRNA level and the protein abundance of peptide transporter 1 than the control group. These findings demonstrated that dietary EGF beneficially enhanced nutrient digestibility, improved intestinal development and increased the mRNA expression of nutrient transporters in weaned piglets.  相似文献   

19.
This study was conducted to compare the differences of the uptake of Mn from Mn–lysine complex (MnLys) and MnSO4 and to determine the potential mechanisms of the uptake of Mn from MnLys. We first established the primary rat intestinal epithelial cell culture model and used it to determine the uptake of Mn from different Mn sources. The MnLys increased (p < 0.001) Mn uptake when compared to MnSO4. The uptake of Mn decreased (p < 0.05) with added Fe concentration increasing in the medium regardless of Mn source. The MnLys decreased (p < 0.01) Mn2+ efflux transporter ferroportin 1 (FPN1) mRNA level, but did not influence (p > 0.06) Mn2+ influx transporter DMT1 mRNA expression when compared to MnSO4. The results above indicated that the increase of Mn accumulation for MnLys at least partly was due to the decrease of Mn efflux by reduced FPN1 expression. The N‐ethylmaleimide, as an l ‐lysine transport system y+ inhibitor, decreased (p < 0.001) the uptake of Mn from MnLys, but did not affect (p > 0.10) the uptake of Mn from MnSO4. The cycloheximide, as an l ‐lysine transport system b0,+ activator, increased (p < 0.001) the uptake of Mn from MnLys, whereas also did not influence the uptake of Mn from MnSO4. The MnLys increased (p < 0.01) the system y+ member cationic amino acid transporter (CAT) 1, and system b0,+ components rBAT and b0,+AT mRNA expression when compared to MnSO4. These results suggested that the uptake of Mn from MnLys complex might be transported by CAT1 and system b0,+, which was different from ionized Mn2+ uptake pathway. In conclusion, the uptake of MnLys complex not only might be absorbed as Mn2+, but also appeared to be transported through CAT1 and system b0,+ in the primary rat intestinal epithelial cells.  相似文献   

20.
The study was conducted to evaluate the effects of different stocking densities on growth performance, antioxidant capacity, and immunity of broilers. One thousand four hundred and forty 22‐day‐old Lingnan Yellow broilers were randomly allotted to five different stocking density groups (8, 10, 12, 14, and 16 birds per m2). Each group consisted of three replicates. The results showed that 8 and 10 birds/m2 groups had higher average daily feed intake (ADFI) than the others (< 0.05). Heat shock protein 70 (HSP70) in the group of 16 birds/m2 had the highest levels (< 0.05). The group of 16 birds/m2 had the lowest total antioxidant capability (T‐AOC) and total superoxide dismutase (T‐SOD) activities in blood serum (p < 0.05), and significantly increased interleukin‐1β (IL‐1β) and interleukin‐4 (IL‐4) concentration compared to the groups of 8 and 10 birds/m2 (< 0.05). In liver, the group of eight birds/m2 had higher T‐AOC levels than that of 12, 14, and 16 birds/m2 (< 0.05) and also higher catalase (CAT) activities than that of 14 and 16 birds/m2 (< 0.05); the group of 10 birds/m2 had the highest T‐SOD activities among all groups (< 0.05). In conclusion, the above results suggest that stocking density of broilers up to 8 or 10 birds/m2 can prevent the negative effects on growth performance and welfare parameters in broilers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号